第一篇:配方法专题探究
配方法专题探究
例1:填空题:
1.将二次三项式x2+2x-2进行配方,其结果为
2.方程x2+y2+4x-2y+5=0的解是。
分析:利用非负数的性质
3.已知M=x2-8x+22,N=-x2+6x-3,则M、N的大小关系为。分析:利用减法
4.用配方法把二次函数y=2x2+3x+1写成y=a(x+m)2+k的形式。
5.设方程x2+2x-1=0的两实根为x1,x2,则(x1-x2)2。
6.已知方程x2-kx+k=0的两根平方和为3,则k的值为。
分析:根与系数的关系,整体代入法
7.若x、y为实数,且x2y3(2x3),则y1的值等于。x
1分析:整理形式,非负数的应用。
拓展练习题:
***1.完全平方式是_______项式,其中有_____完全平方项,________•项是这两个数(式)
乘积的2倍.
****2.x2+mx+9是完全平方式,则m=_______.
分析:全面考虑
3.4x2+12x+a是完全平方式,则a=________.
分析:可以用判别式的方法
4.把方程x2-8x-84=0化成(x+m)2=n的形式为().
A.(x-4)2=100B.(x-16)2=100C.(x-4)2=84D.(x-16)2=8
45.已知△ABC的三边分别为a、b、c,且a2+b2+c2=ab+bc+ac,则△ABC的形状为。分析:重新组合,正确分割。
6.如果二次三项次x2-16x+m2是一个完全平方式,那么m的值是().
A.±8B.4C.-
D.±
分析:可以用代入验证法
7.用配方法解方程:(1)2x2-x=0;(2)x2+3x-2=0.
8.判断题.
(1)x2+1522x-=(x+)2+()993
3(2)x2-4x=(x-2)2+4()
(3)121y+y+=(y+1)2()2
29.已知(x2+y2)(x2+y2+2)-8=0,则x2+y2的值是().
A.-4B.2C.-1或4D.2或-
4分析:合情推理,十分重要。
10.用配方法说明:-3x2+12x-16的值恒小于0.
11.阅读题:解方程x2-4│x│-12=0.
解:(1)当x≥0时,原方程为x2-4x-12=0,配方得(x-2)2=16,两边平方得x-2=±4,∴x1=6,x2=-2(不符合题意,舍去).
(2)当x<0时,原方程为x2+4x-12=0,配方得(x+2)2=16,两边开平方得x+2=±4,∴x1=-6,x2=2(不符合题意,舍去),∴原方程的解为x1=6,x2=-6.
参照上述例题解方程x2-2│x-1│-4=0.
分析:分类讨论,是全面分析的必要方法。
12.设代数式2x2+4x-3=M,用配方法说明:无论x取何值时,M总不小于一定值,并求出该定值.
分析:极值问题,应该引起重视。
提高训练题:
例
1、求方程x2+y2+2x-4y+5=0 的解x, y.分析:转化成为特殊形式
例
2、因式分解:a2b2-a2+4ab-b2+1.对应练习:因式分解:
①x4+x2y2+y4 ;②x2-2xy+y2-6x+6y+9 ;③x4+x2-2ax-a2+1.例
3、化简下列二次根式: ①74;②2;③4322.分析:化简的关键是把被开方数配方
例
4、求下列代数式的最大或最小值:
① x2+5x+1;② -2x2-6x+1.对应练习:求下列代数式的最大或最小值:
①2x2+10x+1 ;②-12x+x-1.2例
5、解下列方程:
①x4-x2+2xy+y2+1=0 ;②x2+2xy+6x+2y2+4y+10=0.对应练习:解方程:
①x2-4xy+5y2-6y+9=0;②x2y2+x2+4xy+y2+1=0 ;③5x2+6xy+2y2-14x-8y+10=0.例
6、求方程 x2+y2-4x+10y+16=0的整数解
对应练习:求下列方程的整数解:
①(2x-y-2)2+(x+y+2)2=5;②x2-6xy+y2+10y+25=0.练习:
1、因式分解:①x4+x2y2+y4 ;②x2-2xy+y2-6x+6y+9 ;③x4+x2-2ax-a2+1.2、求下列代数式的最大或最小值:①2x2+10x+1 ;②-12x+x-1.23、已知:a2+b2+c2=111,ab+bc+ca=29.求:a+b+c的值.
第二篇:配方法习题
配方法习题
一、选择题
1.下列哪个不是完全平方式?()
A、2x2B、x2-6x+9C、25x2-10x+1D、x2+22x+1
212.以配方法解3x2+4x+1=0时,我们可得下列哪一个方程式?()
252121A、(x+2)2=3B、(3x+)2=、(x+2=D、(x+2=343
33.若2x2-3x+1加上一数k后,成为完全平方式,则k=()
A、18B、7C、116D、44.想将x2+32 x配成一个完全平方式,应该加上下列那一个数?()
A、34B、9994C、8、165.下列哪个不是完全平方式?()
A、x2+4B、x2+4x+4C、4x2+4x+1D、x2+x+1
4二、填空题
1.将方程式x2-4x+1=0配成(x+a)2=b之形式则a+b=___________
2.填入适当的数配成完全平方式x2-1+____________=(x-)
223.已知一元二次方程式x2-2x-1=0的解为x=a±b 则a-b=_______
三、利用配方法解下列一元二次方程式
3x2-8x+3=0。ax2-2bx+c=0(a>0,b2-ac≧0)
3x2-8x+3=03x2+11x+2=0。
x2+2x-1=03x2-8x+3=0
一、选择题(共56分,每小题14分):
1、2x^2+4x+10=12中,可以配方得到_______
A、2(x+1)^2=
3B、2(x+2)^2=
3C、(2x+1)^2=
3D、(2x+1)^2=
5.2、x^2+4x+3=-1的结果是_______
A、x=-
2B、x=
2C、无解
D、此题有两个根
.3、对于关于x的一元二次方程ax^2+bx+c=0(a不为0,a,b,c是常数)进行配方,得到_______
A、(x+b/a)^2(c/a^2)=-b/a
C、(x+b/2a)^2 =(b^2/4a^2)-c/a
D、对于不同的数字没有唯一表达式。
.4、对于关于x的方程(px+q)^2=m的根的判断,其中有可能正确的有_______
(1)x为任意实数,(2)x1=x2=q/p,(3)当m<0时,方程无解
A、没有正确的B、(2)(3)正确
C、只有(3)正确
D、(1)(3)正确
.二、解答题(共46分,第5题18分,第6题28分)
5、请用配方法解方程 x^2+4x+3=156、对于关于x的方程 mx^2+nx+q=0,将其化简成x=?的形式。
一、填空题(1×28=28)
_____ 个.2、单项式-7a2bc的系数是______, 次数是______.3、多项式3a2b2-5ab2+a2-6是_____次_____项式,其中常数项是_______.4、3b2m•(_______)=3b4m+1-(x-y)5(x-y)4=________(-2a2b)2÷(_______)=2a5、(-2m+3)(_________)=4m2-9(-2ab+3)2=_____________
1、下列代数式中:①3x+5y ②x2+2x+y2 ③0 ④-xy2 ⑤3x=0 ⑥ 单项式有 _____个,多项式有
6、如果∠1与∠2互为补角,∠1=72º,∠2=_____º ,若∠3=∠1,则∠3的补角为_______º,理由是__________________________.7、在左图中,若∠A+∠B=180º,∠C=65º,则∠1=_____º,A 2 D ∠2=______º.B C8、在生物课上,老师告诉同学们:“微生物很小,枝原体直径只有0.1微米”,这相当于________________米(1米=106微米,请用科学记数法表示).9、在进行小组自编自答活动时,小芳给小组成员出了这样一道题,题目:我国古代数学家祖冲之发现了圆周率π=3.1415926……,取近似值为3.14,是精确到_______位,有______个有效数字,而小明出的题是:如果一年按365天计算,那么,一年就有31536000秒,精确到万位时,近似数是_____________秒,有______个有效数字.10、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则P(小明被选中)= ________ , P(小明未被选中)=________.11、随意掷出一枚骰子,计算下列事件发生的概率标在下图中.⑴、掷出的点数是偶数 ⑵、掷出的点数小于7
⑶、掷出的点数为两位数 ⑷、掷出的点数是2的倍数
0 1/2
1不可能发生 必然发生
二、选择题(2×7=14)
1、今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x2+3xy-y2)-(-x2+4xy-y2)=
-x2_____+y2空格的地方被钢笔水弄污了,那么空格中的一项是()
A、-7xy B、7xy C、-xy D、xy2、下列说法中,正确的是()
A、一个角的补角必是钝角 B、两个锐角一定互为余角
C、直角没有补角 D、如果∠MON=180º,那么M、O、N三点在一条直线上
3、数学课上老师给出下面的数据,()是精确的A、2002年美国在阿富汗的战争每月耗费10亿美元
B、地球上煤储量为5万亿吨以上
C、人的大脑有1×1010个细胞
D、这次半期考试你得了92分
4、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()
A、B、C、D、5、已知:∣x∣=1,∣y∣= ,则(x20)3-x3y2的值等于()
A、-或-B、或 C、D、-
6、下列条件中不能得出a‖b 的是()c
A、∠2=∠6 B、∠3+∠5=180º 1 2 a
C、∠4+∠6=180º D、∠2=∠8 5 6 b7、下面四个图形中∠1与∠2是对顶角的图形有()个
A、0 B、1 C、2 D、3三、计算题(4×8=32)
⑴-3(x2-xy)-x(-2y+2x)⑵(-x5)•x3n-1+x3n•(-x)
4⑶(x+2)(y+3)-(x+1)(y-2)⑷(-2m2n)3•mn+(-7m7n12)0-2(mn)-4•m11•n8
⑸(5x2y3-4x3y2+6x)÷6x,其中x=-2,y=2 ⑹(3mn+1)(3mn-1)-(3mn-2)
2用乘法公式计算:
⑺ 9992-1 ⑻ 20032
四、推理填空(1×7=7)
A 已知:如图,DG⊥BC AC⊥BC,EF⊥AB,∠1=∠
2E 求证:CD⊥AB
F 证明:∵DG⊥BC,AC⊥BC(___________)
D ∴∠DGB=∠ACB=90º(垂直的定义)
∴DG‖AC(_____________________)
B C ∴∠2=_____(_____________________)
∵∠1=∠2(__________________)∴∠1=∠DCA(等量代换)
∴EF‖CD(______________________)∴∠AEF=∠ADC(____________________)∵EF⊥AB ∴∠AEF=90º ∴∠ADC=90º 即CD⊥AB
五、解答题(1题6分,2题6分,3题⑴2分,⑵2分,⑶3分,总19分)
1、小康村正在进行绿地改造,原有一正方形绿地,现将它每边都增加3米,面积则增加了63平方米,问原绿地的边长为多少?原绿地的面积又为多少?
2、已知:如图,AB‖CD,FG‖HD,∠B=100º,FE为∠CEB的平分线,求∠EDH的度数.A F C
E
B H
G
D3、下图是明明作的一周的零用钱开支的统计图(单位:元)
分析上图,试回答以下问题:
⑴、周几明明花的零用钱最少?是多少?他零用钱花得最多的一天用了多少?
⑵、哪几天他花的零用钱是一样的?分别为多少?
⑶、你能帮明明算一算他一周平均每天花的零用钱吗?
能力测试卷(50分)
(B卷)
一、填空题(3×6=18)
1、房间里有一个从外表量长a米、宽b米、高c米的长方形木箱子,已知木板的厚度为x米,那么这个木箱子的容积是________________米3.(不展开)
2、式子4-a2-2ab-b2的最大值是_______.3、若2×8n×16n=222,则n=________.4、已知 则 =__________.5、一个小男孩掷一枚均匀的硬币两次,则两次均朝上的概率为_________.6、A 如图,∠ABC=40º,∠ACB=60º,BO、CO平分∠ABC和∠ACB,D E DE过O点,且DE‖BC,则∠BOC=_______º.B C
二、选择题(3×4=12)
1、一个角的余角是它的补角的,则这个角为()
A、60º B、45º C、30º D、90º
2、对于一个六次多项式,它的任何一项的次数()
A、都小于6 B、都等于6 C、都不小于6 D、都不大于63、式子-mn与(-m)n的正确判断是()
A、这两个式子互为相反数 B、这两个式子是相等的C、当n为奇数时,它们互为相反数;n为偶数时它们相等
D、当n为偶数时,它们互为相反数;n为奇数时它们相等
4、已知两个角的对应边互相平行,这两个角的差是40º,则这两个角是()
A、140º和100º B、110º和70º C、70º和30º D、150º和110º
三、作图题(不写作法,保留作图痕迹)(6分)
利用尺规过A点作与直线n平行的直线m(不能用平推的方法作).A •
n
四、解答题(7×2=14)
1、若多项式x2+ax+8和多项式x2-3x+b相乘的积中不含x2、x3项,求(a-b)3-(a3-b3)的值.3、如图,已知AB‖CD,∠A=36º,∠C=120º,求∠F-∠E的大小.A B
E
F
C D
第三篇:配方法含答案
配方法
1、方程6x2=18的根是__________;已知2(x-3)2=72,则x的值是__________.2、若方程x2-6x+5=0可化为(x+m)2=k的形式,则m=__________,k=__________.
3、一元二次方程x2-2x-3=0的根是__________.
1、;9或-
32、-3;
43、x1=3,x2=-
14、用配方法解方程x2-4x+2=0,下列配方正确的是()
A.(x-2)2=2B.(x-2)2=6C.(x-2)2=-2D.(x-2)2=-65、不论x、y为何实数,代数式x2+y2+2x-4y+7的值()
A.总不小于2B.总不小于7C.可为任何实数D.可能为负数
6、将二次三项式x2+6x+7进行配方,正确结果是()
A.(x+3)2+2B.(x+3)2-2C.(x-3)2+2D.(x-3)2-
27、用配方法解下列方程:
(1)(2)5x2-18=9x7、(1)解:
(2)解:
8、用配方法证明:无论x取何实数,代数式2x2-8x+18的值不小于108、证明:2x2-8x+18=2(x2-4x)+18=2(x-2)2+18-8=2(x-2)2+10.不论x为何实数,(x-2)2≥0,∴2(x-2)2+10≥10.
即无论x取何实数,代数式2x-8x+18的值不小于10.
29、已知a是方程x2-2008x+1=0的一个根,试求
9、∵a是方程x2-2008x+1=0的一个根,∴a2-2008a+1=0, a2-2007a=a-1, a2+1=2008a 的值
且 ∴.
10、一次会议上,每两个参加会议的人都相互握了一次手,有人统计一共握了66次手,这次会议到会的人数是多少?
10、解:设这次会议到会的人数是x人.则
x2-
x=1
32∴,∴x1=12,x2=-11<0(舍去)
故这次会议到会的人数是12人.
公式法
1、下列方程有实数根的是()
A.2x2+x+1=0B.x2-x-1=0 C.x2-6x+10=0D.x2-+1=02、若关于x的方程有两个不相等的实数根,则k的取值范围是()
A.k>1B.k≥-1 C.k<1D.k>1且k≠0
答案:
1、B2、A
例
2、用公式法解下列方程.
(1)2x2-9x+8=0解:b2-
4ac=17
(2)9x2+6x+1=0解:b2-4ac=0,x1=x2=
(3)(x-2)(3x-5)=
1解:3x2-11x+9=0
b2-
4ac=13 .
故
例
3、解方程:.有一位同学解答如下: 这里,∴,∴
∴x1=,x2=.
请你分析以上解答有无错误,如有错误,找出错误的地方,并写出正确的解答.解:有错误,错在常数,而c应为,正确为: 原方程可化为: ∵ ∴ ∴ ∴
例
4、m为何值时,方程(2m+1)x2+4mx+2m-3=0.
(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根? 解:若 2m+1≠0,即 m≠,则=(4m)2-4(2m+1)(2m-3)=4(4m+3)
(1)当4m+3>0且2m+1≠0,即m>且m≠时,原方程有两个不相等的实数根.
(2)当4m+3=0即m=时,原方程有两个相等实数根.
(3)当4m+3<0即m<时,没有实数根.
例
5、若关于x的方程kx2-(2k+1)x+k=0有实数根,求k的取值范围.
解:(1)当k=0时,原方程可化为-x=0,此方程有实根.
(2)由题意得:,解得且k≠0.
故:综合(1)(2)得k的取值范围为.
例
6、求证:不论a为何实数,方程2x2+3(a-1)x+a2-4a-7=0必有两个不相等的实数根.证明:∵a=2,b=3(a-1),c=a2-4a-7.
b2-4ac=[3(a-1)]2-4×2(a2-4a-7)=a2+14a+65=(a+7)2+16≥16>0. 故不论a为何实数,方程2x2+3(a-1)x+a2-4a-7=0必有两个不相等的实数根.因式分解法
1、方程x2-4x=0的解为__________.2、请你写出一个有一根为0的一元二次方程__________.
3、方程x(x+1)=3(x+1)的解是()
A.x=-1B.x=3C.x1=-1,x2=3D.以上答案都不对
4、解方程(x+2)2=3(2+x)最适当的解法是()
A.直接开平方法B.配方法C.公式法D.因式分解法
5.若关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是()
A.x2+3x-2=0B.x2-3x+2=0 C.x2-2x+3=0D.x2+3x+2=06、关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0,则a的值为()
A.1或-4B.1C.-4D.-1或
47、用因式分解法解下列方程:
(1)(x+3)2=2x+6(2)2(5x-1)2=3(1-5x)(3)9(x-2)2=4(x+1)
2(4)(2x-1)2-x2-4x-4=08、用适当的方法解下列方程:
(1)x2-8x-9=0(2)(x+3)(x-3)=(3)x(40-2x)=180
(4)x2+()x+=08、(1)解:(x+1)(x-9)=0x1=-1, x2=9
(2)解: ∴,(3)解:x2-20x=-90x2-20x+102=-90 +102(x-10)2=10∴x-10=∴,(4)解:(x+)(x+)=0∴x1=-,x2=-
9、若x2+xy+y=14 ①,y2+xy+x=28 ②,求x+y的值
9、解:由①+②得:(x2+y2)+2xy+(x+y)=42(x+y)2+(x+y)-42=0(x+y+7)(x+y-6)=0∴x+y=-7或x+y=6.
10、关于x的一元二次方程mx2-(3m-1)x+2m-1=0,其根的判别式的值为1,求m的值及该方程的根
解:由已知得:
解得m=2,∴x=,∴x1=,x2= 故m的值为2,该方程的根为x1=,x2=1.
第四篇:1.2.2配方法
1.2.2配方法(1)教学案 学习目标
1、能够用配方法解二次项系数为1的一元二次方程 体验学习
一、探究新知
问题1:下面两个方程同学们愿意解哪一个?,这两个方程有联系吗?
二、课堂练习
1、若方程x2kx640的左边是完全平方式,则k的值是.2、x2y24x6y130,则x2y.3、代数式的值()
(1)x26x40
跟进练习:
1、用配方法解下列方程
(1)x22x50
(3)x210x90
(5)x24x10
2)(x3)250(2)x24x10(4)x212x130(5)x28x90A.可以等于0B.既可为正也可为负C.大于3D.不小于3
4、用配方法解一元二次方程
(1)x26x40(2)x22x4
(3)x23x20(4)x2x105、若a、b、c是ABC的三条边,且a2b2c2506a8b10c,试判断ABC的形状.6、若a、b、c是ABC的三条边,且a2b2c2abacbc0,试判断ABC的形状.三、课堂小结
四、教学反思
(
第五篇:配方法讲解练习
过程
1.转化: 将此一元二次方程化为a^2;+bx+c=0的形式(即一元二次方程的一般形式)
2.移项: 常数项移到等式右边
3.系数化1: 二次项系数化为1
4.配方: 等号左右两边同时加上一次项系数一半的平方5.求解: 用直接开平方法或因式分解法求解
6.整理(即可得到原方程的根)
ax^2+bx+c=a(x+b/2a)^2+(4ac-b^2)/4a=a[(x+m)^2-n^2]=a(x+m+n)*(x+m-n)
解一元二次方程练习题(配方法)
1.用适当的数填空: ①、x2+6x+=(x+)2;
②、x2-5x+=(x-)2;
③、x2+ x+=(x+)2;
④、x2-9x+=(x-)2
2.将二次三项式2x2-3x-5进行配方,其结果为_________.
3.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______.
4.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,所以方程的根为_________.
5.若x2+6x+m2是一个完全平方式,则m的值是()
A.3B.-3C.±3D.以上都不对
6.用配方法将二次三项式a2-4a+5变形,结果是()
A.(a-2)2+1B.(a+2)2-1C.(a+2)2+1D.(a-2)2-1
7.把方程x+3=4x配方,得()
A.(x-2)2=7B.(x+2)2=21C.(x-2)2=1D.(x+2)2=2
8.用配方法解方程x2+4x=10的根为()
A.2±10B.-2±14C.-2+10D.2-10
9.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值()
A.总不小于2B.总不小于7C.可为任何实数D.可能为负数
10.用配方法解下列方程:
(1)3x2-5x=2.(2)x2+8x=9
(3)x2+12x-15=0(4)41 x2-x-4=0
11.用配方法求解下列问题(1)求2x2-7x+2的最小值 ;
(2)求-3x2+5x+1的最大值
1.①9,3②2.52,2.5③0.52,0.5④4.52,4.52.2(x-34)2-4983.4
4.(x-1)2=5,1±55.C6.A 7. C 8.B9.A 10.(1)方程两边同时除以3,得x2-53x=23,配方,得x2-53x+(56)2=23+(56)2,即(x-56)2=4936,x-56=±76,x=56±76. 所以x1=56+76=2,x2=56-76=-13. 所以x1=2,x2=-13.(2)x1=1,x2=-9(3)x1=-6+51,x2=-6-51; 11.(1)∵2x2-7x+2=2(x2-72x)+2=2(x-74)2-338≥-338,∴最小值为-338,(2)-3x2+5x+1=-3(x-56)2+3712≤3712,∴最大值为3712