武汉考试几何证明题精选2013年12月

时间:2019-05-13 15:10:29下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《武汉考试几何证明题精选2013年12月》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《武汉考试几何证明题精选2013年12月》。

第一篇:武汉考试几何证明题精选2013年12月

如图1,在正方形ABCD中,点M、N分别在AD、CD上,若∠MBN=45°,易证MN=AM+CN ⑴ 如图2,在梯形ABCD中,BC∥AD,AB=BC=CD,点M、N分别在AD、CD上,若∠MBN=1∠ABC ,试探究线段MN、AM、CN有怎样的数量关系?请写出猜想,并给予证明. 2

N ⑵ 如图3,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M、N分别在DA、CD的延长线上,若∠MBN=1∠ABC,试探究线段 2

MN、AM、CN又有怎样的数量关系?请直接写出猜想,不需证明.

A M D

N

BC

图1

A M D N B C图2第26题图D A M B C 图3

第二篇:几何证明题

几何证明题

1.在三角形ABC中,BD,CE是边AC,AB上的中点,BD与CE相交于点O,BO与OD的长度有什么关系?BC边上的中线是否一定过点O?为什么?

答题要求:请写出详细的证明过程,越详细越好.ED平行且等于1/2BC

取MN为BO,OC中点

则MN平行且等于1/2BC

得到ED平行且等于MN,则EDNM是平行四边形

则OD=OM,又M为BO中点,显然BO=2OD

一定过

假设BC中线不经过O点,而与BD交与O'

同理可证AO'=2O'G

再可由平行四边形定理得到O与O'重合所以必过O点

2.在直角梯形ABCD中,角B=角C=90度,AB=BC,M为BC边上一点。且角DMC=45度

求证:AD=AM

(1)几何证明题,首先画图

哎没图不好说啊

就空说吧你在纸上画图

先看已知条件,从已知条件得出直观的结论.因为M是BC边上一点,在三角形DMC中,角DMC=45度,角MCD=角C=90度,可以知道角MDC=45度,则三角形DMC是个等腰直角三角形,MC=CD.又AB=BC,M是BC边上一点,MC长度小于BC,所以知道这个直角梯形是以CD为上底,AB为下底,图形先画对

接下来求证

要证AD=AM,从已知条件中得知,MC=CD,则作一条辅助线就可得证

连接AC

∵AB=BC,角B=90度∴三角形ABC是个等腰直角三角形

∴角BCA=45度

∴角DCA=角BCD-角BCA=45度=角BCA

所以三角形AMC≌三角形ADC(MC=CD,角DCA=角BCA,AC=AC——边角边)

所以AD=AM得证

(2)

延长CD至F点~CF=AB连接AF~~因AB=BC~SO~ABCF是正方形~剩下的就容易了~只要证AFD~和ABM~是一样的3角形就OK了~~哎~快10年没碰几何了~那些专业点的词我都忘了~这题应该是这样吧~不知道有没错

回答者:fenixkingyu-试用期一级2007-8-719:23

上楼的有两处错误:

1.描述错误,ABCF不是四边形,ABFC才是.2.按照条件并不能证明ABFC是正方形.注意:要证明四边形是正方形,必须证明2个问题:

1.该四边形是矩形;2.该四边形是菱形。

(3)

把图画出来就好解了。我是按自己画的图解的,楼主画梯形下面是BA,上面是CD,然后在按我的文字添加辅助线就行了,度那个圆圈打不出来,我就没写了。

证明:连接MD,AM,连接AC并交MD于E

因为角DMC=45,角C=90

所以三角形MCD为等边直角三角形,既角CDM=45

又角B=90AB=BC

所以角CAB=45

由梯形上下两边平行,则内对角相加为180度

因角CAB角DMB=45+45=90

所以角EDA角DAE=90

既AC垂直于MD

在等腰直角三角形CDM中则有ME=ED,且AC垂直于MD

所以AE是三角形AMD的中垂线

既AD=AM(等腰三角形的法则)。

第三篇:几何证明题

几何证明题集(七年级下册)

姓名:_________班级:_______

一、互补”。

E

D

二、证明下列各题:

1、如图,已知∠1=∠2,∠3=∠D,求证:DB//EC.E D

3ACB2、如图,已知AD//BC,∠1=∠B,求证:AB//DE.AD BCE3、如图,已知∠1+∠2=1800,求证:∠3=∠4.EC

A1 O

4B

D F4、如图,已知DF//AC,∠C=∠D,求证:∠AMB=∠ENF.E DF

N

M

AC B5、如图,在三角形ABC中,D、E、F分别为AB、AC、BC上的点且DE//BC、EF//AB,求证:∠ADE=∠EFC.C

EF

AB D6、如图,已知EC、FD与直A线AB交于C、D两点且∠1=∠2,1求证:CE//DF.CE

FD

2B7、如图,已知∠ABC=∠ADC,BF和DE分别是∠ABC和∠ADC的平分线,AB//CD,求证:DE//BF.FDC

A E8、如图,已知AC//DE,DC//EF,CD平分∠BCA,求证:EF平分∠BED.B

F

ED

AC9、如图,AB⊥BF,CD⊥BF, ∠A=∠C,求证: ∠AEB=∠F.CFBDE10、如图,AD⊥BC,EF⊥BC,∠1=∠2,求证:DG//AB.A

EGBCDF11、在三角形ABC中,AD⊥BC于D,G是AC上任一点,GE⊥BC于E,GE的延长线与BA的延长线交于F,∠BAD=∠CAD,求证:∠AGF=∠F.F

A

G

BCDE12、如图,∠1=∠2,∠3=∠4,∠B=∠5,求证:CE//DF.F

E 4G1AD 5 2B13、如图,AB//CD,求证:∠BCD=∠B+∠D.A

CBED14、如上图,已知∠BCD=∠B+∠D,求证:AB//CD.15、如图,AB//CD,求证:∠BCD=∠B-∠D.BA

ED

C16、如上图,已知∠BCD=∠B-∠D,求证:AB//CD.17、如图,AB//CD,求证:∠B+∠D+∠BED=3600.BA

E

DC18、如上图,已知∠B+∠D+∠BED=3600,求证:AB//CD.

第四篇:几何证明题练习

几何证明题练习

1.如图1,Rt△ABC中AB = AC,点D、E是线段AC上两动点,且AD = EC,AM⊥BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F。试判断△DEF的形状,并加以证明。

说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。

注意:选取①完成证明得10分;选取②完成证明得5分。

①画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形; ②点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2)。

附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由。

E

A

AM

AMD

D

F

E

F

A

F

K

C

AD

D

F

A

EEC

图 16

C

N

B

图 1

5B

MF

MF

图 17

D

C

图 17

图 16图 15

2.(1)如图13-1,操作:把正方形CGEF的对角线 CE放在正方形ABCD的边BC的延长线上(CG>BC),取线段AE的中点M。

探究:线段MD、MF的关系,并加以证明。说明:(1)如果你经历反复探索,没有找到解决问题 A 的方法,请你把探索过程中的某种思路写出来(要求 至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②、③中选取一个补充或更换已知条件,完成你的证明。

注意:选取①完成证明得10分;选取②完成证明得 7分;选取③完成证明得5分。

① DM的延长线交CE于点N,且AD=NE; A ② 将正方形CGEF绕点C逆时针旋转45°(如图13-2),其他条件不变;③在②的条件下且CF=2AD。(2):将正方形CGEF绕点C旋转任意角度后

(如图13-

3),其他条件不变。探究:线段MD、MF的关系,并加以证明。

D

F

E

13-2 D

图13-

33.如图1,在等腰梯形ABCD中,AD∥BC,E是AB的中点,过点E作EF∥BC交CD于点F.AB4,BC6,∠B60.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PMEF交BC于点M,过M作MN∥AB交折线ADC于点N,连结PN,设EPx.MN的形状是否发生改变?若不变,①当点N在线段AD上时(如图2),△P求出△PMN的周长;若改变,请说明理由;

②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.N

A A A D D D B

图1 A B

D F C

B

F C

B

M

2F C B

N

F

C

M 图3 D F C

(第3题)A

图5(备用)图4(备用)

4.如图4,△P1OA1,△P2A1A2,△P3A2A3……△PnAn-1An都是等腰直角三角形,点P1、P2、P3……

Pn都在函数y

(x > 0)的图象上,斜边OA1、A1A2、A2A3……An-1An都在x轴上。x

⑴求A1、A2点的坐标;

⑵猜想An点的坐标(直接写出结果即可)

图 1

55.如图5-1,以△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,请你探究线段DE与AM之间的关系。

说明:⑴如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写

3步);⑵在你经历说明⑴的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明。

注意:选取①完成证明得10分;选取②完成证明得5分。①画出将△ACM绕某一点顺时针旋转180°后的图形; ②∠BAC = 90°(如图17)

附加题:如图5-3,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,试探究线段DE与AM之间的关系。

E

E

AM图 17

C

D

图 18

EC

D

A

D

M图 16

6.O点是△ABC所在平面内一动点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,如果DEFG能构成四边形.

(1)如图,当O点在△ABC内时,求证四边形DEFG是平行四边形.(2)当O点移动到△ABC外时,(1)的结论是否成立?画出图形并说明理由.(3)若四边形DEFG为矩形,O点所在位置应满足什么条件?试说明理由.

A

B

7.如图,已知三角形ABD为⊙O内接正三角形,C为弧BD上任意一点,已知AC=a,求S四边形ABCD。

D到直线l的距B、C、8.如图,已知平行四边形ABCD及四边形外一直线l,四个顶点A、离分别为a、b、c、d.

(1)观察图形,猜想得出a、b、c、d满足怎样的关系式?证明你的结论.(2)现将l向上平移,你得到的结论还一定成立吗?请分情况写出你的结论.

9.10.已知:在Rt△ABC中,AB=BC,在Rt△ADE中,AD=DE,连结EC,取EC的中点M,连结DM和BM.

(1)若点D在边AC上,点E在边AB上且与点B不重合,如图①,探索BM、DM的关系并给予证明;

(2)如果将图①中的△ADE绕点A逆时针旋转小于45°的角,如图②,那么(1)中的结论是否仍成立?如果不成立,请举出反例;如果成立,请给予证明.

B

A

D C

A

图②

C

图①

11.如图(1)在Rt△ABC中,∠BAC=90°,AB = AC,点D、E分别为线段BC上两动点,若∠DAE=45°.(1)猜想BD、DE、EC三条线段之间存在的数量关系式,并对你的猜想给予证明;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明.ABC60,12.(北京市石景山中考模拟试题)(1)如图1,四边形ABCD中,ABCB,ADC120,请你 猜想线段DA、DC之和与线段BD的数量关系,并证明你的结论;

(2)如图2,四边形ABCD中,ABBC,ABC60,若点P为四边形ABCD内一点,且APD120,请你猜想线段PA、PD、PC之和与线段BD的数量关系,并证明你的结论.

第12题图1 图2 13.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC

相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的 数量关系?试证明你的猜想;

(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的 取值范围;

(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所

有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由..B

QC

A

P

D

第五篇:几何证明题专题讲解

几何证明题专题讲解

【知识精读】

1.几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。

2.掌握分析、证明几何问题的常用方法:

(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;

(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;

(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。

3.掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。

【分类解析】

1、证明线段相等或角相等

两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。

例1.已知:如图1所示,ABC中,C90,ACBC,ADDB,AECF。求证:DE=DF

2、证明直线平行或垂直

在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。

例2.如图3所示,设BP、CQ是ABC的内角平分线,AH、AK分别为A到BP、CQ的垂线。

求证:KH∥BC3、证明一线段和的问题

(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。(截长法)

例3.已知:如图6所示在ABC中,B60,∠BAC、∠BCA的角平分线AD、CE相交于O。

求证:AC=AE+CD

(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段,证明该线段等于较长线段。(补短法)

例4.已知:如图7所示,正方形ABCD中,F在DC上,E在BC上,EAF45。求证:EF=BE+DF

4、中考题:

如图8所示,已知ABC为等边三角形,延长BC到D,延长BA到E,并且使AE=

BD,连结CE、DE。求证:EC=ED 【实战模拟】

1.已知:如图BC于E,且有AC2.已知:如图求证:BC=3.已知:如图13所示,过的顶点A,在∠A内任引一射线,过B、C作此射线的垂线BP和CQ。设M为BC的中点。求证:MP=MQ

4.ABC中,BAC

下载武汉考试几何证明题精选2013年12月word格式文档
下载武汉考试几何证明题精选2013年12月.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    几何证明题方法

    (初中、高中)几何证明题一些技巧初中几何证明技巧(分类)证明两线段相等1.两全等三角形中对应边相等。2.同一三角形中等角对等边。3.等腰三角形顶角的平分线或底边的高平分底边......

    初一几何证明题

    初一几何证明题一、1)D是三角形ABC的BC边上的点且CD=AB,角ADB=角BAD,AE是三角形ABD的中线,求证AC=2AE。(2)在直角三角形ABC中,角C=90度,BD是角B的平分线,交AC于D,CE垂直AB于E,交BD于......

    辅助线几何证明题

    辅助线的几何证明题 三角形辅助线做法 图中有角平分线,可向两边作垂线。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。 角平分线加垂线,三线合一试试看。......

    高中几何证明题

    高中几何证明题1、(本题14分)如图5所示,AF、DE分别世O、O1的直径,AD与两圆所在的平面均垂直,AD8.BC是O的直径,ABAC6,OE//AD. D(I)求二面角BADF的大小;(II)求直线BD与EF所成的角.......

    初中几何证明题

    如图,在三角形ABC中,BD,CE是高,FG分别为ED,BC的中点,O是外心,求证AO∥FG 问题补充:证明:延长AO,交圆O于M,连接BM,则:∠ABM=90°,且∠M=∠ACB.∠AEC=∠ADB=90°,∠EAC=∠DAB,则......

    如何做几何证明题

    如何做几何证明题1、几何证明是平面几何中的一个重要问题,它对提高学生学生逻辑思维能力有着很大作用。几何证明有两种基本类型;一是平面图形的数量关系;二是有关平面图形的位置......

    高中数学几何证明题

    新课标立体几何常考证明题汇总1、已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点(1) 求证:EFGH是平行四边形(2) 若BD=AC=2,EG=2。求异面直线AC、BD所成的角和EG、BD......

    高中几何证明题

    高中几何证明题如图,在长方体ABCD-A1B1C1D1中,点E在棱CC1的延长线上,且CC1=C1E=BC=1/2AB=1.求证,D1E//平面ACB1求证,平面D1B1E垂直平面DCB1证明:1):连接AD1,AD1²=AD²+DD1²=......