9上期末复习第25章《概率初步》教学反思

时间:2019-05-15 14:44:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《9上期末复习第25章《概率初步》教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《9上期末复习第25章《概率初步》教学反思》。

第一篇:9上期末复习第25章《概率初步》教学反思

第6课概率初步教学反思

(复习课)

通过教者上课,大家评课后,形成以下看法:

1、本节课能从学生的实际出发,以问题为载体,让学生在不断解决问题的活动中学习,充分体现了学生的主体地位。以交流与反思的形式出现,学生在交流与反思的过程中,对所学的列举法、列表法和树形图法的适用范围更清晰,对使用几种方法时需要注意的问题更明确,有利于学生更好的利用这些方法求随机事件的概率.

2、以发展思维过程为主线,把传授知识和发展思维有机结合起来,采用引导训练,随堂训练、拓展训练,把问题逐步引向更高的深度和广度,让不同层次的学生得到不同程度的训练,很好地发挥了老师的主导作用.课前延伸、课内探究和课后提升涵盖了概率初步的所有知识点,其中例题的选择很有特点,培养学生思维的多样性,有助于学生良好审题习惯的培养.

3、建议:

(1)预习第7题的学生做法,可通过实物投影仪展示,让学生点评,第8题可修改简单些.讲评和小结还需进一步到位;

(2)课内时间安排宜前紧后松,分配要合理到位.课内探究一三个方法可以不面面俱到,可再变式一个分组式的试题,探究二每题的小题可分别压缩成一题,视班级学生的实际水平,探究三课内解决为好;

(3)课内检测和课后提升的题量稍显过大,应进一步提炼减少题量.

第二篇:概率期末复习

第二章

随机变量

1、离散型:两点分布、二项分布、泊松分布

2、连续型:均匀分布、指数分布、正态分布

分布函数的定义F(x)P(Xx)

随机变量函数Yg(x)的分布

两种方法:

A、F(y)P(Yy)P(g(x)y)P(xD(y))

这里D(y)是指符合g(x)y的x的集合。

B、利用定理2.4.1前提:g(x)单调

第三章

二维随机向量的本质:两个随机变量 <=> 二元函数

1、离散型:联合概率分布

2、连续型:联合密度函数、均匀分布、正态分布

边缘分布:X的边缘分布 <=> 对Y求和或者求积分

Y的边缘分布 <=> 对X求和或者求积分

条件分布:在某变量已知的情况下,求另一个变量的分布

1、离散型:联合概率/边缘概率

2、连续型:定理3.5.1

独立性的判断

唯一标准:离散型 <=> 联合概率分布等于边缘概率分布的乘积

连续型 <=> 联合密度函数等于边缘密度函数的乘积

随机变量函数的分布:两个随机变量的和(离散型、连续型)

第四章

期望(离散型、连续型)性质1、2、3、4

方差(离散型、连续型):简化公式性质1、2、3

协方差(离散型、连续型)

相关系数与协方差的关系、线性无关与独立的区别

矩的定义

第五章

切比雪夫不等式、大数定律及推论、中心极限定律1、2

重点:这几个定理的应用

第六章样本、统计量、三个重要的分布(

2、t、F)、定理6.4.1

第七章

矩估计、极大似然估计

估计的优良准则:无偏性、最小方差(均方误差)准则

区间估计:

1、2已知,估计:构造符合标准正态分布的只含有这个未知参数和样本的函数

2、2未知,估计:构造符合t分布的只含有这个未知参数和样本的函数

2、2未知,估计2:构造符合2分布的只含有2这个未知参数和样本的函数

第三篇:概率初步教案

概率初步

 教学目标:

1、理解随机事件的定义,概率的定义;

2、会用列举法求随机事件的概率;利用频率估计概率(试验概率);

3、体会随机观念和概率思想,逐步学习利用列举法分析问题和解决问题,提高解决实际问题的能力。 重难点:

1.计算简单事件概率的方法,主要是列举法(包括列表法和画树形图法)。2.利用频率估计概率(试验概率)。

一 知识梳理

1.基本概念

(1)必然事件:指一定能发生的事件,或者说发生的可能性是100%;(2)不可能事件:指一定不能发生的事件,或者说发生的可能性是0%;(3)随机事件:指在一定条件下,可能发生也可能不发生的事件;(4)随机事件的可能性

一般地,随机事件发生的可能性是有大小的,不同的随机事件发生的可能性的大小有可能不同.(5)概率

一般地,在大量重复试验中,如果事件A发生的频率么这个常数P就叫做事件A的概率,记为P(A)=P.(6)可能性与概率的关系

事件发生的可能性越大,它的概率越接近于1,反之事件发生的可能性越小,则它的概率越接近0.如下图:

m会稳定在某个常数P附近,那n

(7)古典概率

一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性相等,•事件A包含其中的m种结果,那么事件A发生的概率为P(A)=(8)几何图形的概率

1、概率的大小与面积的大小有关,事件发生的概率等于此事件所有可能结果所组成图形的面积除以所有可能结果组成图形的面积. 2.概率的理论计算方法有:①树状图法;②列表法. 3.通过大量重复实验得到的频率估计事件发生概率的值

4.利用概率的知识解决一些实际问题,如利用概率判断游戏的公平性等

m. n

二、典型例题

1、下列事件中,是必然事件的是()A.购买一张彩票中奖一百万

B.打开电视机,任选一个频道,正在播新闻 C.在地球上,上抛出去的篮球会下落

D.掷两枚质地均匀的骰子,点数之和一定大于6

例2.在一场足球比赛前,甲教练预言说:“根据我掌握的情况,这场比赛我们队有 60%的机会获胜”意思最接近的是()A.这场比赛他这个队应该会赢

B.若两个队打100场比赛,他这个队会赢60场

C.若这两个队打10场比赛,这个队一定会赢6场比赛.D.若这两个队打100场比赛,他这个队可能会赢60场左右.例3一个袋中装有6个黑球3个白球,这些球除颜色外,大小、形状、质地完全相同,在看不到球的情况下,随机的从这个袋子中摸出一个球,摸到白球的概率是()

1112A.B.C.D.9323

例4.用树状图法求下列事件的概率:

(1)连续掷两次硬币,两次朝上的面都相同的概率是多少?(2)连续掷三次,至少出现两次正面朝上的概率是多少

例5.在一个口袋中有4个完全相同的小球,把它们分别标号l、2、3、4.小明先随机地摸出一个小球,小强再随机地摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y 时小明获胜,否则小强获胜.①若小明摸出的球不放回,求小明获胜的概率.

②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.

例6.小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD的两边AD.BD上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()

A. B.

C.D.

例7.为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合于鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼______________条.

例8.一个密封不透明的盒子里有若干个白球, 在不允许将球倒出来的情况下, 为估计白球的个数, 小刚向其中放入8个黑球, 摇匀后从中随机摸出一个球记下颜色, 再把它放回盒中, 不断重复, 共摸球400次, 其中88次摸到黑球.估计盒中大约有白球()

A、28个

B、30个

C、36个

D、42个

例9. 一个不透明的袋子中装有三个完全相同的小球,分别标有数字3,4,5.从袋子中随机取出一个小球,用小球上的数字作为十位上的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数.试问:按这种方法能组成哪些两位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.

例10.小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1、2、3、4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.

三、课堂练习

1.下列事件中必然发生的是()

A.随意翻到一本书的某页,这页的页码是奇数 B.地球上,抛出的铁球最后总往下落 C.购买一张彩票,中奖 D.篮球队员在罚球线上投篮一次,投中

2.给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为()A.1112 B.C.D.6323

3.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.0.2 B.0.3 C.0.4 D.0.5

4.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面 图案是中心对称图形的概率为()A. 1 4B.2C. D. 1 4

5.一个口袋中有4个相同的小球,分别与写有字母A,B,C,D,随机地抽出一个小球后放回,再随机地抽出一个小球.

(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;(2)求两次抽出的球上字母相同的概率.

6.一个盒中装着大小、外形一模一样的x颗白色弹珠和y颗黑色弹珠,从盒中随机取出一颗弹珠,取得白色弹珠的概率是.如果再往盒中放进12颗同样的白色弹珠,取得白色弹珠的概率是,则原来盒中有白色弹珠 颗.

7.有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式

+

有意义的(x,y)出现的概率;

(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.

8.某校初三年级(1)班要举行一场毕业联欢会.规定每个同学分别转动下图中两个可以自由转动的均匀转盘A、B(转盘A被均匀分成三等份.每份分別标上1.2,3三个钕宇.转盘B被均匀分成二等份.每份分别标上4,5两个数字).若两个转盘停止后指针所指区域的数字都为偶数(如果指针恰好指在分格线上.那么重转直到指针指向某一数字所在区域为止).则这个同学要表演唱歌节目.请求出这个同学表演唱歌节目的概率(要求用画树状图或列表方法求解)

第四篇:7上4.16《图形认识初步复习》教学反思

教学反思

第4章 图形的认识

(复习课第二课时)曲中附中

吴芳

《图形的认识》是新人教版七年级上册第四章的课题,对于本节课的设计、教学,我有如下思考:

1.成功之处:

(1)本节课重在复习角的相关概念,并运用其解决一些相关问题,在内容上能注意到与学生的实际生活相联系,利用切实发生在学生身边的某些实际情境,并且注意用基础题训练相关概念和计算,根据实际问题初步学会建立模型.

(2)突出重点,把握难点.让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例,让学生逐步学会用数学的眼光考察实际问题.同时,在解决问题的过程中,充分利用图形,渗透数形结合的思想.

(3)课内注重培养学生的合作、沟通,让学生发现问题,并解决问题,节约了时间,有保证了效果.由小组内同学互相帮助解决简单的问题,不仅提高了课堂效率,而且锻炼了“小老师”的能力.

2.不足之处:

学生的概括能力较弱,推理能力还有待发展.题目容量较大. 3.改进之处:

(1)要注意让学生归纳知识,有意识的培养学生这方面的能力.

(2)应多为学生创造自主学习、合作学习的机会,让他们主动参与、勤于动手、从而乐于探究“建模”的应用.

(3)可让学生充分探讨、分析,帮助他们直观形象地感知“建模”的重要意义.

(4)尝试运用环节中,要充分发挥优生的作用,由中等生板演后,应找优秀生改错,方能达到示范的目的,把问题显现无遗,成为很好的教学资源.

第五篇:概率复习

第一章、概率论的基本概念

考点:

事件的关系及运算,概率的公理化定义及其性质,古典概型,条件概率的定义及贝叶斯公式,n重伯努利

试验及二项概率公式。

参考:例1.4、例1.6、例1.26、习题一28

第二章、随机变量

考点:

随机变量的分布函数的概念及性质,概率分布(密度)及两者的性质,分布函数与密度函数的关系,三大离散分布的定义及记号以及相关计算,三大连续分布的定义及记号以及相关计算。

参考:例3.1、例3.15、习题三1

3第三章,随机向量

考点:

二维离散型随机变量的联合概率分布,边缘分布,条件分布,独立的充要条件,二维离散型随机变量的函

数。

参考:例3.1、例3.15、习题三1

3第四章,随机变量的数字特征

考点:

均值、方差的定义及其性质,六大常见分布的均值及方差、计算过程。

参考:习题四1、5。

第五章,大数定律与中心极限定理

考点:

独立同分布中心极限定理,棣莫弗-拉普拉斯中心极限定理。

参考:例5.4、例5.6、第六章 数理统计的基本概念

考点:

简单随机样本的定义,常用统计量,三大统计分布定义及其性质和相关计算(上分位点),正态总体抽样分布定理。

本部分主要考查对概念及性质的理解。特别注意:

若E(X),D(X)2,则E(Xi),D(Xi)

2第七章 参数估计

考点:

矩估计法,极大似然估计法,估计量的评价标准(无偏性及有效性),正态总体均值的区间估计。参考:例7.6、例7.8、例7.9、例7.12

下载9上期末复习第25章《概率初步》教学反思word格式文档
下载9上期末复习第25章《概率初步》教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    统计初步复习课教学反思

    统计初步复习课教学反思 统计初步是上海市九年义务教育课本小学数学新教材五年级第二学期最后一个单元总复习的内容。这部分练习是针对统计初步而设计的,涵盖了可能性、统计......

    8上期末复习《全等三角形》教学反思

    《全等三角形》教学反思 因为是期末复习课,且全等三角形的有关知识是本学期的第一章,复习的遍数较多,教学节奏较快。课后,反思这堂课的教学过程,感觉得失之间,收获甚丰。 一、教学......

    期末英语复习教学反思

    本课时主要复习了第五单元Helping our parents的词汇,语法和句型。在复习的过程中,我首先给学生汇总了一份本单元的主要知识点。包括词汇,语法,语音和句型。让学生对本单元的知......

    概率的进一步认识,期末复习试卷

    概率的进一步认识 期末复习题 一、选择题 1. 下列事件属于必然事件的是 A.打开电视,正在播放新闻 B.我们班的同学将会有人成为航天员 C.实数a<0,则2a<0 D.新疆的冬天不下雪 2.在计......

    概率期末3

    二、题型:选择(每题4分,一共20分);填空(每题3分,一共30分);计算(每题10分,一共40分);应用(每题10分,一共10分)3个学分(即48学时)概率期末的重点: 计算题:二维连续型随机变量相关的概率问题;二维离......

    9上期末复习第23章《旋转》教学反思

    第二十三章旋转复习课教学反思旋转是新课程几何变换的第三种,在生活中常见.本节课的教学注重提高学生的基础,通过例题的讲解和变式训练充分调动了学生学习的积极性、主动性,激发......

    8上期末复习《八年级上册总复习》教学反思

    八年级数学上册复习反思 通过八年级数学的复习,在教学实践中我觉得教师的真正本领,主要不在于讲授知识,而在于激发学生的学习动机,唤起学生的求知欲望,让他们兴趣盎然地参与到教......

    概率复习重点

    概率复习重点 一、全概率公式和贝叶斯公式 二、一维连续型随机变量给定概率密度求其中的未知参数,求分布函数和落在某区间内的概率 三、二维连续型随机变量给定概率密度求其......