第一篇:八年级几何证明1
八年级几何证明精选
一、基础题:
1、在ΔABC中,a,b,c分别是∠A,∠B,∠C的对边,且∠A=60°,其三边a,b,c满足下列关a-b-c2系,则ΔABC的形状是.a-b-c2、在ΔABC中,AB=AC=2,BC边上有100个不同点P1,P2……P100,记Mi=APi+BPi×CPi(i=1,2……100),则M1+M2+……+M100的值是.3、在ΔABC中,若a+b=c+ab,则∠C的大小为()
A 60°B 45°C 35°D 22.5°
4、如图所示,在线段BC作ΔABC和ΔBCD,使AB=AC,BD>DC,且CΔABC=CΔDBC,若AC与BD相交于点E,则下列说法正确的是
A AE
5、如图已知,△ABC中,∠B=40°,∠C=62°,AD是BC边上的高,AE是∠BAC的平分线。则∠DAE的度数=。
2222333D B
CB6、如图5,在ABCD中,AEBC于E,AEEBECa,且a是一元二次方程E图5 C
x22x30的根,则ABCD的周长为()
A.4.12.2.212
1、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.
求证:△PBC是正三角形.
D C2、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点. 求证:点P到边AB的距离等于AB的一半.
F3、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.(初二)
4、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.
求:∠APB的度数.
5、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.
6、如图所示,O为ΔABC内任意一点,AP,BO,CO的延长线分别交对边于A1,B1,C1。求证:
A0B0C0 为定值.AA1BB1CC1C
第二篇:八年级数学几何证明初步1
3eud教育网 http://百万教学资源,完全免费,无须注册,天天更新!
几何证明初步复习学案
(一)单位:马兰初中主备:王慧敏审核:黄丽英
课本内容:P114—12
4课前准备:三角板铅笔
复习目标:
1.识别定义、命题、公理、定理,会区分命题的条件和结论,理解原命题和逆命题的关系。
2.学会综合法证明的格式,会使用反证法。
复习过程:
一、复习提纲
1、八条公理:
2、命题是由_______________和______________两部分组成.。请你举一个真命题的例子:; 一个假命题的例子:。
3、请写出互为逆命题的两个命题:___________________________________________________。
4、几何证明的过程包括①②③
二、典型例题
例1 把下列命题写成“如果A,那么B
同角的余角相等
例
2(1)
(2)
(3)c,那么a=c.例3 在学习中,小明发现:当n=1,2,3时,n6n的值都是负数。于是小明猜想:当n为任意正整数时,n6n的值都是负数。小明的猜想正确吗?请简要说明你的理由。
3eud教育网 http://教学资源集散地。可能是最大的免费教育资源网!22
3eud教育网 http://百万教学资源,完全免费,无须注册,天天更新!
例4 如图,AD⊥BC于D,∠ADE+∠B=90,求证:AB∥DE.A
E
BD
三、有效训练
1、下列命题中,正确的是()
A 任何数的平方都是整数 B C 内错角都相等D2、下列命题:
①如果ab,则②如果a=b,则ab;③大于直角的角是钝角;④一个角的补
A ①③ BD①③⑤
3F是DC上的一点,G是BC的延长线上一点。
(1)∵∠∥_________()222
2A
EDF
G
B(2)∵∠D=∠DCGC
∴_________∥_________()
3eud教育网 http://百万教学资源,完全免费,无须注册,天天更新!
(3)∵∠D+∠DFE=180
∴_________∥_________()
四、课堂总结(总结本章前三节内容,你学到了什么)
五、达标检测
(1)下列说法正确的是()
A 真命题都可以作为定理B 公理不需要证明
C 定理不一定都要证明D 证明只能根据定义、公理进行
(2)下列定理中,没有逆定理的是()
A 内错角相等,两直线平行B 直角三角形中,两锐角互余
C 相反数的绝对值相等D 同位角相等,两直线平行
(3)如图,B、A、E三点在同一直线上,请你添加一个条件,使AD∥件是____________________(不允许添加辅助线)
E
AD
B
(4)已知:如图,∠1=∠2DE∥AC
DE
F
六、布置作业
BC(3)求证:两直线平行,内错角相等。
第三篇:七下几何证明1
七下几何证明
11.如图26:已知点D、G在直线AB上,点E、F分别在直线AC、BC上,DE∥BC,∠EDC=180º−∠GFC,问:GF与DC平行吗?为什么?
A
E
BCF 第26题图
2.已知:∠AED=∠C,∠DEF=∠B,请你说明∠1与∠2互补.B
3.如图,已知A
BC,ADBC于D,E为AB上一点,EFBC于F,DG//BA交CA于G.求证12.4.如图,在ABC中,ACB90,CDAB于D,E、F分别为AB、AC上的点,且AFEB.试说明:EF‖CD的理由.A D E 2 C
5.如图,在△ABC中,AD⊥BC于D,G是AC上任一点,GE⊥BC于E,GE的延长线与BA的延长线交于F,∠BAD=∠CAD,求证:∠AGF=∠F.
6.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.
7.如图,已知∠ADC =∠ABC,DE、BF分别平分∠ADC和∠ABC,且∠1=∠2,试说明AB // DC的理由.
F C
AE B
8.已知:如图,,∠1=∠2, AB∥DG,AD⊥BC,试说明EF⊥BC。
C
D
G
BEA
第四篇:八年级四边形几何证明提高题(经典)(模版)
几何证明提高题
1、如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)若AB∥CD,试证明四边形ABCD是菱形;
(2)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.
2、已知:如图平行四边形ABCD,DE⊥AC,AM⊥BD,BN⊥AC,CF⊥BD
求证:MN∥EF
3、已知:如图菱形ABCD,E是BC上一点,AE、BD交于F,若AE=AB,∠DAE=2∠BAE 求证:BE=AF A
D B E C
4、已知:如图正方形ABCD,P、Q分别是BC、DC上的点,若∠1=∠2 AD求证:PB+QD=PA 12
Q
BC
P
D5、已知:如图正方形ABCD,AC、BD交于点O,E、F分别是BC、OD的中点 A求证:AF⊥EF
F
O
BCE6已知:如图,AB//CD,AEED,BFFC,EM//AF交DC于M,求证:FMAE。
7、已知:如图,⊿ABC中,E、F分别是AB、BC中点,M、N是AC上两点,EM、FN交于D,若AM=MN=NC,求证:四边形ABCD是平行四边形。
8、已知:如图,12,AB3AC,BEAD,求证:ADDE。
9、已知:如图,AB//CD,D900,BEECDC,求证:AEC3BAE。
10、已知:如图,ADBC,B2C,BEEC,求证:DE12AB。
11、已知:如图,ABDC,AEDE,BFFC,FE交BA、CD的延长线于G、H,求证:12。
12、已知:如图,AB//CD,ADC900,BEEC,求证:AED2EDC。
13、已知:如图,正方形ABCD中,E是DC上一点,DF⊥AE交BC于F 求证:OE⊥OF
AD
O E
B
FC14、如图,分别以△ABC的三边为边长,在BC的同侧作等边三角形ABD,等边三角形BCE,等边三角形ACF,连接DE,EF。求证:四边形ADEF是平行四边形。
EF
D A
BC
15、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.
(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG=错误!未找到引用源。2,求EB的长.
16、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周 长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
第五篇:八年级四边形几何证明提高题(经典)
几何证明提高题
1、如图,在△ABC中,BD、CE分别是AC、AB上的高。G、F分别是BC、DE的中点,试证明FG⊥DE。
2、如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
(1)若AB∥CD,试证明四边形ABCD是菱形;
(2)在(2)的条件下,试确定E点的位置,使得∠EFD=∠BCD,并说明理由.
3、已知:如图平行四边形ABCD,DE⊥AC,AM⊥BD,BN⊥AC,CF⊥BD 求证:MN∥EF4、已知:如图菱形ABCD,E是BC上一点,AE、BD交于F,若AE=AB,∠DAE=2∠BAE
求证:BE=AF5、已知:如图正方形ABCD,P、Q分别是BC、DC上的点,若∠1=∠2 求证:PB+QD=PA
CP6、已知:如图正方形ABCD,AC、BD交于点O,E、F分别是BC、OD的中点 求证:AF⊥EF
DMAE交AC于M,7、已知:如图,AB=BC,D、E分别是AB、BC上一点,BNAE
交AC于N,若BDBE求证:MNNC。
8、已知:如图,AB//CD,AEED,BFFC,EM//AF交DC于M,求证:FMAE。
10、已知:如图,⊿ABC中,E、F分别是AB、BC中点,M、N是AC上两点,EM、FN交于D,若AM=MN=NC,求证:四边形ABCD是平行四边形。
11、已知:如图,12,AB3AC,BEAD,求证:ADDE。
12、已知:如图,AB//CD,D900,BEECDC,求证:AEC3BAE。
13、已知:如图,ADBC,B2C,BEEC,求证:DE
AB。
14、已知:如图,ABDC,AEDE,BFFC,FE交BA、CD的延长线于G、H,求证:12。
15、已知:如图,AB//CD,ADC900,BEEC,求证:AED2EDC。
16、已知:如图,正方形ABCD中,E是DC上一点,DF⊥AE交BC于F求证:OE⊥OF17、如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是BD、AC的中点,猜一猜EF与GH的位置关系,并证明你的结论.
B
F
C
O
E
A
D18、如图,分别以△ABC的三边为边长,在BC的同侧作等边三角形ABD,等边三角形BCE,等边三角形ACF,连接DE,EF。求证:四边形ADEF是平行四边形。
D19、如图,点G是正方形ABCD对角线CA的延长线上任意一点,以线段AG为边作一个正方形AEFG,线段EB和GD相交于点H.(1)求证:EB=GD;
(2)判断EB与GD的位置关系,并说明理由;
(3)若AB=2,AG=错误!未找到引用源。2,求EB的长.
20、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;
(2)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周 长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.