0910线性代数内招答案[五篇材料]

时间:2019-05-13 11:09:09下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《0910线性代数内招答案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《0910线性代数内招答案》。

第一篇:0910线性代数内招答案

A卷答案

一 填空

1.-42.23.04.25.c(2,-1), c06.2

7.528.11422229.-2或110.2x2xx2x112211

二 选择

1.c2.d3.b4.a5.c6.d7.b8.d9.c10.b

三计算

4a4a4a4ar1r211a111.原式r1r3--------3 11a11r1r41a111

1111(4a)11a1a111a1111--------4 11

1111r2r100a0r3r1(4a)------------------5 0a00r4r1a000

1111c1c40a00---------------7(4a)c2c400a0000a

a(4a).----------8

2.对矩阵A(1,2,3,4)仅施以初等行变换: 3

1132113213260214 A151100641231420488

32111102140200700000100000204 1000

110100000210020110000000001002----------4 00

由最后一个矩阵可知1,2,3为一个极大无关组, 且-------------------------6

4012203.--------------------8

3.此二次型对应的矩阵为

021A201-----------------------------1

110

02112121120110110110110110A1 00100100I1000101010001101101

01201211/2101/23/213/2013/2011/2011/2000101011/2111/21

00200201/23/201/23/213/21/203/21/211/21/211/21/200101011/21/211/21/2

00200201/2001/2003/24004-----------------411/2111/2100131311/2211/22

所以

1C0

1

令1/211/213,21011/211/21310----5 2

x1y11/2y2y3y23y3-----6x2

xy1/2y2y1233

代入原二次型可得标准型

222f2y1.---8 1/2y24y3

4.对矩阵(AI3)仅施以初等行变换:

431001(AI3)120010-----------------------2

223001

3100143110------------------302

063201

00143100143110--------------40231100231

0011/61/21/6006131

1401/23/21/20201/21/21/2----------5

0011/61/21/6

1001/21/21/20201/21/21/2-------6

0011/61/21/6

1001/21/21/20101/41/41/4------------7

0011/61/21/6

于是得

1/21/21/21A1/41/41/4.--------------------------8

1/61/21/6

四计算

1.A的特征方程为

1

|IA|010(2)20

0120

所以A的特征值为10,232.-------------------------4

当10时, 解齐次方程组Ax0得基础解系1(10

1)T, 单位化得 11

11(2/202/2)T.------------------6

当232时, 解齐次方程组(2IA)x0得基础解系

2(010)T,3(101)T.利用施密特正交化方法,将2,3正交化:

令22(010)T

T233T32(101)T 22

再将2,3正交化, 得

2(010)T,23(2/202/2)T.------------9 2/20,----------------10 2/2令Q(12/203)012/20

0001则有QAQ020.-----------11

002

2.作方程组的增广矩阵(Ab),并对它施以初等行变换:

211112111111/21/201/20010(Ab)42212000100

211110000000000

------------3 即原方程组与方程组

x11/2x21/2x31/2 x40

同解,其中x2,x3是自由变量.1/200x2让自由未知量取值, 得特解x00.-----------------6 30

原方程组的导出解与方程组

x11/2x21/2x3 x04

同解,其中x2,x3是自由变量.对自由未知量x22取值0,x302, 即得导出组的基础解系 

11201,2-----------------10 0200

因此所给方程的全部解为

xc11c22

其中c1,c2可为任意常数.---------------------11

五 证明

1.设(a1a2an)T,(b1b2bn)T, 则----1

ATT

(b1

(b1b2bn)(a1a2an)b2bn)(a1a2an)

(b1a1b2a2bnan)----------------5 所以A的列向量组可由,线性表示.---6

第二篇:线性代数习题答案

习题 三(A类)

1.设α1=(1,1,0),α2=(0,1,1),α3=(3,4,0).求α1-α2及3α1+2α2-α3.解:α1-α2=(1,1,0)-(0,1,1)=(1,0,-1),3α1+2α2-α3=(3,3,0)+(0,2,2)-(3,4,0)=(0,1,2)

2.设3(α1-α)+2(α2+α)=5(α3+α),其中α1=(2,5,1,3),α2=(10,1,5,10),α=(4,1,-1,1).求α.解:由3(α1-α)+2(α2+α)=5(α3+α)整理得:α=16163(3α1+2α2-5α3),即α=(6,12,18,24)

=(1,2,3,4)3.(1)×

(2)×

(3)√

(4)×

(5)×

4.判别下列向量组的线性相关性.(1)α1=(2,5), α2=(-1,3);(2)α1=(1,2),α2=(2,3), α3=(4,3);(3)α1=(1,1,3,1),α2=(4,1,-3,2),α3=(1,0,-1,2);(4)α1=(1,1,2,2,1),α2=(0,2,1,5,-1),α3=(2,0,3,-1,3),α4=(1,1,0,4,-1).解:(1)线性无关;(2)线性相关;(3)线性无关;(4)线性相关.5.设α1,α2,α3线性无关,证明:α1,α1+α2,α1+α2+α3也线性无关.证明:设

k11k2(12)k3(123)0,即

(k1k2k3)1(k2k3)2k330.由1,2,3线性无关,有

k1k2k30, k2k30,k0.3所以k1k2k30,即1,12,123线性无关.6.问a为何值时,向量组

1(1,2,3),2(3,1,2),3(2,3,a)

'''线性相关,并将3用1,2线性表示.1312237(5a),当a=5时,3a117解:A231172.7.作一个以(1,0,1,0)和(1,-1,0,0)为行向量的秩为4的方阵.解:因向量(1,0,0,0)与(1,0,1,0)和(1,-1,0,0)线性无关, 所以(1,0,0,0)可作为方阵的一个行向量,因(1,0,0,1)与(1,0,1,0),(1,-1,0,0),(1,0,0,110)线性无关,所以(1,0,0,1)可作为方阵的一个行向量.所以方阵可为110100100000.01

8.设1,2,,s的秩为r且其中每个向量都可经1,2,,r线性表出.证明:1,2,,r为1,2,,s的一个极大线性无关组.【证明】若

1,2,,r

(1)线性相关,且不妨设

1,2,,t(t

(2)是(1)的一个极大无关组,则显然(2)是1,2,,s的一个极大无关组,这与1,2,,s的秩为r矛盾,故1,2,,r必线性无关且为1,2,,s的一个极大无关组.9.求向量组1=(1,1,1,k),2=(1,1,k,1),3=(1,2,1,1)的秩和一个极大无关组.【解】把1,2,3按列排成矩阵A,并对其施行初等变换.11A1k11k111200110110100k101k1k01110100k1001k011k10010 10当k=1时,1,2,3的秩为2,1,3为其一极大无关组.当k≠1时,1,2,3线性无关,秩为3,极大无关组为其本身.10.确定向量3(2,a,b),使向量组1(1,1,0),2(1,1,1),3与向量组1=(0,1,1), 2=(1,2,1),3=(1,0,1)的秩相同,且3可由1,2,3线性表出.【解】由于

0A(1,2,3)111B(1,2,3)1012111111001021a0b011021001;02,ba2

而R(A)=2,要使R(A)=R(B)=2,需a2=0,即a=2,又

0c(1,2,3,3)1112110121a0b0210010 ,2ba2a要使3可由1,2,3线性表出,需ba+2=0,故a=2,b=0时满足题设要求,即3=(2,2,0).11.求下列向量组的秩与一个极大线性无关组.(1)α1=(1,2,1,3),α2=(4,-1,-5,-6),α3=(1,-3,-4,-7);(2)α1=(6,4,1,-1,2),α2=(1,0,2,3,-4),α3=(1,4,-9,-6,22),α4=(7,1,0,-1,3);

(3)α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-1,2,0),α=(2,1,5,6).解:(1)把向量组作为列向量组成矩阵Α,应用初等行变换将Α化为最简形矩阵B,则 111 0 1 4 11 4 11 4 1950 1 2 1 30 9 55A90 1 B

1 5 40 9 590 0 00 0 00 0 03 6 70 18 100 0 05可知:R(Α)=R(B)=2,B的第1,2列线性无关,由于Α的列向量组与B的对应的列向量有相同的线性组合关系,故与B对应的Α的第1,2列线性无关,即α1,α2是该向量组的一个极大无关组.(2)同理, 6 1 1 70-11 55 71 2-9 0 4 0 4 10 8 40 10-11 55 7 1 2-9 01 2-9 00-8 40 11 3-6 10 5-15-10 5-15-1 2 4 22 30 8 40 10 0 0 01 2-9 070 1-5-11450 0 0-11240 0 10 110 0 0 01 2-9 01 0 0 00 1-5 00 1 0 00 0 10 00 0 1 0B0 0 0 10 0 0 10 0 0 00 0 0 0

可知R(Α)=R(B)=4,Α的4个列向量线性无关,即α1,α2,α3,α4是该向量组的极大无关组.(3)同理,1 0 3 1 21 0 3 1 21 0 3 1 21 0 3 1 2-1 3 0-1 10 3 3 0 30 1 1 0 10 1 1 0 1, A2 1 7 2 50 1 1 0 10 0 0-4-40 0 0 1 14 2 14 0 60 2 2-4-20 0 0 0 00 0 0 0可知R(Α)=R(B)=3,取线性无关组α1,α3,α5为该向量组的一个极大无关组.12.求下列向量组的一个极大无关组,并将其余向量用此极大无关组线性表示.(1)α1=(1,1,3,1),α2=(-1,1,-1,3),α3=(5,-2,8,-9),α4=(-1,3,1,7);(2)α1=(1,1,2,3),α2=(1,-1,1,1),α3=(1,3,3,5),α4=(4,-2,5,6),α5=(-3,-1,-5,-7).解:(1)以向量组为列向量组成Α,应用初等行变换化为最简形式.31 0 11-1 5-11-1 5-11-1 5-1271 1-2 30 2-7 470 1-2 20 1-2B, A3-1 8 10 2-7 420 0 0 00 0 0 00 0 0 01 3-9 70 4-14 8 0 0 0 0可知,α1,α2为向量组的一个极大无关组.x1x2537x1x22设α3=x1α1+x2α2,即解得,x1,x2

223x1x28x3x912x1x21x1x23设α4=x3α1+x4α2,即解得,x11,x22

3x1x21x3x712所以a332a172a2,a4a12a2.1 1 1 4-31 1 1 4-31 0 2 1-21-1 3-2-10-2 2-6 20 1-1 3-1B(2)同理, A2 1 3 5-50-1 1-3 10 0 0 0 03 1 5 6-70-2 2-6 20 0 0 0 0可知, α

1、α2可作为Α的一个极大线性无关组,令α3=x1α1+x2αx1x21可得:即x1=2,x2=-1,令α4=x3α1+x4α2, xx312x1x24可得:即x1=1,x2=3,令α5=x5α1+x6α2, x1x22x1x23可得:即x1=-2,x2=-1,所以α3=2α1-αxx1122 α4=α1+3α2,α5=-2α1-α 13.设向量组1,2,,m与1,2,,s秩相同且1,2,,m能经1,2,,s线性表出.证明1,2,,m与1,2,,s等价.【解】设向量组

1,2,,m

(1)与向量组

1,2,,s

(2)的极大线性无关组分别为

1,2,,r

(3)和

1,2,,r

(4)由于(1)可由(2)线性表出,那么(1)也可由(4)线性表出,从而(3)可以由(4)线性表出,即

riaj1ijj(i1,2,,r).因(4)线性无关,故(3)线性无关的充分必要条件是|aij|≠0,可由(*)解出j(j1,2,,r),即(4)可由(3)线性表出,从而它们等价,再由它们分别同(1),(2)等价,所以(1)和(2)等价.14.设向量组α1,α2,…,αs的秩为r1,向量组β1,β2,…,βt的秩为r2,向量组α1,α2,…,αs,β1,β2,…,βt的秩为r3,试证:

max{r1,r2}≤r3≤r1+r2.证明:设αs1,…,Sr1为α1,α2,…,αs的一个极大线性无关组, βt1,βt2,…,t为β1,r2β2,…,βt的一个极大线性无关组.μ1,…,r为α1, α2,…,αs,β1,β2,…,βt的一

3个极大线性无关组,则α

s1,…,S和βt1,…,β

r1tr2

可分别由μ1,…,r线性表示,所

3以,r1≤r3,r2≤r3即max{r1,r2}≤r3,又μ1,…,r可由α

3s1, …,αsr1,βt1,…,βtr2线性表示及线性无关性可知:r3≤r1+r2.15.已知向量组α1=(1,a,a,a)′,α2=(a,1,a,a)′,α3=(a,a,1,a)′,α4=(a,a,a,1)′的秩为3,试确定a的值.解:以向量组为列向量,组成矩阵A,用行初等变换化为最简形式: 1 a a a1 a a a13a a a aa 1 a aa-1 1a 0 00 1-a 0 0 a a 1 aa-1 0 1-a 00 0 1-a 0a a a 1a-1 0 0 1-a0 0 0 1-a由秩A=3.可知a≠1,从而1+3a=0,即a=-

13.16.求下列矩阵的行向量组的一个极大线性无关组.2575(1)75***4204311320;

(2)213448112012130251411.3112【解】(1)矩阵的行向量组的一个极大无关组为1,2,3;

3412(2)矩阵的行向量组的一个极大无关组为1,2,4.3417.集合V1={(x1,x2,,xn)|x1,x2,,xn∈R且x1x2xn=0}是否构成向量空间?为什么? 【解】由(0,0,…,0)∈V1知V1非空,设(x1,x2,,xn)V1,(y1,y2,,yn)V2,kR)则

(x1y1,x2y2,,xnyn)k(kx1,kx2,,kxn).因为

(x1y1)(x2y2)(xnyn)(x1x2xn)(y1y2yn)0, kx1kx2kxnk(x1x2xn)0,所以V1,kV1,故V1是向量空间.18.试证:由1(1,1,0),2(1,0,1),3(0,1,1),生成的向量空间恰为R3.【证明】把1,2,3排成矩阵A=(1,2,3),则

1A101010120, 1所以1,2,3线性无关,故1,2,3是R3的一个基,因而1,2,3生成的向量空间恰为R3.19.求由向量1(1,2,1,0),2(1,1,1,2),3(3,4,3,4),4(1,1,2,1),5(4,5,6,4)所生的向量空间的一组基及其维数.【解】因为矩阵

A(1,2,3,4,5)1210111234341121415006401102320411114130024011003200111043 ,20∴1,2,4是一组基,其维数是3维的.20.设1(1,1,0,0),2(1,0,1,1),1(2,1,3,3),2(0,1,1,1),证明: L(1,2)L(1,2).【解】因为矩阵

A(1,2,1,2)110010112133011001101100230001 ,00由此知向量组1,2与向量组1,2的秩都是2,并且向量组1,2可由向量组1,2线性表出.由习题15知这两向量组等价,从而1,2也可由1,2线性表出.所以

L(1,2)L(1,2).21.在R3中求一个向量,使它在下面两个基

(1)1(1,0,1),(2)1(0,1,1),2(1,0,0)2(1,1,0)3(0,1,1)3(1,0,1)

下有相同的坐标.【解】设在两组基下的坐标均为(x1,x2,x3),即

x1x1(1,2,3)x2(1,2,3)x2,x3x31011000x101x2111x31101x10x21x3

1102101x1x0, 120x3求该齐次线性方程组得通解

x1k,x22k,x33k

(k为任意实数)故

x11x22x33(k,2k,3k).22.验证1(1,1,0),2(2,1,3),3(3,1,2)为R3的一个基,并把1(5,0,7), 2(9,8,13)用这个基线性表示.【解】设

A(1,2,3),B(1,2),又设

1x111x212x313,2x121x222x323, 即

x11(1,2)(1,2,3)x21x31x12x22, x32记作

B=AX.则

1(AB)1010***25079r2r18131002331003420105570019r2r317r2r3132313329作初等行变换134

因有AE,故1,2,3为R3的一个基,且

2(1,2)(1,2,3)3133, 2即

121323,2313223.(B类)

1.A 2.B 3.C 4.D 5.a=2,b=4 6.abc≠0

7.设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问:(1)α1能否由α2,α3线性表示?证明你的结论.(2)α4能否由α1,α2,α3线性表示?证明你的结论.解:(1)由向量组α1,α2,α3线性相关,知向量组α1, α2, α3的秩小于等于2,而α2, α3, α4线性无关,所以α2, α3线性无关,故α2, α3是α1, α2, α3的极大线性无关组,所以α1能由α2, α3线性表示.(2)不能.若α4可由α1,α2,α3线性表示,而α2,α3是α1,α2,α3的极大线性无关组,所以α4可由α2,α3线性表示.与α2,α3,α4线性无关矛盾.8.若α1,α2,…,αn,αn+1线性相关,但其中任意

n个向量都线性无关,证明:必存在n+1个全不为零的数k1,k2,…,kn,kn+1,使

k1α1+k2α2+…+kn+1αn+1=0.证明:因为α1,α2,…,αn,αk1α1+k2α2+…+kn+1αn+1=0

n+1=0,由任意

n+1线性相关,所以存在不全为零的k1,k2,…,kn,kn+1使若k1=0,则k2α2+…+kn+1αn个向量都性线无关,则k2=…=kn+1=0,矛盾.从k1≠0,同理可知ki≠0,i=2, …,n+1,所以存在n+1个全不为零的数k1,k2,…,kn,kn+1,使k1a1+k2a2+…+kn+1an+1=0.9.设A是n×m矩阵,B是m×n矩阵,其中n<m,E为n阶单位矩阵.若AB=E,证明:B的列向量组线性无关.证明:由第2章知识知,秩A≤n,秩B≤n,可由第2章小结所给矩阵秩的性质,n=秩E≤min{秩A,秩B}≤n,所以秩B=n,所以B的列向量的秩为n,即线性无关.

第三篇:线性代数习题答案

综合练习一01AA.01BB、C.01CA.01DA.01Er2,s5,t8或r5,s8,t2或r8,s2,t5.01Fi2,j1.01G12.01Ha13a25a31a42a54;a13a25a32a44a51;a13a25a34a41a52.01I排列的逆序数为k2;当k为偶数时,排列为偶排列,当k为奇数时,排列为奇排列.a11aaa01K(1)1;(2)(aa1222a13a1411a22a33a44);(3)aa21aa23a24a3141a3242a3343a34.44f(x)g(x)s(x)01M48x18.01Nf(x)g(x)s(x).01O1.f(x)g(x)s(x)02AB、D.02B3.02C6.02Dx0,1,2.02E(1)n1(n1)xn.02F(12131)n!.02G(1)n(n1)2nn1(n1)n.2.02H(1)n1(nax)xn1.02I(1)n[(1)nn].03AB.03BD.03CD.03DD.03E12246000.03Fa0,b0.4403G1,3.03Habii03If(x)2x23x1.i1i1ai03Jx4.03L0.03M0.04A(1aa2)(1a)3.04Bn1.04Cx1x2...xn1(1a1x1a2x2...anxn).04Dx1x2...xn[1a(1x1...1.1x2xn)]04E(x1)n..49.04F1(1)a1(1)2a2an1...(1)anan1...a2a1n04G(n1)当a,n1n1当a.05A0.05B1.05C12/5.05D0.05E0.05F0.05G(1)0;(2)144.05H9,18.06An!(n1)!(n2)!...2!1!.06B(cos).4ij1icosj07A(1x)2(10x).08AA、B.08BD.08CC、D.08DD.08E2.08Fa0且bb/4.08Gf(x)2x23x1.08H甲、乙、丙三种化肥各需3千克,5千克,15千克.综合练习二01AB.01BD.01CC.01DC.01ED.01FB.01GD.01HC.01I1/3.01J2.01K0.01La2(a2n).01N(AB)(AB).01S(2)A249(A2E).01T(1)1,(2)n.01U(1)(1)n1n1k2(n1)!.(2)(1)n1n!(k1,2,,n).01V两年后在岗职工668人,培训人员334人.01W即晴天概率为146256,阴天的概率为6248256,下雨天的概率为256.xnx426001X1y023/21/200xn.yn1nyzn101/40zn4236z224012102A4982242.02B2n102420121.02C2220242222.1nn(n1)2.4n14n0002D201n.02En1n142.400001002nn.2n1.0002n.50.10002FA20061.由于A5A.1100003A(1)(1)n11(2)1200n!A.0230.0034(3)A6E.(4)12(EB).(5)B(E2A)1.10103BB510E.03D1211.03C(2)A2A5(A2E).03EA11(A3E).(A4E)11106(AE).03FB1114(5A23AE).03G(EABA)1B(EAB)1B1.03HB1110(A23A4E).03I(EAB)1EA(EBA)1B.10001/21/20003NA1003O1122212.1/21/61/391/85/241/121/422100201003403P000123310005200003Q(A1A2A41A3)1A11A2(A4A3A11A2)1A111(A4A3(A1A2A4A3)4A3A11A2)1.04A(1)8/3;(2)9;(3)81;(4)1/9;(5)1/3;(6)576;(7)3.04B10804F521220101.04GA0A(bTA1),05AD.05C2.05D当a1且b2,r(A)4;当a1且b2时,r(A)2;.51.当a1,b2或a1,b2时,r(A)3.05E当c1,并且a1或b0时,r(A)1;当c1,a1且b0时,r(A)3;当c1,但a1或b0时,r(A)3;当c1,a1且b0时,r(A)2.05F当ab0时,r(A)0;当ab0时,r(A)1;当ab,且a(n1)b0时,r(A)n1;当ab,且a(n1)b0时,r(A)n.05G11n.05Hr[(A*)*]n,如果r(A)n,0,如果r(A)n.1111101005K111105L01041111.11110010.00022400110005M220005N12200022.00120233.003405OA.0211106A1321.06B202.03052231106C43206D22.319/213/2.21112300106E020.06F21001.121012103006G003300..52.综合训练三01AC.01BB.01CB.01Dt1.01Ea2b.01F(1)当t5时,1,2,3线性相关;(2)当t5时,1,2,3线性无关;(3)3122.01G(1)当a1时,1,2,3线性相关;(2)当b2且a1时,可由i唯一的表出:122;当b2且a1时,可由i线性表出:(2t1)1(t2)2t3,其中t是任意常数.02AB.02BC.02C B.02D D.02E t5.02F不能.02G(1)能;(2)不能.02I(1)当a2时,不能用1,2,3线性表出;(2)当a2且a1时,有唯一的表达式:a11(a1a2a2)212a23;当a1时,(1kl)1k2l3,k,l.02J(1)若0且3,可由1,2,3唯一线性表示;(2)若0,可由1,2,3线性表示,但不唯一;(3)若3,不能由1,2,3线性表示.02K(1)当b2时,不能由1,2,3线性表出;(2)当b2,a1时,可唯一表示为122;当b2,a1时,可表示为(2k1)1(k2)2k3()k为任意常数.02L(1)当a1,b0时,不能表示成1,2,3,4的线性组合;(2)当a1时,有唯一表示式:2ba1ab1b1a12a130.402M(1)当a4时,可由1,2,3唯一线性表出..53.(2)当a4时,不能由1,2,3线性表示.(3)当a4且3bc1时,可由1,2,3线性表出,但不唯一:t1(2tb1)2(2b1)3(t为任意常数).02N不等价.03AD.03B1.03Cn.03D(1)R(1,2,3,4)2;向量组的一个极大无关组为2,4;12(24),3234;(2)R(1,2,3,4,5)3;向量组的一个极大无关组为1,3,5;2135,4135;(3)R(1,2,3,4,5)3;向量组的一个极大无关组为1,2,3;4123,5120.3.03ER(1,2,3,4,5)3.03Fa15,b5.04AD.04B(1,0,0,...,0)T.04Ct1.x1y1104D4.04E矩阵xy221的秩小于3.xnyn111422204F(1)C3,(CR);(2)k170k012,(k1,k2R);201523/23/4(3)C13/2C217/40,(C1,C2R).0104G(1)无解;(2)(1/2,2,1/2,0)Tk(1/2,0,1/2,1)T,其中k为任意常数;(3)(514,3314,0,7)Tk(1,1,2,0)T.(k为任意常数);.54.(4)C131(7,177,1,0,0)TC(101911127,7,0,1,0)TC3(7,7,0,0,1)T(2,3,0,0,0)T,(C1,C2,C3R).04H(1)1,2,3是所给方程组的基础解系.(2)1,2,3不是所给方程组的基础解系.104I当1时,有解,解为1k12,其中k为任意常数.0104J(1)当1且45时,方程组有唯一解;1当1时,其通解为1k01,其中k0为任意实数;1当45时,原方程组无解;(2)当2且1时,方程组唯一解;当2时,方程组无解;当1时,方程组有无穷多组解.全部解为21k110k012001,其中k1,k2是任意常数.04K(1)当a0时,方程组无解;x12/a,当a0,b3时,方程组有唯一解:x21,x30;x12/a,当a0,b3时,方程组有无穷多解:x213t,(tR).2x3t.(2)当a0或a0时b4,方程组无解;方程组不可能有唯一解;当a0且b4时,方程组有无穷多解.通解是.55.(6,4,0,0,0)Tk1(2,1,1,0,0)Tk2(2,1,0,1,0)Tk3(6,5,0,0,1)T.其中k1,k2,k3是任意实数.(3)当a1,b36时,方程组无解;当a1,a6时,方程组有唯一解,x(b36)a1,x12(a4)(b36)162a1,xb36230,x4a1;当a1,b36时,方程组有无穷多解,通解为(6,12,0,0)Tk(2,5,0,1)T.k为任意常数;当a6时,方程组有无穷多解,通解是(1(1142b),1(122b),0,1(bT77736))k(2,1,1,0)T.04L(1)当ab,bc,ca时,方程组仅有零解x1x2x30.(2)当abc时,方程组有无穷多组解,全部解为k1(1,1,0)T(k1为任意常数).当acb时,方程组有无穷多组解,全部解为k2(1,0,1)T(k2为任意常数).当bca时,方程组有无穷多组解,全部解为k3(0,1,1)T(k3为任意常数).当abc时,方程组有无穷多组解,全部解为k4(1,1,0)Tk5(1,0,1)T(k4,k5为任意常数).2104M(1)方程组有无穷多组解,通解为41k(k为任意常数502).1(2)当m2,n4,t6时,方程组(I),(II)同解.04Na2,t4.04O非零公共解为t(1,1,1,1)T.(t为任意常数)04P原来至少要有3121个桃子,最后还剩下1020个桃子.05A B.05BC.05CA.05DC.05ED.05FD.05G1.05H1..56.05I(1,2,3,4)Tk(1,1,1,1)T,其中k是任意实数.05J(3,2,0)Tk(1,1,1)T.(k为任意常数)05K通解为(9,1,2,11)Tk1(10,6,11,11)Tk2(8,4,11,11)T05L3m2n.05M2.1/2005N通解为1/21k,其中k为任意常数.011105O(1)1可由2,3,4线性表出.(2)4不能用1,2,3线性表出.x1k2t,06A(2)通解是x2k2,其中t是任意实数.x3t,06B通解是(a8,4,2,1)T12a24a3,a22a3,a3,0)Tk(,其中k是任意实数.06E方程组的唯一解为(ATA)1ATb.06L(II)的通解为c1(a11,a12,...,a1,2n)Tc2(a21,a22,...,a2,2n)T...cn(an1,an2,...,an,2n)T,其中c1,c2,...,cn为任意常数.综合练习四1/21/61/(23)01A45.01B11/221/6;31/(23).0;02/601/(23)3/202A(1)10,22,33,1/2k10对应特征向量为11/2,1.57.1122对应特征向量为k2,013对应特征向量为k331.1(2)18,231,218对应特向量为k11,其中k1为任意非零常数.21231对应特征向量为k201k32,其中k2,k3是不全为10零的实数.(3)101232全部特征向量为k12k20,(k1,k2不全为零).0102BA的特征值是1,2,2a1,a221对应的特征向量依次是k13,k22,k31.(k1,k2,k3全不为0).01a102CA的特征值2(二重)及0,2对应特征向量为k1(0,1,0)Tk2(1,0,1)T.0对应特征向量为k3(1,0,1)T.02D(1)当b0时,A的特征值为12na,则任一非零向量均为其特征向量.(2)当b0时,A的特征值为12n1ab,na(n1)b当1n1ab对应特征向量为1111k1000k21kn100,01.58.1a(n1)b对应特征向量为k1nn,(kn0).102Ea2,b3,c2,01.2n21102F112n212n23n1.112n202GA与B特征值相同但不相似.02Ha7,b2,P15112202I1102.0.101302Ja1,b8,c10.02K(1)|EA|4a34a23a2a1.03AB.03BB.03CA.03D(1)k(2)2i(i1,2,,n);i(i1,2,,n);(3)kii(i1,2,,n);(4)i(i1,2,,n);(5)1(i1,2,,n);(6)|A|1,2,,n);i(ii(7)f(i),(i1,2,,n).03E|A|21.03F1/2.03G2203H4/3.03J(1)0;(2)A的特征值全为零.0对应特征向量为k11k11...kn1n1(k1,k2,...,k3不全为零的任意常数).03L3,2,2.03M(1)P1AP全部特征值是1,12,,n.Pi是P1AP的属于i的特征向量..59.(2)(P1AP)T全部特征值是11,2,,n.PTi是(PAP)T的属于i的特征向量.03P1(n1重),3,1对应特征向量为k1(y2,y1,0,,0)Tk2(y3,0,y1,,0)Tkn1(yn,0,0,,y1)T,k1,k2,,kn1不全为0,3对应特征向量为kn(x1,x2,,xn)T,kn0.04AD.04B546333.76804C(1)a3,b0,1.(2)A不能相似于对角阵.404D当a1时,A1116114.442当a111410222时,A301055.22519132504E(1)3k(1,0,1)T(2)A162102.(k);为任意非零常数521301104F1/201/200004G.1011/201/2.11011104H111.04IAPP1P(2E)P12E.1115404J6333.76804OA的特征值是2与1(n1重)..60.X1(1,1,,1)T是A属于2的特征向量,X2(1,1,0,,0)T,X3(1,0,1,,0)T,,Xn(1,0,0,,1)TA属于1的特征向量.11112n2n2nA111112n2n2n.12n112n12n05A0.05BA能对角化.05CA能对角化.1105D(1)12(2);1;(3)311;21(4)1(5)A2.;不能对角化;(6)20405E令P212100,则11.011021005F(1)T12403212,T1AT010122002.111263(2)T111133263,TAT.01166311123605GP120036,P1AP1.1114236.61.221535305HQ1425353,QTAQ22.705235305Ia1,b3.A能对角化.05J01,a3,b0.A不能相似于对角阵.1105Kxy0.05L111111.05MA~1111.0905N105PA~B.0.00105Q(1)x0,y2;(2)P210.11106An!.06B6.06C(2n3)!.06Dk(k2)2.06FO.06EE.3n13n106G(1)(2)6n13123n123n1;93;(3)10013n123n13n.13n223n23n06Hx10051001.06Ix51003210013.n06Ja1n563,nliman5.06Ka站至多有240只小船,b站至少有80只小船..62.是综合练习五01AB.01BB.01CB.01D3.01E1.00101F010.01Gy21y22y23.10001H(1)fz21z22,相应的线性变换为zPy(P1112P1)x.P1010,P1002013,001001x1(2)z2z22111/2z112z3.相应的线性变换x2x3112z2.001/2z3100(3)f12y2222y3相应的线性变换x1101/21/21y,x101Ix1212y1201Jc3,4y219y22.3122y2x3221y311126301Ka2,b3.xCy,C111263,2106301Lf(x)x2221,x2,x312x2x32x1x22x2x34x1x3.切平面方程为2x1x2x31.02AD.02BA.02CC.02DA.02EC.02F(2,2).02G(1)正定.(2)正定.02H(1)2;(2)1.1012241102I0,P01002NB1314111.114.022.63.综合练习六01A(1)V1是向量空间.(2)V2是向量空间.01B(1)W1不是子空间.(2)W2是子空间.dimW22.(0,1,0),(0,0,1)是W2的一组基.(3)W3是子空间,dimW32.(1,1,0),(2,0,1)是W3的一组基.(4)W4不是子空间.(5)W5不是子空间.01CW1W2是V的子空间,W1W2不一定是V的子空间.T02B5114,14,4,4.02C坐标变换公式为x1111x1x1212x1x2102x2或x32001x2x010x3x3111x3在所给定的两组基下具有相同坐标的全部向量为k32,k3为任意实数.T02D(1)(3,4,4)T;(2)112,5,132.02E(5/21/21,2)(1,2,3)3/23/2.5/25/202F(1,2,2)T时,坐标乘积的极大值是18.002G(1)A110011000110.1011(2)所求非零向量010203k4k4(k为非零任意常数).02H(1)111011;(2)0011(1,0,0)T,2(0,1,0)T,3(0,0,1)T;(3)A11.02I(1,1,,1).3.64.a11a1203Aa21a22a11a12a31a32a2203C(1)a12a32a21a11a31a23a13;a33a12a22a12a32a13a23a13.a3301103B020.210a11a21(2)ka31ka12a22ka32a13a23;ka33a11a21a11a12a21a22(3)a21a31a21a22a31a32aa31a3231a11a12a13a21a22a23a21a22a23a31a32a33a31a32a33.65.

第四篇:线性代数试题及答案

线性代数习题和答案

第一部分

选择题

(共28分)

一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。1.设行列式a11a21a12a22a13a23a11a21a11a21a12a13a22a23=m,=n,则行列式

等于()

A.m+n

C.n-m

B.-(m+n)D.m-n 1002.设矩阵A=020,则A-1等于()

0031

3A.00012000

1

B.10001200013

1003

C.010

1002

12D.000010 3013123.设矩阵A=101,A*是A214的伴随矩阵,则A *中位于(1,2)的元素是()

B.6

A.–6

C.2

D.–2

B.BC时A=0 D.|A|0时B=C 4.设A是方阵,如有矩阵关系式AB=AC,则必有()

A.A =0

C.A0时B=C

A.1 5.已知3×4矩阵A的行向量组线性无关,则秩(AT)等于()

B.2

/ 7

C.3

D.4

和λ1β1+λ6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()

A.有不全为0的数λ1,λ2,…,λβ2+…λsβs=0

B.有不全为0的数λ1,λ2,…,λ(αs+βs)=0

C.有不全为0的数λ1,λ2,…,λ(αs-βs)=0

D.有不全为0的数λ1,λ2,…,λ1+λ2α2+…+λsαs=0

s和不全为

s使λ1(α1-β1)+λ2(α2-β2)+…+λss

s使λ1α1+λ2α2+…+λsαs=0

2使λ1(α1+β1)+λ2(α2+β2)+…+λ

s

0的数μ1,μ2,…,μs使λ1α

和μ1β1+μ2β2+…+μsβs=0

B.所有r-1阶子式全为0 D.所有r阶子式都不为0 7.设矩阵A的秩为r,则A中()

A.所有r-1阶子式都不为0

C.至少有一个r阶子式不等于0 是()

A.η1+η2是Ax=0的一个解

C.η1-η2是Ax=0的一个解

A.秩(A)

C.A=0

B.η1+η2是Ax=b的一个解 D.2η1-η2是Ax=b的一个解 B.秩(A)=n-1

D.方程组Ax=0只有零解

12128.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的9.设n阶方阵A不可逆,则必有()

10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()

A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量

B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值

C.A的2个不同的特征值可以有同一个特征向量

D.如λ1,λ2,λ于λ1,λ2,λ11.设λ0是矩阵3是

A的3个互不相同的特征值,α1,α2,α3依次是A的属

0的线性无关的特征向量的个3的特征向量,则α1,α2,α3有可能线性相关

A的特征方程的3重根,A的属于λ

B.k<3

D.k>3 数为k,则必有()

A.k≤3

C.k=3

/ 7

12.设A是正交矩阵,则下列结论错误的是()

A.|A|2必为1

C.A-1=AT

B.|A|必为1

D.A的行(列)向量组是正交单位向量组

13.设A是实对称矩阵,C是实可逆矩阵,B=CTAC.则()

A.A与B相似

B.A与B不等价

C.A与B有相同的特征值

D.A与B合同

14.下列矩阵中是正定矩阵的为()

A.23343426

B. 100

C.023035111D.120102

第二部分

非选择题(共72分)

二、填空题(本大题共10小题,每小题2分,共20分)不写解答过程,将正确的答案写在每小题的空格内。错填或不填均无分。15.111356

.9253611111116.设A=,B=123.则

124A+2B=

.17.设A=(aij)3×3,|A|=2,Aij表示|A|中元素aij的代数余子式(i,j=1,2,3),则(a11A21+a12A22+a13A23)2+(a21A21+a22A22+a23A23)2+(a31A21+a32A22+a33A23)2=

.18.设向量(2,-3,5)与向量(-4,6,a)线性相关,则a=

.19.设A是3×4矩阵,其秩为3,若η1,η2为非齐次线性方程组Ax=b的2个不同的解,则它的通解为

.20.设A是m×n矩阵,A的秩为r(

.3 / 7

21.设向量α、β的长度依次为2和3,则向量α+β与α-β的内积(α+β,α-β)=

.22.设3阶矩阵A的行列式|A|=8,已知A有2个特征值-1和4,则另一特征值为

.23.设矩阵0106A=133,已知α21082=12是它的一个特征向量,则α所对应的特征值为

.24.设实二次型f(x1,x2,x3,x4,x5)的秩为4,正惯性指数为3,则其规范形为

.三、计算题(本大题共7小题,每小题6分,共42分)

12025.设A=340121,B=1105231(2)|4A|..求(1)ABT;

24026.试计算行列式352112341313.42327.设矩阵A=110123,求矩阵B使其满足矩阵方程AB=A+2B.21301301.,α=28.给定向量组α1=,α,α23=4=22404193试判断α4是否为α1,α2,α3的线性组合;若是,则求出组合系数。

12124229.设矩阵A=210333266.23340求:(1)秩(A);

(2)A的列向量组的一个最大线性无关组。30.设矩阵022A=234432的全部特征值为1,1和-8.求正交矩阵T和对角矩阵D,使T-1AT=D.31.试用配方法化下列二次型为标准形

/ 7

2f(x1,x2,x3)=x12x223x34x1x24x1x34x2x3,并写出所用的满秩线性变换。

四、证明题(本大题共2小题,每小题5分,共10分)

32.设方阵A满足A3=0,试证明E-A可逆,且(E-A)-1=E+A+A2.33.设η0是非齐次线性方程组Ax=b的一个特解,ξ1,ξ基础解系.试证明

(1)η1=η0+ξ1,η2=η0+ξ

答案:

一、单项选择题(本大题共14小题,每小题2分,共28分)1.D

2.B

3.B

6.D

7.C

8.A

11.A

12.B

13.D

二、填空题(本大题共10空,每空2分,共20分)15.6 16.4.D 9.A 14.C

5.C 10.B

2是其导出组Ax=0的一个

2均是Ax=b的解;

(2)η0,η1,η2线性无关。

337137

17.4 18.–10 19.η1+c(η2-η1)(或η2+c(η2-η1)),c为任意常数 20.n-r 21.–5 22.–2 23.1 24.222z1z22z3z4

三、计算题(本大题共7小题,每小题6分,共42分)

12022403425.解(1)AB=312110T

86=1810310(2)|4A|=43|A|=64|A|,而

.|A|=1203402.121所以|4A|=64·(-2)=-128 26.解 352111051234131351105110511311300

/ 7

=5111111 55051162620301040.55550=27.解

AB=A+2B即(A-2E)B=A,而

(A-2E)-1223=1101211143153.164所以

B=(A-2E)-114342353110 A=116412338696.=2212928.解一 2130053213011301

0224011234190131121000100005111200088014140002101, 0110003035112

011000所以α4=2α1+α2+α3,组合系数为(2,1,1).解二

考虑α4=x1α1+x2α2+x3α3,即 2x1x23x30x3x112 2x2x4323x14x2x39.方程组有唯一解(2,1,1)T,组合系数为(2,1,1).29.解

对矩阵A施行初等行变换

121000A03209602628232

/ 7

212101210328303200000062000217000283=B.31000(1)秩(B)=3,所以秩(A)=秩(B)=3.(2)由于A与B的列向量组有相同的线性关系,而B是阶梯形,B的第1、2、4列是B的列向量组的一个最大线性无关组,故A的第1、2、4列是A的列向量组的一个最大线性无关组。(A的第1、2、5列或1、3、4列,或1、3、5列也是)

30.解 A的属于特征值λ=1的2个线性无关的特征向量为

ξ1=(2,-1,0)T,ξ2=(2,0,1)T.25/525/15经正交标准化,得η

1,η

25/5=5/15=4.05/3λ=-8的一个特征向量为

1/3ξ=13,经单位化得η2

3=2/3.22/325/5215/151/3所求正交矩阵为

T=.5/545/152/305/32/31对角矩阵

D=00010.00825/5215/151/3(也可取T=.)

05/32/35/545/152/331.解

f(x1,x2,x3)=(x1+2x2-2x3)2-2x22+4x2x3-7x32

=(x1+2x2-2x3)2-2(x2-x3)2-5x32.y1x12x22x3x1y12设yy22x2x3,即x2y2y3xyy3x333因其系数矩阵C=12011可逆,故此线性变换满秩。0001经此变换即得f(x1,x2,x3)的标准形

y12-2y22-5y32.四、证明题(本大题共2小题,每小题5分,共10分)32.证

由于(E-A)(E+A+A2)=E-A3=E,所以E-A可逆,且(E-A)-1= E+A+A2.33.证

由假设Aη0=b,Aξ1=0,Aξ2=0.(1)Aη1=A(η0+ξ1)=Aη0+Aξ1=b,同理Aη2= b,所以η1,η2是Ax=b的2个解。(2)考虑l0η0+l1η1+l2η2=0,即

(l0+l1+l2)η0+l1ξ1+l2ξ2=0.则l0+l1+l2=0,否则η0将是Ax=0的解,矛盾。所以 l1ξ1+l2ξ2=0.又由假设,ξ1,ξ2线性无关,所以l1=0,l2=0,从而

l0=0.所以η0,η1,η2线性无关。

/ 7,

第五篇:线性代数试题及答案

线性代数(经管类)试题答案

一、单项选择题(本大题共10小题,每小题2分,共20分)

在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

1.设A为三阶方阵且A.-108 B.-12 则(D)

C.12 D.108 2.如果方程组A.-2 B.-1 C.1 D.2 有非零解,则 k=(B)

3.设A、B为同阶方阵,下列等式中恒正确的是(D)

A.AB=BA B.C.D.4.设A为四阶矩阵,且则(C)

A.2 B.4 C.8 D.12 5.设可由向量α1 =(1,0,0)α2 =(0,0,1)线性表示,则下列向量中只能是(B)A.(2,1,1)B.(-3,0,2)C.(1,1,0)D.(0,-1,0)

6.向量组α1,α2,…,αs 的秩不为s(s)的充分必要条件是(C)

A.α1,α2,…,αs 全是非零向量 B.α1,α2,…,αs 全是零向量

C.α1,α2,…,αs中至少有一个向量可由其它向量线性表出

D.α1,α2,…,αs 中至少有一个零向量

7.设A为m矩阵,方程AX=0仅有零解的充分必要条件是(C)

A.A的行向量组线性无关 B.A的行向量组线性相关 C.A的列向量组线性无关 D.A的列向量组线性相关

8.设A与B是两个相似n阶矩阵,则下列说法错误的是(D)

A.B.秩(A)=秩(B)

C.存在可逆阵P,使P-1AP=B D.E-A=E-B 9.与矩阵A=相似的是(A)

A.B.C.D.10.设有二次型则(C)

A.正定 B.负定 C.不定 D.半正定

二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。错填、不填均无分。

11.若则k=_______1/2____.12.设A=,B=则AB=___________.13.设A=, 则A-1=

14.设A为3矩阵,且方程组A x=0的基础解系含有两个解向量,则秩(A)= _____1______.15.已知A有一个特征值-2,则B=A+2E必有一个特征值___6_________.16.方程组的通解是_____ __ c 1 _+__ c 2 __.17.向量组α1 =(1,0,0)α2 =(1,1,0), α3 =(-5,2,0)的秩是_______2____.18.矩阵A=的全部特征向量是.19.设三阶方阵A的特征值分别为-2,1,1,且B与A相似,则=__-16_________.20.矩阵A=所对应的二次型是.三、计算题(本大题共6小题,每小题9分,共54分)

21.计算四阶行列式的值.=

22.设A=,求A.A =

23.设A=,B=,且A,B,X满足(E-BA)求X,X

(E-BA)

X= =

X==

24.求向量组α1 =(1,-1,2,4)α2 =(0,3,1,2), α3 =(3,0,7,14), α4 =(2,1,5,6), α5 =(1,-1,2,0)的一个极大线性无关组.α1 α2 α4 为极大无关组。

25.求非齐次方程组的通解

通解

26.设A=,求P使为对角矩阵.=

P= =

四、证明题(本大题共1小题,6分)

27.设α1,α2,α3 是齐次方程组A x =0的基础解系.证明α1,α1+α2,α1 +α2 +α3也是Ax =0的基础解系.(答案~~略)

线性代数B期末试题

一、判断题(正确填T,错误填F。每小题2分,共10分)1.A是n阶方阵,R,则有AAAB0。()

2.A,B是同阶方阵,且3.如果4.若

111(AB)BA。(),则A与B等价,则A的行向量组与B的行向量组等价。

()A,B均为n阶方阵,则当AB时,A,B一定不相似。

()5.n维向量组1,2,3,4线性相关,则1,2,3也线性相关。()

二、单项选择题(每小题3分,共15分)

1.下列矩阵中,()不是初等矩阵。

001100100010000020100(B)010(C)001(D)(A)2.设向量组(A)(C)

100012001

1,2,3线性无关,则下列向量组中线性无关的是()。

12,23,31(B)1,2,31 1,2,2132(D)2,3,223)

12(A2E)(AA5E03.设A为n阶方阵,且。则(A)AE(B)EA(C)11(AE)(AE)33(D)

4.设A为mn矩阵,则有()。

(A)若mn,则Axb有无穷多解;

A有n阶子式不为零,则Axb有唯一解; A有n阶子式不为零,则Ax0仅有零解。

B,但|A-B|=0(B)若mn,则Ax0有非零解,且基础解系含有nm个线性无关解向量;

(C)若(D)若5.若n阶矩阵A,B有共同的特征值,且各有n个线性无关的特征向量,则()

(A)A与B相似(B)A(C)A=B(D)A与B不一定相似,但|A|=|B|

三、填空题(每小题4分,共20分)

012nn101.。

2.A为3阶矩阵,且满足A3,则A1=______,3A*。

1021112423421570是线性(填相关或无关)的,它的一个极大线性无关组是。3.向量组,,14241233444R(A),Axb的三个解,其中A的秩,则方程组Axb的通解为。=3,4. 已知1,2,3是四元方程组

231A1a15.设503,且秩(A)=2,则a=。

四、计算下列各题(每小题9分,共45分)。

121A3421.已知A+B=AB,且221,求矩阵B。2.设(1,1,1,1),(1,1,1,1),而AT,求An。

x1x2ax31x1x22x31xax3.已知方程组12x3a2有无穷多解,求a以及方程组的通解。

4.求一个正交变换将二次型化成标准型

f(x,x22212,x3)x12x22x34x1x24x1x38x2x3

5. A,B为4阶方阵,AB+2B=0,矩阵B的秩为2且|E+A|=|2E-A|=0。(1)求矩阵A的特征值;(求|A+3E|。

五.证明题(每题5分,共10分)。

1.若A是对称矩阵,B是反对称矩阵,ABBA是否为对称矩阵?证明你的结论。

2.设A为mn矩阵,且的秩R(A)为n,判断ATA是否为正定阵?证明你的结论。

2)A是否可相似对角化?为什么?;(7

3)

下载0910线性代数内招答案[五篇材料]word格式文档
下载0910线性代数内招答案[五篇材料].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    线性代数试题及答案

    04184线性代数(经管类) 一 、 二 、单选题 1、 B:-1 A:-3 C:1 D:3 做题结果:A 参考答案:D 2、 B:d A:abcd C:6 D:0 做题结果:A 参考答案:D 3、 B:15 A:18 C:12 D:24 做题结果:A 参......

    线性代数C答案

    线性代数模拟题 一.单选题. 1. 设五阶行列式aijm,依下列次序对aij进行变换后,其结果是( A ). 交换第一行与第五行,再转置,用2乘所有的元素,再用-3乘以第二列加于第三列,最后用4除第......

    线性代数第四章练习题答案

    第四章 二 次型 练习4、1 1、写出下列二次型的矩阵 2(1)f(x1,x2,x3)=2x12x24x1x32x2x3; (2)f(x1,x2,x3,x4)=2x1x22x1x32x1x42x3x4。 解:(1)因为 2f(x1,x2,x3)=(x1,x2,x3)022所以......

    2006~2007线性代数试题1答案

    一、选择题: [教师答题时间:2 分钟](每小题 3 分,共 12分) ①A ②D ③A ④B 二、填空题: [教师答题时间:4分钟](每空 3分,共 12 分) ① 5 ② 线性相关 ③ 0 ④ -8 三、计算题 [教师......

    线性代数试题A答案[大全5篇]

    2006-2007学年第二学期线性代数试题A卷参考答案及评分标准 一.填空题(本题满分12分,每小题3分) 120025111、1;2、3;3、A0031003002;4、2 313二、选择题(本题满分12分,每小题3分,.在每小......

    线性代数4试卷及答案

    线性代数(经管类)试题B 试卷满分100分考试时间120分钟 (出卷人:廖磊) 试卷说明:AT表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式。 一、单项选择题......

    线性代数试卷及答案1

    一、填空题(本题共5小题,每小题4分,满分20分,把答案填在题中横线上)31(1)三阶行列式111311113111______________________. 1312121(2)设A,B11,则AB______________________. 10111(3)已知......

    线性代数题库无答案

    线性代数12级物联网班一、填空1.,则.2.设D为一个三阶行列式,第三列元素分别为-2,3,1,其余子式分别为9,6,24,则_______.3.阶矩阵可逆的充要条件是_____,设A*为A的伴随矩阵,则=______.4.......