第一篇:中考二模数学试卷分析及反思
中考二模数学试卷分析及反思
一、试题的基本结构
整个试卷共23个题目,150分。试题几乎覆盖所有知识点。在此不赘述。
二、试题的主要特点
1.全面考查“双基”,突出对基础知识、基础技能及基本数学思想方法的考查,有较好的教学导向性。
2.注重考查数学能力
(1)把握知识的内在联系,考查学生综合运用数学的能力。
(2)注重考查学生的获取信息、分析问题、解决问题的能力。
(3)试卷设计时,加大了选择题、填空题和解答题的最后一题的难度,考查学生在新问题情境中分析和解决问题的能力,较好地区分学生的数学素养和思维能力。
3、关注学生的创新精神、实践能力、学习能力
(1)重视与实际生活的联系,加强了对学生运用知识分析和解决实际问题的考查。
(2)通过设置开放性试题、探索性试题,考查学生能否独立思考、能否从数学的角度去发现和提出问题,并加以探索研究和解决,从而考查学生的思维能力和创新意识。
4、突出了对数学思想方法的考查这次的数学试卷中着重考查了转化与化归思想、方程思想、函数思想、数形结合思想、统计思想、分类讨论思想;考查了分析法、综合法、猜想与探索等思想方法。通过这些数学思想和方法的考查可使学生领悟并逐渐学会运用蕴涵在知识发生、发展和演化过程中,贯穿在发现问题与解决问题全过程中的数学思想方法,从根本上提高学生掌握数学,应用数学知识的能力
三、学生答题评价
(一)选择题和填空题考生答题情况分析
从阅卷时看到的考生答卷情况来看,对于大部分小题考生的得分率普遍较高。某些试题涉及知识虽然基础,但背景新颖,需要考生具备一定的学习能力。考试结果表明,对于这样的试题,有相当一部分学生存在能力和解题策略上的欠缺。
(二)解答题考生答题情况分析
从试卷反映的情况来看,主要存在以下几个问题:1.动手操作能力偏差,16题作图题有99%的同学存在问题,考虑问题不全面,出乎我们意料。2.基础知识掌握不全面。各学生都是种种原因丢分过多,如:四边形形状判定一题,证明不彻底丢掉8分,特别是有许多平时成绩还好的同学也犯了这些错误,让人惋惜。3.数学思想方法掌握得太少,且不会灵活运用,导致碰到自己不会做的题目,束手无策,不会变通。这主要体现在第22小题,这题失分的同学高达90%。其实这道题目的思想 方法 老师都讲过,但现在的学生不爱动脑筋,只会按部就班,因此考分提不上去。4.做题目的思路不清晰,导致在写步骤时,缺这缺那,失分比较严重。5.难题失分太多,最后一大题得满分的同学全校寥寥无几.通过分析试卷,我总结学生的主要问题有:1.部分基本知识、基本技能掌握不扎实.2.数学语言不规范,解题存在随意性.3.没有养成良好的审题习惯,阅读能力差.4.逻辑思维和推理能力仍显薄弱,解决问题思路狭隘.5.综合应用数学知识解决问题的能力有待提高.6.在答题策略和时间分配上应进行训练.四、几点复习反思
(一)抓好“双基”
“双基”的复习主要放在总复习的第一阶段。本阶段基本任务主要是结合教材和《新课程标准》帮助学生梳理知识,优化知识结构,构建初中数学知识体系,弄清重要概念、定理、常用公式与方法。其中准确理解概念的实质是关键,公式、定理,基本思想方法、技能的熟练运用是重点,同时注意解题的规范性。
1.“过三关”
一是过学生关,即改变观念,九年级学生进入中考总复习阶段是思想最为复杂和不稳定的时期,教师要以两种镜头看待学生:显微镜——细致入微地关爱学生,了解学生的思想动向;望远镜——关注学生在数学上未来的发展。二是过双基关,即抓落实构建数学知识结构网络,使学生知识条理化,系统化,促进学生全面掌握“双基”。三是过训练关,即结合知识点和内容要求,有针对性地抓好基本训练,做到训练量适度,课堂 “讲练各半”,课外布置学生有针对性地做适量练习题,但应有选择性和层次性,不能大手一挥说做“某张试卷、从第几面到第几面”等,不考虑不同的学生能完成多少,要重在引导学生多总结方法,使学生做一题明一路。
2.“求三变”
一是变教法。在复习中最忌教法单一,本来数学就抽象,加上复习又常走老路,如果教法单一,会使学生感到枯燥,影响积极性。教师要依教学内容特点、学生特点、课型特点而变换、选择和探索不同的有效的教学方法和复习方式,切不可总是“三板斧”式,而要从实际出发,面向全体学生,因材施教,分层次开展复习教学工作。二是变题目。要善于将教材中的试题、中考试题进行变式,最好在一堂课中从简单到综合进行变式教学,给课堂注入新意,让学生感到数学复习内容“旧貌变新颜”。三是变评价。在总复习中要将过去只从分数上评价学生的能力,变为从情感、态度、行为等多角度评价学生的进步与否。评价还包含对学生复习过程中,依不同内容的掌握情况的进行动态评价。
3.“重三通”
一是重视教师之间的沟通。由于种种原因,教师之间的封闭,竞争是影响教学改革发展一个重要制约因素。在复习中我们特别要调整心态,积极加强老师之间的合作交流,提高整体水平和复习效率。那是一种心与心的沟通。二是促进学生之间的沟通。特别在课堂要引导学生多进行小组合作,互相帮助,达到共同提高的目的。三是师生之间的沟通。师生沟通便于动态了解学生的心里变化和知识掌握的情况,有利于及时调整计划和复习方法,同时有利于提高学生复习的兴趣和自信心。
(二)正确处理课标、教材、教辅的关系
以往对课程标准、教科书重视不够,教科书代替了课标,教辅代替了教科书。事实上教科书就是最好的教学参考书,课本上的例题习题都是专家经过反复研究讨论、多次实践实验设计出来的,我们没有理由不重视。教师对教材重视不够导致对数学概念的教学讲解不透,挖的不深,造成学生对概念理解不深刻。重点知识、基本方法认识不清,老师没日没夜地讲题,学生没完没了的做题,老师忽略了讲题的目的,学生体会不到哪些知识是重点,形不成自己的解题方法,能力的提升遥遥无期.所以要认真研究课程标准,进一步明确数学教育的意义,加强教科书的使用和研究,处理好教材和教辅之间的关系,进一步强化基础知识、基本技能、基本方法的教学。注重课堂教学,注重提高课堂教学的有效性,注重重点知识的教学,注重数学思想的渗透,注重能力的培养,以学生为本,注重培养学生的数学素养,自学能力,自学习惯。
(三)上好复习课
1、明确复习的主要目的和任务
查漏补缺,系统梳理,夯实“双基”,提高能力,促进学生发展。
2、提高复习课的效率准确把握中考走向,明确“如何考”,这是提高复习效率的重要前提。抓纲扣本,明晰“考什么”,这是提高复习效率的重要基础。准确了解学情,明白“教什么”,确定学习需要,这是提高复习效率的重要保证。精选教法,明确“如何教 ”,精讲精练,分层教学、教给教法,这是提高复习效率的重要手段。
3、加强复习的计划性
根据要复习的内容和复习课时制订出切实可行的复习计划,并注意复习内容的系统性,把已学的知识系统进行归类。
4、注意复习课的针对性
重点放在学生的难点、弱点上以及常易出错或失误的内容方面上,努力做到有的放矢。
5、以学生为主体的教学原则
坚持精讲多练,努力使“重复”变为生动积极的“再现”,寓能力培养于整个复习过程之中,切忌教师“垄断”复习课堂。
以上仅是个人拙见,不妥之处还望各位前辈批评指正。
第二篇:中考数学试卷分析
中考数学试卷分析
**年的荆门市数学中考试题在继承我市近几年中考命题整体思路的基础上,坚持“整体稳定,局部调整,稳中求变、以人为本”的命题原则,贯彻《全日制义务教育数学课程标准(实验稿)》(以下简称《数学课程标准》)和《荆门市**年初中毕业生学业考试数学科大纲》(以下简称《数学科》)所阐述的命题指导思想,突出对基础知识、基本技能和基本数学思想的考查,关注学生的数学基础知识和能力、数学学习过程和数学创新意识。
一、总体评价
试题命制严格按照《课程标准》和《学科说明》的相关要求,充分体现
和落实新课程改革的理念和精神、整套试题覆盖面广,题量适当,难度与《数学科大纲》的要求基本一致、在考查方向上,体现了突出基础,注重能力的思想;在考查内容上,体现了基础性、应用性、综合性。
1、整体稳定,局部调整
今年中考,荆门市实行网上阅卷,为此,今年的数学试卷在保证整体格局稳定的基础上,作出了一些调整:填空题由原来的10个小题减至8个;解答题由原来的8个小题减至
7、部分试题的分值和考查重点,也作了相应的调整。
2、全面考查,突出重点
整套试题所关注的内容,是支撑学科的基本知识、基本技能和基本思想、强调考查学生在这一学段所必须掌握的通法通则,淡化繁杂的运算和技巧性很强的方法,回避了大阅读量的题目。
试题重点考查了代数式、方程(组)与不等式(组)、函数、统计与概率、三角形与四边形等学科的核心内容,同时关注了函数与方程思想、数形结合思想、分类讨论思想等数学思想,以及特殊与一般、运动与变化、矛盾与转化等数学观念、试题突出了对学生研究问题的策略和运用数学知识解决实际问题能力的考查。
3、层次分明,确保试题合理的难度和区分度
同时在试题的赋分方面,既尊重了学生数学水平的差异,又能较好地区分出不同数学水平的学生,较好地保证了区分结果的稳定性,从而确保了试题具有良好的区分度。
4、科学严谨,确保试题的信度、效度
试卷题目陈述简明,图形、图象规范美观、凡是联系实际题目,情景不仅不会干扰学生对其内容的分析与理解,而且有助于学生对其中数量关系的把握,这就确保了考试具有较高的信度。
试题的设置,在提问方式、分值和位置等方面,充分考虑了学生不同的
解答习惯、学习水平和承受能力、除压轴题以外的几道解答题,设2~3问,形成问题串,起点很低,循序渐进,层层铺垫;压轴题思维含量较高,具有一定的挑战性,要解答完整、准确,则需要具备较强的数学能力、这样的布局,能确保考试具有较高的信度和效度。
具体情况见下表:(略)
二、试题的主要特点
1、注重“三基”核心内容的考查,恰当渗透人文性、教育性。
2、贴近生活实际,考查学生数学应用意识。
应用数学解决问题的能力既是《课程标准》中的一个重要的课程目标,也是学生对相关教学内容理解水平的一个标志。数学课程标准明确指出:中学阶段的数学教学应结合具体的教学内容采用“问题情境——建立模型——解释、应用与拓展”的模式展开,教学中要创造这种模式的教学情境,让学生经历数学知识的发生、形成与应用过程,新课程
标准特别强调数学背景的“现实性”和“数学化”。如第21题,以学生日常生活中的常见事例为题材,设置的一道背景公平的实际问题,主要考查考生的商品意识和建模意识,考查的知识有方程与不等式、方程,通过这类试题的考查,使学生更加关注身边的数学,生活中的数学,用数学的眼光去观察、分析社会,用所学的数学知识去解决实际问题,培养学生的数学应用意识。
3、设置开放探究问题,关注学生的数学思考。
承认差异,尊重个性,给每一位学生充分的发展空间是《课标》提倡的一个基本理念,而给学生以更多的自主性,让不同类型,不同水平的学生尽可能地展示自己的数学才能是近年来提倡的一个命题原则。试卷在这方面作了一些努力,通过设计开放探究性问题,打破单一的思维模式,形成灵活多样的思维结构,使学生对问题的思考更自由、更发散、更创新,从而进一步发展学生 的思维个性。如第18题属规律探究归纳题,要求考生具备有从特殊到一般的数学思考方法和有较强的归纳探究能力,才能正确地作出解答。
4、设置图形变换,考察学生实践操作能力。
《课标》一再强调学生学习方式的变革,认为:“有效的数学学习活动不能以单纯的模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式”。对学生动手操作和探究能力的培养和考查,是素质教育所要求的重要内容之一,让学生亲自参与活动,进行探索与发现,以自己的体验获取知识与技能是新课标的目标,为了体现新课标精神,试卷设计了计算量小、思维空间大的操作探索题目。如第3题旨在考查三角形中角之间的关系,但打破过去单一的问题呈现方式,而是与折叠操作相结合,有机的融入了轴对称变换的相关知识。
5、设置字母参数,考查综合能力
对于初中毕业生来说,不仅要掌握必要的数学基础知识和基本技能,还应具备有一定的分析问题和解决问题的能力及数学综合素质,对这种要求的考查,一般都是放在压轴题来实现。而这类压轴题都以所学的重点知识为载体,融数形结合为一体,以探究性试题形式呈现。在设计方法上注重创新,都善于放在主干知识的交汇点上;在考查意图上,极力让学生探索研究问题的实质,突出对学生发展思维能力、探索能力、创新能力、操作能力的考查。
第25题压轴题,融方程、函数、数形结合,分类讨论等重要数学思想于其中的综合题,考查的知识主要有:抛物线的对称性、抛物线的平移、一元二次方程等重点知识,此题对学生的能力要求较高,只要把抛物线的解析式用含m的式子表示出来,所有问题便迎刃而解,但如果考生的思维走入了“求出m的具体值”这一误区,此题的失分就在所难免了,这就要求考生仔细分析题目,正
确把握“m为常数”这一信息,才能作出正确的解答。
三、教学建议
(一)命题建议:
2、表述上应更加严密些。压轴题的第(1)小问中“求抛物线的解析式”若用括号说明“用含m的式子表示”,那么第(1)小问的难度将会大大降低。
(二)教学建议:
1、加强研究,转变观念
想要提高学生的数学能力,适应当前中考的变化,最有效的途径就是加强对《课程标准》、《数学科大纲》和教材自身的学习与研究,不断转变我们的教学观念、《课程标准》、《数学科大纲》和教材既是中考命题的依据,也是衡量日常教学效果的重要标尺、我市近几年中考数学的试题,均严格遵循《课程标准》、《数学科大纲》的要求,紧扣教科书、也就是说,《课程标准》、《数学科大纲》和教材才是编拟中考数学试题的真正
“题源”、所以,我们的教学要紧扣课标,吃透考试要求,回归教材,发挥其示范作用、唯有这样,教学和复习才会起到事半功倍的作用、2、正确认识数学基础知识、基本技能和常用的数学方法中蕴涵的数学思想
当前中考试题考查的重点,仍是数学的基础知识和基本技能和常用的数学方法中蕴涵的数学思想、加强“三基”的训练是提高数学成绩的一个重要环节,但我们首先要对加强“三基”有一个正确的认识。
中考中要求的基础知识、基本技能和常用的数学方法中蕴涵的数学思想,是解决常规数学问题的“通法通则”,而并非特殊的方法和技巧,因此抓好“三基”,绝不是片面追求解偏题、难题和怪题,更不是刻意去补充课标和教材要求之外的知识与方法。
加强“三基”,很重要的一个方面是对学生解题规范性的培养、只有做到
答题规范、表述准确、推理严谨,才能保证学生考试时会做的题不丢分、建议教师在日常的教学中,充分重视对学生解题步骤和解题格式的规范要求。
加强“三基”,不能通过要求学生机械记忆概念、公式、定理、法则来实现,而是要将这些核心知识的理解与掌握,置于解决具体数学问题的过程中,所以适当的解题训练是必要的、但加强“双基”,又不能仅靠大量的不加选择的解题来完成,更不能把数学课变成习题课,搞题海战术。
要认识到,“三基”的提升不是一蹴而就的,需要一个循序渐进的过程、在日常教学中,学生对数学知识的初次认知尤为重要,因此一定要留给学生充分的探究发现、归纳概括的时间,扎扎实实地掌握好每一个数学概念、任何匆忙追求教学进度、最后依靠机械性的强化训练的做法,都不可能取得真正良好的效果。
3、关注数学方法和数学思想的渗
透
要想在中考取得理想的成绩,除了理解基础知识,掌握基本技能外,还必须关注数学方法和数学思想,而这正是目前教学中较为薄弱的环节之一。
值得注意的是,对数学方法和数学思想的教学不能孤立进行,它应以具体的数学知识为载体,所以我们要注意在日常教学中对数学方法和数学思想的渗透、如在“分式”教学中渗透类比思想(与分数的类比),在方程组的教学中渗透转化思想(与方程的转化)等等、只要我们平时注重这一点,数学思想方法就会自然的“内化”在学生的思维方式之中。
4、注重过程教学,培养思维品质
“重结论、轻过程”,仍是当前教学中的一个重要误区、这种忽视知识形成过程的教学,会导致学生只重视结论本身,甚至死记硬背结论,“只知其然而不知其所以然”,也就更谈不上在考场上灵活运用与迁移转化了。
因此在教学过程中,一定要从重视知识结论转向重视知识的形成过程、要真正改变现有的教学方式,关注学生的学习方式,使教学的过程变成一个学生思维方式不断发展的过程。
培养思维能力,还应在提高学生的思维品质上下功夫、如培养学生思维的灵活性、全面性、严密性,以及思维的广度和深度等等。
中考数学试卷分析
(二)为了解我县初中数学教学的现状,及时掌握初中数学教学中存在的问题,探索提高初中数学教学水平的方法,并以此推动初中数学教育教学改革,提高初中数学教育教学质量。下面从以下几个方面对河南省**中考数学试卷作以分析:
一、试卷总体评价
**年的中考数学试题,与去年相比,试卷考查的内容有改变,但试卷的体例结构、考题的数量均较稳定,试题注重通性通法、淡化特殊技巧,解答题
设置了多个问题,形成入口宽、层次分明、梯度递进的特点,有较好的区分度。有利于高中阶段学校综合、有效地评价学生的数学学习状况。所有试题的考查内容及试题编排由易及难,坡度平缓,一部分试题情景来源于教材,对考生具有相当的亲和度,有利于考生获得较为理想的成绩。
1、试题题型稳中有变
2、试题贴近生活,时代感强
3、试卷积极创设探索思考空间
4、试卷突出对数学思想方法与数学活动过程的考查
二、学生答题得分统计
基本情况(抽样分析不计零分和缺考人数)
三、试题错因分析
1、选择题失分情况分析
2、填空题失分情况分析
填空题涉及的知识面较广注重对学生双基能力的考查。其中7、8、9、10、11答题较好,出现的错误集中反应在第 14、15两题。这两题也可称作为填选题的压轴题,属于拉开学生成绩档次的题目。其中14题求点A’可移动的最大距离,我们可以用折叠的方式找出起点和终点,这样就迎刃而解了。大部分学生看到这样的题就怕了。也不动手去折一下,而在给出的图形上思考,而给出的图形既不是起点也不是终点。
第三篇:初三数学试卷分析及反思
九年级数学第一学期期中
考试分析及反思
成伟荣
本次试题题量较大,题目偏难,简单题较少,难度与中考题相当。同时与能力考查紧密相结,每一个题仅仅是考察了学生必学必会,也就是应知应会的知识,不偏不怪,至于学生得分低,成绩差,关键是平时的知识落实不到位,这给我们提出了警示,下面就本次考试作简单分析:
一、从代数方面看,一元二次方程、二次根式考察的题目比较多,也是本学期学习中的重点难点。这就要求同学们在平时学习的时候,对相应的基本概念,基本技能多加练习。并注意归纳总结,努力发现它们之间的联系。
二、从几何方面看,主要侧重考察相似三角形有关的一些问题。是学习中的重点和难点。这要求同学们对基本概念熟练掌握,对基本技能熟练运用。在学习过程中多动动手,发挥空间想象。
三、从试卷学生得分情况看
1.选择题:学生出错较多的是4、7、9、10
第4、9题是关于三角函数的计算,属于超范围题目,正确率为零。
第7题考察学生对相似三角形的性质和判定的综合应用,大部分学生掌握不好。
第10题考察了学生对相似矩形的判定的应用,由于刚学过,对知识的理解不透彻。
2.填空题:得分率低,每个题的分量都不轻,考察了学生直角坐标的确定(11题)、三角形中位线(14题)、数形结合的思想规律题(15题)。13题属于超范围题目。
3.解答题:题目覆盖面较广,知识点较全,既有动手操作、又有动脑思考,既有形象思维(19、22),又有抽象理解(23)函数问题。最后的综合性问题,要求同学们对学过的知识能够融会贯通,具备发散思维的习惯,数形结合的去考虑问题,解决问题。
四、对自己平时工作的反思。
反思一学期的教学总感到有许多的不足与思考。从多次考试中发现一个严重的问题,许多学生对于比较基本的题目的掌握具有很大的问题,对于一些常见的题目出现了各种各样的错误,平时教学中总感到这些简单的问题不需要再多强调,但事实上却是问题严重之处,看来还需要在平时的教学中进一步落实学生练习的反馈与矫正。
在平时的教学过程中,我们要求学生数学作业本必须及时上交,目的是为了及时发现,及时设法解决学生作业中存在的问题,认真落实订正的作用,将反馈与矫正要落到实处,切实抓好当天了解、当天解决、矫正到位,也就是说反馈要适时,矫正要到位。另外我们还应注意反馈来的信息是否真实,矫正的方法是否得力,因为反馈的信息虚假或不全真实,那么我们就发现不了问题,就不能全面地了解学生的情况,也就不会采取及时、正确的矫正措施。
五、今后的工作方向
1.注意反馈矫正的及时性。课堂教学中应注意引导学生上课集中精力,勤于思考,积极动口、动手。可利用提问或板演等多种方式得到学生的反馈信息,一般我们应把提问、解答、讲评、改错紧密的结合为一体,不要把讲评和改错拖得太长。最好当堂问题当堂解决,及时反馈在一日为好。2.注意反馈矫正的准确性。在教学中我们必须经常深入到学生中去了解他们的困难和要求,积极热情地帮他们释疑解难,使他们体会到师长的温暖,尝试到因积极与老师配合、真实地提供信息而尝到学习进步的甜头。3.注意反馈矫正的灵活性。我们在教学中可采用灵活多样的反馈矫正形式。应提前设计矫正方案,也可预测学生容易出错的地方,在获取信息后,认真分析其问题的实质,产生问题的原因,然后有针对性地实施矫正方案。在作业的检查过程中,要求进一步落实学生是否存在抄作业现象,是否认真改正作业。总之,反馈矫正一定要落在实处。
总之,反馈与矫正在教学中总是循环往复的,不断加强反馈与矫正,对于我们的教与学生的学必将起到一定的推动作用。在今后的工作中,我会再接再励。
第四篇:初三数学试卷分析及反思
期中考试
总第课时
期中试卷分析及反思
共计四课时,考试两课时,试卷分析讲解两课时
本试题总体感觉题量较大,题目偏难,简单题较少,难度与中考提相当。试卷所考查学生的知识点主要有十八大类,具有全面性、重复性、重点突出三大特点,同时与能力考查紧密结果,这就要求同学们在学习过程中首先一定要注重基本概念、基础知识,把根基打牢,然后就是要学会灵活运用,提高思维能力。每一个题仅仅是考察了学生必学必会,也就是应知应会的知识,不偏不怪,至于学生得分低,成绩差,关键是平时的知识落实不到位,这给我们提出了警示,下面就学生的答题情况做简单的分析:
从代数方面看,一元二次方程与反比例函数考察的题目比较多,也是本学期学习中的重点难点。这就要求同学们在平时学习的时候,对相应的基本概念,基本技能多加练习。并注意归纳总结,努力发现它们之间的联系。
从几何方面,主要侧重考察相似三角形、解直角三角形和与圆有关的一些问题。与圆有关的问题涉及的知识面广,技巧性强,是学习中的重点跟难点。这要求同学们对基本概念熟练掌握,对基本技能熟练运用。只是死记硬背还不可以,同学们还要具备一定的抽象思维能力。在学习过程中多动动手,发挥空间想象。从试卷学生得分情况看
一、选择题:学生出错较多的是8、12、15、16 第8题是关于三角函数的有关计算,部分学生没注意到点P所在的象限,有些同学看到3、4和6就想到了8,没有仔细审题。
第12题考察学生对反比例函数图像和性质的理解,分辨不清。
第15题考察了学生对圆周角和圆心角以及和他们所对的弧之间的关系,由于刚学过去对知识的理解不透彻。
第16题是关于圆锥侧面积的计算,扇形的面积和圆锥侧面积的转化学生理解不够,不能真正的理解和转化。
二、填空题:得分率低,每个题的分量都不轻,考察了学生求平均数(17题)、数形结合的思想(18题)、反比例函数(19题)、圆的有关知识及勾股定理灵活运用(20题)。
三、解答题:题目覆盖面较广,知识点较全,既有动手操作、又有动脑思考,既有形象思维(21、25),又有抽象理解(24、26函数问题。
最后的综合性问题,要求同学们对学过的知识能够融会贯通,具备发散思维的习惯,数形结合的去考虑问题,解决问题。
期中考试
总第课时
通过考试。我们发现了平时工作中的不足,有的题目应不惜多花费时间,让学生理解透彻,使模糊的问题变得清楚明白,重点知识作到重点复习,达到提高成绩的目的。
反思一学期的教学总感到有许多的不足与思考。从多次考试中发现一个严重的问题,许多学生对于比较基本的题目的掌握具有很大的问题,对于一些常见的题目出现了各种各样的错误,平时教学中总感到这些简单的问题不需要再多强调,但事实上却是问题严重之处,看来还需要在平时的教学中进一步落实学生练习的反馈与矫正。
在平时的教学过程中,我们要求学生数学作业本必须及时上交,目的是为了及时发现,及时设法解决学生作业中存在的问题,认真落实订正的作用,将反馈与矫正要落到实处,切实抓好当天了解、当天解决、矫正到位,也就是说反馈要适时,矫正要到位。另外我们还应注意反馈来的信息是否真实,矫正的方法是否得力,因为反馈的信息虚假或不全真实,那么我们就发现不了问题,就不能全面地了解学生的情况,也就不会采取及时、正确的矫正措施。我认为要注意以下几个方面:
一、注意反馈矫正的及时性。课堂教学中应注意引导学生上课集中精力,勤于思考,积极动口、动手。可利用提问或板演等多种方式得到学生的反馈信息,一般我们应把提问、解答、讲评、改错紧密的结合为一体,不要把讲评和改错拖得太长。最好当堂问题当堂解决,及时反馈在一日为好。
二、注意反馈矫正的准确性。在教学中我们必须经常深入到学生中去了解他们的困难和要求,积极热情地帮他们释疑解难,使他们体会到师长的温暖,尝试到因积极与老师配合、真实地提供信息而尝到学习进步的甜头。
三、注意反馈矫正的灵活性。我们在教学中可采用灵活多样的反馈矫正形式。咳提前设计矫正方案,也可预测学生容易出错的地方,在获取信息后,认真分析其问题的实质,产生问题的原因,然后有针对性地实施矫正方案。在作业的检查过程中,要求进一步落实学生是否存在抄作业现象,是否认真订正作业。总之,反馈矫正一定要落在实处。
我们要主动辅导,及时令其矫正。进一步培养学生的主动性和自觉性,当然,如果我们只强调学生的主动和自觉,而不注意自身的主动和自觉,结果也会不如人意。
总之,反馈与矫正在教学中总是循环往复的,不断加强反馈与矫正,对于我们的教与学生的学必将起到一定的推动作用。因此,我们在平时的教学中应注重反馈与矫正。
第五篇:初三数学试卷分析及反思
初三数学试卷分析
本试题总体感觉题量较大,题目偏难,简单题较少,难度与中考题相当。试卷所考查学生的知识点具有全面性、重复性、重点突出三大特点,同时与能力考查紧密结果,这就要求同学们在学习过程中首先一定要注重基本概念、基础知识,把根基打牢,然后就是要学会灵活运用,提高思维能力。从代数方面看,一元二次方程与二次函数考察的题目比较多,也是本学期学习中的重点难点。这就要求同学们在平时学习的时候,对相应的基本概念,基本技能多加练习。并注意归纳总结,努力发现它们之间的联系。从几何方面,主要侧重考察解直角三角形,和与圆有关的一些问题。与圆有关的问题涉及的知识面广,技巧性强,是学习中的重点跟难点。从整体来看,我们认为是一份很成功的试题,具有很强的指导性,主要体现在以下几个方面:
1、注重对数学核心内容的考查
本试题重视基础知识和基本技能的考查,不避重点。如:第一大题中的1,2,3,4,5,6,8,9,10小题,第二大题中的15,16小题,第三大题中的19,21,23,24,25小题都是课程标准中要求学生掌握或灵活运用的。
2、抓住新课标的特点,重点内容重点考查,难点内容化难为易,分散考查。试题不仅紧扣教材,而且重难点内容把握得很有分寸。整份试卷中考查的内容比例、分值大小和层次要求都有明显体现。注重对学生应用数学能力的考查
3、数学来源于生活,又应用于生活,能运用数学的思维方式观察、分析、解决日常生活中相关问题,是新课程改革的一项重要内容,试题中的第11题、第14题、第18题、第21题、第25题等都是生活中常需解决的问题,使学生经历知识的形成与应用过程,提高学生用数学的意识和能力。
4、试题形式多样,渗透数学思想,一方面考查学生的能力,另一方面注意对新课程教学的导向性。通过识图来解答计算题或应用题,这类题都渗透了数形结合思想。要求考生能对实际的具体问题进行独立分析,考查他们是否真正理解所学知识。此外还有一类题(25题)对知识点的具体要求并不高,但要求学生将数学知识与生活实际相融合,并具备较强的理解能力,将实际背景问题转化成数学问题,二、试卷分析
(1)基础知识的落实不到位
如第4题,考察了什么是必然事件;第5题,二次函数的顶点式来反应顶点坐标。第14题统计概率中的平均数、众数、中位数的考察。第22题平均增长率和降低率的考察等。
(2)学生的观察能力,动手操作能力欠佳。如第16题学生从表中观察不出阴影的面积,因而有许多学生出错,第20题,不会观察图象,数与形未能有机的结合起来,出错率占到70%以上。
(4)解答不规范,因失小分而累积误大。如23题数据统计题,在数据分析上出了问题。
三、反思与措施:
对于重要题型,讲解后及时检测,以了解学生的掌握情况,对于没有掌握的学生进行及时地了解情况,及时的进行检测。
1,对于填空题,选择题,要进行专题训练,让学生尽量接触到各种题型。
2,对于每一节,每一章知识检测完,讲解完之后,对于错误较多的题,再重新组织起来进行检测,以便了解掌握情况。
3,建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
4,阅读数学课外书籍与报刊,加大自学力度,拓展自己的知识面。
5,经常在做题后进行一定的“反思”,思考一下本题所用的基础知识,本题的分析方法与解法,在解其它问题时,是否也用到过。
6,及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。