初三 数学 一元二次方程解法练习题 配方法 公式法 分解因式法

时间:2019-05-13 11:09:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《初三 数学 一元二次方程解法练习题 配方法 公式法 分解因式法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《初三 数学 一元二次方程解法练习题 配方法 公式法 分解因式法》。

第一篇:初三 数学 一元二次方程解法练习题 配方法 公式法 分解因式法

配 方 法

1、x2

2x802、x2

42x3、3y2

6y2404、4x27x205、12

x2

2x906、2x23x507、2x2

5x308、用配方法证明:方程x2

x10无解

9、用配方法证明:方程x2x10的值恒大于零

公 式 法1、32

t2

4t102、x2

x13、x23x1104、2x2

3x1

05、3x2

12x6、已知x2

3x40的根为x1,x2,求x1x2,x1x2,1122

x,x1x2 1x

2配 方 法1、4x2x32x2、9x2

6x103、x22

93x124、2x22

4x25、92x32

42x52

06、x2

4x1207、4x32

54x3608、2x1x13x1x1

9、xx1x20

第二篇:关于一元二次方程的分解因式法教案(精选)

关于一元二次方程的分解因式法

教案

一、教学目标

1、会用分解因式法解一元二次方程

2、会用分解因式法(提公因式法、公式法)解某些简单的数字系数的一元二次方程

二、教学重点

应用分解因式法解一元二次方程

三、教学难点

形如x2=ax方程的解法

四、教学过程

1、引导:例1)X-4=0 解: X=4 所以 X=+ 2 所以 X1=2 X2=-2

2、提出问题

例2)X =3X 解: X-3X=0 X(X-3)=0 X=0或X-3=0 所以 X1=0,X2=3

3、应用新知

例 3)X-2=X(X-2)

解; X -2 -X(X -2)=0(X-2)(X-1)=0 X-2=0或X-1=0 所以 X1=2,X2=1

五、练习:分解以下因式

(1)(X+2)(X-4)=0 解; X+2=0或X-4=0

222所以X1=-2,X2=4(2)4X(2X+1)=3(2X+1)

解: 4X(2X+1)-3(2X+1)=0(4X-3)(2X+1)=0 4X-3=0或2X+1=0 所以X1=3/4,X2=-1/2

六、小结:我们这节课又学习了一元二次方程的解法—因式分解法,它是一元二次方程解法中应用较为广泛的简便方法。

七、作业:分解以下因式

(1)X-X=0(2)3X(2X-4)=0(3)X-3X-2=0(4)(X-1)(X+3)=12

八、板书设计

一元二次方程的分解因式法

一、应用分解因式法解一元二次方程

二、形如x=ax方程的解法。

222

第三篇:分解因式法解一元二次方程导学案

因式分解法解一元二次方程导学案

【学习目标】

1、会用因式分解法(提公因式法、公式法)解一元二次方程,体会“降次”化归的思想方法。

2、能根据一元二次方程的特征,选择适当的求解方法,体会解决问题的灵活性和多样性。任务一

1、自学课本60页“议一议”上面的内容,明确:小颖、小明、小亮解方程的方法有什么不同?谁的解法不对?错在什么地方?为什么?正确解法中你觉得哪种简单一些?

说明:当一元二次方程的一边为0时,而另一边易于分解成两个一次因式的乘积时,这种解法被称为分解因式法,其理论依据是:若 ab=0 那么a=0 或 b=0(a、b为因式)。

2、用因式分解法来解一元二次方程,其关键是什么? 用因式分解法来解一元二次方程必须要先化为一般形

式吗?

3、自学例一并总结用因式分解法解一元二次方程的步骤 1)方程右边化为。

2)将方程左边分解成两个的乘积。3)至少因式为零,得到两个一元一次方程。4)两个就是原方程的解。

任务二

1.仿照例题解方程:

(1)x2

-4=0(2)(x+2)2

-25=0(3)4x(2x+1)=3(2x+1)

2、如果方程x2-3x+c=0有一个根为1,那么,该方程的另一根为 该方程可化为(x-1)(x)=0 任务三

思考:如何选用解一元二次方程的方法?

因式分解法解一元二次方程课堂小测

A1、已知方程4x2-3x=0,下列说法正确的是()

A.只有一个根x=

B.只有一个根x=0C.有两个根x1=0,x2=

334

D.有两个根x1=0,x2=-

4A2、如果(x-1)(x+2)=0,那么以下结论正确的是()

A.x=1或x=-2B.必须x=1C.x=2或x=-1D.必须x=1且x=-2 A3、方程(x+1)2=x+1的正确解法是()

A.化为x+1=1B.化为(x+1)(x+1-1)=0C.化为x2+3x+2=0D.化为x+1=04.用因式分解法解一元二次方程

必做:2(x+3)2=x(x+3)选作:(4x+2)2=x(2x+1)

因式分解法解一元二次方程课堂小测

A1、已知方程4x2-3x=0,下列说法正确的是()

A.只有一个根x=

B.只有一个根x=0C.有两个根x31=0,x2=

D.有两个根x1=0,x2=-

4A2、如果(x-1)(x+2)=0,那么以下结论正确的是()

A.x=1或x=-2B.必须x=1C.x=2或x=-1D.必须x=1且x=-2 A3、方程(x+1)2=x+1的正确解法是()

A.化为x+1=1B.化为(x+1)(x+1-1)=0C.化为x2+3x+2=0D.化为x+1=04.用因式分解法解一元二次方程

必做:2(x+3)2=x(x+3)选作:(4x+2)2=x(2x+1)

第四篇:分解因式法解一元二次方程教学随笔

分解因式法解一元二次方程教学随笔

丁秀凤

(一)课标表述

会用因式分解法解简单的数字系数的一元二次方程(二)目标分解

1、经历探索因式分解法解一元二次方程的过程

2、会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程

(三)目标重构:

1、通过自学,交流,观察,比较等活动,发现能用分解因式法解方程的特征。

2、通过理解例题,有梯度的习题,会用分解因式法解方程。

(四)、在确定本节课(本单元)的教学目标时应把握的问题:

1、经历了什么过程才能够得到能用因式分解法一元二次方程的特征? 数学教学应从学生实际出发,创设有助于学生自主学习的问题情境,引导学生通过思考、探索、交流获得知识。

2、本节课如何让学生会用因式分解法解一元二次方程? 了解数学的价值,增强应用数学的意识,体现学以致用的思想。

(一)、如何落实目标一:

如何落实“通过自学、交流、比较等活动,发现能用分解因式法解一元二次方程的特征”这个目标。

采用的教学策略和评价方案分别是:

为了落实这个目标,可采用自学探究教学策略,通过学生自主、独立发现问题。

具体设计如下:

活动一:自主学习课本67---68引例,让学生观察比较“一个数的平方与这个数的3倍有可能相等吗?”让学生在练习本上各自求解,然后四人一组交流,比较分析,发现出分解因式是解某些一元二次方程较为简便的方法。

设计目的:体会方程解法的多样性,同时引入课题。评价方案:为了评价目标一的达成度,设计了过程性评价,从以下几个方面设计了这个环节的评价。

即是否积极主动参与学习活动,是否有学好数学的自信心,能够不回避遇到的困难,是否乐于与他人合作,愿意与同伴交流各自的想法,结合我校的小组合作交流学习的方式,在小组内进行评价,对回答问题积极者及时进行表扬、鼓励、加分等。

如何落实目标二

通过理解例题,有梯度的习题,会用分解因式法解方程。采用的教学策略和评价方案是:问题式教学策略 具体设计

活动一:教师先板书例题的题目,让学生书和上,请四名学生上台演板,其余学生先独立完成例题,再翻开课本对照,板演的结果让学生自觉自主上台纠错,教师点评纠错。

设计目的:根据学生的认知特点,学生在理解纠错的基础上,通过对例题的掌握,体现例题的示范性,从而规范做题格式。

评价方案:关注学生的参与程度,采用定性评价方式,多用鼓励性的语言,关注学生对知识的掌握程度,获得了那些进步,获得了哪些能力,从而培养学生对学习数学的自信心。

活动二:设计有梯度的练习,设计6道问题,其中提公因式法2个,平方差公式2个,完全平方公式2个。这些题目用小黑板呈现,让学生上台板演,其余学生分组在练习本上完成。

设计目的:通过有梯度的练习,让学生熟练掌握分解因式法解一元二次方程。评价方案:在此活动中,采用定量评价,即采用百分制的方式,将评价结果及时反馈给学生,并填到课堂评价表中。

第五篇:分解因式-公式法教案

§15.5.2.1 公式法

(一)教学目标

(一)教学知识点

运用平方差公式分解因式.

(二)能力训练要求

1.能说出平方差公式的特点.

2.能较熟练地应用平方差公式分解因式.

3.初步会用提公因式法与公式法分解因式.•并能说出提公因式在这类因式分解中的作用.

4.知道因式分解的要求:把多项式的每一个因式都分解到不能再分解.

(三)情感与价值观要求

培养学生的观察、联想能力,进一步了解换元的思想方法.

教学重点

应用平方差公式分解因式.

教学难点

灵活应用公式和提公因式法分解因式,并理解因式分解的要求.

教学方法

自主探索法.

教具准备

投影片.

教学过程

Ⅰ.提出问题,创设情境

出示投影片,让学生思考下列问题.

问题1:你能叙述多项式因式分解的定义吗?

问题2:运用提公因式法分解因式的步骤是什么?

问题3:你能将a2-b2分解因式吗?你是如何思考的?

[生]1.多项式的因式分解其实是整式乘法的逆用,•也就是把一个多项式化成了几个整式的积的形式.

2.提公因式法的第一步是观察多项式各项是否有公因式,如果没有公因式,•就不能使用提公因式法对该多项式进行因式分解.

3.对不能使用提公因式法分解因式的多项式,不能说不能进行因式分解.

[生]要将a2-b2进行因式分解,可以发现它没有公因式,•不能用提公因式法分解因式,但我们还可以发现这个多项式是两个数的平方差形式,所以用平方差公式可以写成如下形式:

a2-b2=(a+b)(a-b).

[师]多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结果,这种分解因式的方法称为运用公式法.今天我们就来学习利用平方差公式分解因式.

Ⅱ.导入新课

[师]观察平方差公式:a2-b2=(a+b)(a-b)的项、指数、符号有什么特点?

(让学生分析、讨论、总结,最后得出下列结论)

(1)左边是二项式,每项都是平方的形式,两项的符号相反.

(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差.

(3)在乘法公式中,“平方差”是计算结果,而在分解因式,•“平方差”是得分解因

式的多项式.

由此可知如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.

出示投影片

[做下列填空题的作用在于训练学生迅速地把一个单项式写成平方的形式.•也可以对积的乘方、幂的乘方运算法则给予一定时间的复习,避免出现4a2=(4a)2•这一类错误]

填空:

(1)4a2=()2;

(2)42b=()2; 9

(3)0.16a4=()2;

(4)1.21a2b2=()2;

14x=()2; 4

4(6)5x4y2=()2.

9(5)

2例题解析:

出示投影片:

[例1]分解因式

(1)4x2-9

(2)(x+p)2-(x+q)

[例2]分解因式

(1)x4-y4

(2)a3b-ab

可放手让学生独立思考求解,然后师生共同讨论,纠正学生解题中可能发生的错误,并对各种错误进行评析.

[师生共析]

[例1](1)

(教师可以通过多媒体课件演示(1)中的2x,(2)中的x+p•相当于平方差公式中的a;(1)中的3,(2)中的x+q相当于平方差中的b,进而说明公式中的a与b•可以表示一个数,也可以表示一个单项式,甚至是多项式,渗透换元的思想方法)

[例2](1)x4-y4可以写成(x2)2-(y2)2的形式,这样就可以利用平方差公式进行因式分解了.但分解到(x2+y2)(x2-y2)后,部分学生会不继续分解因式,针对这种情况,可以回顾因式分解定义后,•让学生理解因式分解的要求是必须进行到多项式的每一个因式都不能再分解为止.

(2)不能直接利用平方差公式分解因式,但通过观察可以发现a3b-ab•有公因式ab,应先提出公因式,再进一步分解.

解:(1)x4-y4

=(x2+y2)(x2-y2)

=(x2+y2)(x+y)(x-y).

(2)a3b-ab=ab(a2-1)=ab(a+1)(a-1).

学生解题中可能发生如下错误:

(1)系数变形时计算错误;

(2)结果不化简;

(3)化简时去括号发生符号错误.

最后教师提出:

(1)多项式分解因式的结果要化简:

(2)在化简过程中要正确应用去括号法则,并注意合并同类项.

练一练:

(出示投影片)

把下列各式分解因式

(1)36(x+y)2-49(x-y)2

(2)(x-1)+b2(1-x)

(3)(x2+x+1)2-1(xy)2(xy)2(4)-.

Ⅲ.随堂练习

1.课本P196练习1、2.

Ⅳ.课时小结

1.如果多项式各项含有公因式,则第一步是提出这个公因式.

2.如果多项式各项没有公因式,则第一步考虑用公式分解因式.

3.第一步分解因式以后,所含的多项式还可以继续分解,•则需要进一步分解因式.直到每个多项式因式都不能分解为止.

§15.5.3.2 公式法

(二)教学目标

(一)教学知识点

用完全平方公式分解因式

(二)能力训练要求

1.理解完全平方公式的特点.

2.能较熟悉地运用完全平方公式分解因式.

3.会用提公因式、完全平方公式分解因式,•并能说出提公因式在这类因式分解中的作用.

4.能灵活应用提公因式法、公式法分解因式.

(三)情感与价值观要求

通过综合运用提公因式法,完全平方公式分解因式,进一步培养学生的观察和联想能力.通过知识结构图培养学生归纳总结的能力.

教学重点

用完全平方公式分解因式.

教学难点

灵活应用公式分解因式.

教学方法

探究与讲练相结合的方法.

教具准备

投影片.

教学过程

Ⅰ.提出问题,创设情境

问题1:根据学习用平方差公式分解因式的经验和方法,•分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?

问题2:把下列各式分解因式.

(1)a2+2ab+b2

(2)a2-2ab+b2

[生]将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.

[师]能不能用语言叙述呢?

[生]能.两个数的平方和,加上(或减去)这两数的积的2倍,•等于这两个数的和(或差)的平方.

问题2其实就是完全平方公式的符号表示.即:a2+2ab+b2=(a+b)2,a2-2ab+b2(a-b)2.

[师]今天我们就来研究用完全平方公式分解因式.

Ⅱ.导入新课

出示投影片

下列各式是不是完全平方式?

(1)a2-4a+4

(2)x2+4x+4y2

(3)4a2+2ab+12 b

4(4)a2-ab+b2

(5)x2-6x-9

(6)a2+a+0.25

(放手让学生讨论,达到熟悉公式结构特征的目的).

2222

结果:(1)a-4a+4=a-2×2·a+2=(a-2)

(3)4a2+2ab+12111b=(2a)2+2×2a·b+(b)2=(2a+b)2 422

2(6)a2+a+0.25=a2+2·a·0.5+0.52=(a+0.5)2

(2)、(4)、(5)都不是.

方法总结:分解因式的完全平方公式,左边是一个二次三项式,其中有两个数的平方和还有这两个数的积的2倍或这两个数的积的2倍的相反数,符合这些特征,就可以化成右边 的两数和(或差)的平方.从而达到因式分解的目的.

例题解析

出示投影片

[例1]分解因式:

(1)16x2+24x+9

(2)-x2+4xy-4y2

[例2]分解因式:

(1)3ax2+6axy+3ay(2)(a+b)2-12(a+b)+36

学生有前一节学习公式法的经验,可以让学生尝试独立完成,然后与同伴交流、总结解题经验.

[例1](1)分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3,所以16x2+14x+9是一个完全平方式,即

解:(1)16x2+24x+9

=(4x)2+2·4x·3+32

=(4x+3)2.

(2)分析:在(2)中两个平方项前有负号,所以应考虑添括号法则将负号提出,然后再考虑完全平方公式,因为4y2=(2y)2,4xy=2·x·2y.

所以:

解:-x+4xy-4y=-(x-4xy+4y)

=-[x2-2·x·2y+(2y)]2

=-(x-2y)2.

练一练:

出示投影片

把下列多项式分解因式:

(1)6a-a2-9;

(2)-8ab-16a2-b2;

(3)2a2-a3-a;

(4)4x2+20(x-x2)+25(1-x)2

Ⅲ.随堂练习

课本P198练习1、2.

Ⅳ.课时小结

学习因式分解内容后,你有什么收获,能将前后知识联系,做个总结吗?

(引导学生回顾本大节内容,梳理知识,培养学生的总结归纳能力,最后出示投影片,给出分解因式的知识框架图,使学生对这部分知识有一个清晰的了解)2

222

Ⅴ.课后作业

课本P198练习15.5─3、5、8、9、10题. 《三级训练》

板书设计

15.5.2 公式法

知识要点

1.把乘法公式反过来,就可以把某些多项式分解因式,这种分解因式的方法叫做运用公式法.常用公式有:

①两个数的平方差,等于这两个数的和与这两个数的差的积.即a2-b2=(a+b)(a-•b).

②两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.即a2±2ab+b2=(a±b)2.

2.分解因式时首先观察有无公因式可提,再考虑能否运用公式法.

典型例题

例.一个正方形的面积是(x+1)(x+2)(x+3)(x+4)+1,你知道这个正方形的边长是多少吗?(x>0)

分析:本题的实质是把多项式(x+1)(x+2)(x+3)(x+4)+1化成完全平方式的形式,可以运用分解因式的方法.

解:∵(x+1)(x+2)(x+3)(x+4)+1=[(x+1)(x+4)][(x+2)(x+3)]+1 =(x2+5x+4)(x2+5x+6)+1 =(x2+5x)2+10(x2+5x)+24+1 =(x2+5x+5)2 ∴这个正方形的边形是x2+5x+5.

练习题

第一课时

一、选择题:

1.下列代数式中能用平方差公式分解因式的是()

A.a2+b2 B.-a2-b2 C.a2-c2-2ac D.-4a2+b22.-4+0.09x2分解因式的结果是()

A.(0.3x+2)(0.3x-2)B.(2+0.3x)(2-0.3x)C.(0.03x+2)(0.03x-2)D.(2+0.03x)(2-0.03x)3.已知多项式x+81b4可以分解为(4a2+9b2)(2a+3b)(3b-2a),则x的值是()

A.16a4 B.-16a4 C.4a2 D.-4a24.分解因式2x2-32的结果是()A.2(x2-16)B.2(x+8)(x-8)C.2(x+4)(x-4)D.(2x+8(x-8)

二、填空题:

5.已知一个长方形的面积是a2-b2(a>b),其中长边为a+b,则短边长是_______. 6.代数式-9m2+4n2分解因式的结果是_________. 7.25a2-__________=(-5a+3b)(-5a-3b).

228.已知a+b=8,且a-b=48,则式子a-3b的值是__________.

三、解答题

9.把下列各式分解因式:

①a2-144b2 ②R2-r2 ③-x4+x2y2

10.把下列各式分解因式:

①3(a+b)2-27c2 ②16(x+y)2-25(x-y)2

③a2(a-b)+b2(b-a)④(5m2+3n2)2-(3m2+5n2)

2四、探究题

11.你能想办法把下列式子分解因式吗?

①3a2-

12b ②(a2-b2)+(3a-3b)3

答案: 1.D 2.A 3.B 4.C 5.a-b 6.(2n+3m)(2n-3m)7.9b2 8.4 9.①(a+12b)(a-12b);②(R+r)(R-r);③-x2(x+y)(x-y)10.①3(a+b+3c)(a+b-3c);②(9x-y)(9y-x);

③(a+b)(a-b)2;④16(m2+n2)(m+n)(m+n)11.① 1(3a+b)·(3a-b);②(a-b)(a+b+3)3第二课时

一、选择题

1.已知y2+my+16是完全平方式,则m的值是()A.8 B.4 C.±8 D.±4 2.下列多项式能用完全平方公式分解因式的是()

A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1 3.下列各式属于正确分解因式的是()

A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)24.把x4-2x2y2+y4分解因式,结果是()

A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

二、填空题

5.已知9x2-6xy+k是完全平方式,则k的值是________.

6.9a2+(________)+25b2=(3a-5b)27.-4x2+4xy+(_______)=-(_______).

8.已知a2+14a+49=25,则a的值是_________.

三、解答题

9.把下列各式分解因式:

①a2+10a+25 ②m2-12mn+36n2

③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2

10.已知x=-19,y=12,求代数式4x2+12xy+9y2的值.

11.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.

四、探究题

12.你知道数学中的整体思想吗?解题中,•若把注意力和着眼点放在问题的整体上,多方位思考、联想、探究,进行整体思考、整体变形,•从不同的方面确定解题策略,能使问题迅速获解.

你能用整体的思想方法把下列式子分解因式吗?

①(x+2y)2-2(x+2y)+1 ②(a+b)2-4(a+b-1)

答案: 1.C 2.D 3.B 4.D 5.y2 6.-30ab 7.-y2;2x-y 8.-2或-12 9.①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2

10.4 11.49 12.①(x+2y-1)2;②(a+b-2)2

下载初三 数学 一元二次方程解法练习题 配方法 公式法 分解因式法word格式文档
下载初三 数学 一元二次方程解法练习题 配方法 公式法 分解因式法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    一元二次方程解法——因式分解、配方法[本站推荐]

    一元二次方程解法——因式分解、配方法知识点回顾:定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理......

    用分解因式法解一元二次方程教学反思

    篇一:因式分解法解一元二次方程教学反思 因式分解法解一元二次方程教学反思 大布苏中学:杨慧敏 在学习了一元二次方程的四种基本解法后,由于在实际运用中十字相乘法解方程......

    运用公式法分解因式教案

    8.4.2 因式分解 81 2)36a²81= m² -9² =( m + 9)( m25b²=(6a)²-(5b)²=(6a+5b)(6a-5b) 2.填空: (1)4a2=( )2 (2)b2=( )2 (3)0.16a4=( )2 (4)1.21a2b2=( )2 (5)2x4=( )2(6)5x4y2=( )2 3、下列多项......

    一元二次方程解法——配方法 教学设计

    《解一元二次方程——配方法》 教学设计 漳州康桥学校陈金玉 一、教材分析 1、对于一元二次方程,配方法是解法中的通法,它的推导建立在直接开平方法的基础上,他又是公式法的基......

    解一元二次方程配方法练习题

    解一元二次方程配方法练习题1.用适当的数填空:①、x2=(2;②、x2-5x+=(x-)2;③、x22;④、x2-9x+=(x-)22.将二次三项式2x2-3x-5进行配方,其结果为_________.3.已知4x2-ax+1可变为(2x-b)2的形式,则ab......

    利用配方法法解一元二次方程导学案

    编号:07课型:新授课 主备:刘红迁 审稿:审核:班级:姓名:利用配方法法解一元二次方程学习目标:1、会用配方法解一元二次方程。2、能利用配方法证明代数式的值恒大于0。3、进一步培养学......

    一元二次方程的解法(配方法)教学设计

    一元二次方程的解法(配方法)教学设计 一、教材版本:义务教育课程标准实验教科书数学(华师大版)九年级上册第二十三章第二节 二、教材结构与内容分析: 本节内容是初中数学九年级上......

    《公式法解一元二次方程》教学反思

    《公式法解一元二次方程》教学反思在讲解过程中,我没让学生进行(1)(2)步就直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较......