2015届高考数学总复习第七章 推理与证明第3课时 数学归纳法课时训练

时间:2019-05-13 13:50:23下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2015届高考数学总复习第七章 推理与证明第3课时 数学归纳法课时训练》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2015届高考数学总复习第七章 推理与证明第3课时 数学归纳法课时训练》。

第一篇:2015届高考数学总复习第七章 推理与证明第3课时 数学归纳法课时训练

1117.设f(n)=+„+(n∈N*),那么f(n+1)-f(n)=________. 2nn+1n+

211答案: 2n+12n+2

解析:f(n+1)-f(n)

11111=(n+1)+1+(n+1)+2+„+2n+2n+1+2(n+1) 

111-n+1+n+2+„+2n 

11111=-.2n+12(n+1)n+12n+12n+2

-8.已知1+2×3+3×32+4×33+„+n×3n1=3n(na-b)+c对一切n∈N*都成立,则a、b、c的值为____________.

11答案:a=,b=c=2

4解析:∵ 等式对一切n∈N*均成立,∴ n=1,2,3时等式成立,1=3(a-b)+c,2即1+2×3=3(2a-b)+c,1+2×3+3×32=33(3a-b)+c,3a-3b+c=1,11整理得18a-9b+c=7,解得ab=c 2481a-27b+c=34,9.已知正项数列{an}中,a1=1,an+1=1+

*a(n∈N*).用数学归纳法证明:an

a3证明:当n=1时,a2=1+,a1

2ak+1ak+1时,ak0.则当n=k+1时,ak+2-ak+1=1+-ak+1=1-1+ak+11+ak+

1ak+1-ak1+a=1+ak(1+ak)(1+ak+1)>0,所以n=k+1时,不等式成立.综上所述,不等式

an

+-10.求证:an1+(a+1)2n1能被a2+a+1整除(其中n∈N*).

证明:① 当n=1时,a2+(a+1)1=a2+a+1能被a2+a+1整除,即当n=1时原命题成立.

+-+② 假设n=k(k∈N*)时,ak1+(a+1)2k1能被a2+a+1整除.则当n=k+1时,ak2

++-+--+(a+1)2k1=a·ak1+(a+1)2·(a+1)2k1=a·ak1+a·(a+1)2k1+(a2+a+1)·(a+1)2k1=

[ak+1+(a+1)2k-1]+(a2+a+1)(a+1)2k-1.由归纳假设及a2+a+1能被a2+a+1整除可a·

++知,ak2+(a+1)2k1也能被a2+a+1整除,即n=k+1命题也成立.

根据①和②可知,对于任意的n∈N*,原命题成立.

11.设数列{an}的前n项和Sn=2n-an,先计算数列的前4项,后猜想an并证明之.

3解:由a1=2-a1,得a1=1,由a1+a2=2×2-a2,得a2=.由a1+a2+a3=2×3-a3,2

n2-1715得a3=.由a1+a2+a3+a4=2×4-a4,得a4=.猜想an=-.482

下面用数学归纳法证明猜想正确:

2n-121-1① 当n=1时,左边a1=1,右边=--1,猜想成立. 22

k2-12k-1② 假设当n=k时,猜想成立,就是ak-Sk=2k-ak=2k--.则当n=22

1k+1时,由Sk+1=2(k+1)-ak+1,得Sk+1-ak+1=2(k+1)-2ak+1,∴ ak+1+1)-Sk]2

kk+12-12-11=k+12k--=(+)- 222

这就是说,当n=k+1时,等式也成立.

2n-1由①②可知,an=-n∈N*均成立. 2

12.已知△ABC的三边长为有理数,求证:

(1)cos A是有理数;

(2)对任意正整数n,cosnA是有理数.

AB2+AC2-BC2

证明:(1)由AB、BC、AC为有理数及余弦定理知cosA= 2AB·AC

(2)用数学归纳法证明cosnA和sinA·sinnA都是有理数.

① 当n=1时,由(1)知cosA是有理数,从而有sinA·sinA=1-cos2A也是有理数. ② 假设当n=k(k≥1)时,coskA和sinA·sinkA都是有理数.

当n=k+1时,由cos(k+1)A=cosA·coskA-sinA·sinkA,sinA·sin(k+1)A=sinA·(sinA·coskA+cosA·sinkA)=(sinA·sinA)·coskA+(sinA·sinkA)·cosA,由①及归纳假设,知cos(k+1)A与sin A·sin(k+1)A都是有理数.

即当n=k+1时,结论成立.

综合①②可知,对任意正整数n,cosnA是有理数.

第二篇:2015届高考数学总复习第七章 推理与证明第1课时 合情推理与演绎推理课时训练

n-mb答案: a解析:等差数列中bn和am可以类比等比数列中的bn和am,等差数列中bn-am可以类

n-m

bbn-ambn

比等比数列中的,等差数列中.an-max7.设函数f(x),观察: x+

2xxxf1(x)=f(x)f2(x)=f(f1(x))f3(x)=f(f2(x))x+23x+47x+8

xf4(x)=f(f3(x))15x+16

根据以上事实,由归纳推理可得:当n∈N+且n≥2时,fn(x)=f(fn-1(x))=________.

x答案:(2-1)x+2

解析:观察知四个等式等号右边的分母为x+2,3x+4,7x+8,15x+16,即(2-1)x

n+2,(4-1)x+4,(8-1)x+8,(16-1)x+16,所以归纳出fn(x)=f(fn-1(x))的分母为(2-1)x

x+2n,故当n∈N+且n≥2时,fn(x)=f(fn-1(x))(2-1)x+238.观察:① sin210°+cos240°+sin10°cos40°= sin26°+cos236°+sin 6°

43cos36°=4

由上面两题的结构规律,你能否提出一个猜想?并证明你的猜想.

3解:猜想:sin2α+cos2(α+30°)+sinαcos(α+30°).4

证明如下:

2左边=sinα+cos(α+30°)[cos(α+30°)+sinα]

=sin2α+α-1sinαα+1α 2222313=sin2α+22α= 444

所以,猜想是正确的.

9.在Rt△ABC中,两直角边的长分别为a、b,直角顶点C到斜边的距离为h,则易证11

1.在四面体S-ABC中,侧棱SA、SB、SC两两垂直,SA=a,SB=b,SC=c,hab点S到平面ABC的距离为h,类比上述结论,写出h与a、b、c之间的等式关系并证明.

1111解:类比得到:+.habc

证明:过S作△ABC所在平面的垂线,垂足为O,连结CO并延长交AB于D,连结SD,∵SO⊥平面ABC,∴SO⊥AB.∵SC⊥SA,SC⊥SB,∴SC⊥平面ABC,∴SC⊥AB,SC⊥SD,∴AB⊥平面SCD,∴ AB⊥SD.在Rt△ABS中,有

111111中,有=++.hSDcabc111,在Rt△CDSSDab 2210.老师布置了一道作业题“已知圆C的方程是x+y=r,求证:经过圆C上一点

2M(x0,y0)的切线方程为x0x+y0y=r”,聪明的小明很快就完成了,完成后觉得该题很有意

思,经过认真思考后大胆猜想出如下结论:若圆C的方程是(x-a)2+(y-b)2=r2,则经过圆

2C上一点M(x0,y0)的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r.你认为小明的猜想正确

吗?若正确,请给出证明;若不正确,请说明理由.

解:小明的猜想正确.

(证法1)若x0≠a,y0≠b,则因圆C的方程是(x-a)2+(y-b)2=r2,M(x0,y0)是圆C上

y0-b一点,所以直线MC的斜率为k1=,设过M(x0,y0)的切线斜率为k,因直线MC与切x0-a

x0-ax0-a1线l垂直,所以k=-=-所以过M(x0,y0)的切线l方程为y-y0(x-x0),k1y0-by0-b

22整理得(x0-a)(x-a)+(y0-b)(y-b)=(x0-a)+(y0-b).又点M(x0,y0)在圆C上,所以有(x0

222-a)+(y0-b)=r,故此时过M(x0,y0)的圆C的切线方程为(x0-a)(x-a)+(y0-b)(y-b)2=r.若x0=a或y0=b(同时成立不合题意),则切线的斜率不存在或为0,可直观看出:|y0-b|=r或|x0-a|=r,此时切线方程分别为y=y0或x=x0,适合(x0-a)(x-a)+(y0-b)(y-b)22=r.综上所述,过M(x0,y0)的圆C的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r.→→→(证法2)设P(x,y)为切线上任一点,则PM=(x0-x,y0-y),CM=(x0-a,y0-b).又PM

→→→⊥CM,∴ PM·CM=0,即(x0-x)(x0-a)+(y0-y)(y0-b)=0.又(x0-a)2+(y0-b)2=r2,化简得(x0-a)(x-a)+(y0-b)(y-b)=r2为所求切线.

11.某少数民族的刺绣有着悠久的历史,下图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮.现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;

1111(3)++„+的值. f(1)f(2)-1f(3)-1f(n)-1

解:(1)f(5)=41.(2)因为f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4,„,由上式规律,所以得出f(n+1)-f(n)=4n.因为f(n+1)-f(n)=4nf(n+

1)=f(n)+4nf(n)=f(n-1)+4(n-1)=f(n-2)+4(n-1)+4(n-2)=f(n-3)+4(n-1)+4(n-2)+4(n-3)=„=f(1)+4(n-1)+4(n-2)+4(n-3)+„+4=2n2-2n+1.11111,(3)当n≥2=

f(n)-12n(n-1)2n-1n

1111所以++„+ f(1)f(2)-1f(3)-1f(n)-111111111=1+(1-+-„+)222334n-1n

1131=1+1-=-2n22n

第三篇:高中数学高考总复习推理与证明

高考总复习推理与证明

一、选择题

0,1这三个整数中取值的数列,若a1a2a509,1.设a1,a2,,a50是从1,且(a11)2(a21)2(a501)2107,则a1,a2,,a0

5A.10B.11C.12D.13 中为0的个数为()

2.平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为()

A. n1B. 2n

2C

. nn1 3.某人进行了如下的“三段论”推理:如果f'(x0)0,则xx0是函数f(x)的极值

33点,因为函数f(x)x在x0处的导数值f'(0)0,所以x0是函数f(x)x的极值点。你认为以上推理的A.大前提错误B.小前提错误

C.推理形式错误D.结论正确

4.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=()

A.f(x)B.-f(x)C.g(x)D.-g(x)

5xN*),猜想f(x)的表达式为()

6.用反证法证明命题“三角形的内角中最多只有一个内角是钝角”时,应先假设()

A.没有一个内角是钝角B.有两个内角是钝角

C.有三个内角是钝角D.至少有两个内角是钝角

'''f(x)sinx,f(x)f(x),f(x)f(x),,f(x)f(x),nN,则01021n1n7.设

f200(7x)()

A.sinxB.sinxC.cosxD.cosx

8.已知整数对按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),„„,则第60个数对是()

A(10,2)B.(2,10)C.(5,7)D.(7,5)

9.设数列{an}的前n项和为Sn,Taa„„,称n为数列1,2,试卷第1页,总4页

an的“理想数”aaaa,已知数列1,2,„„,500的“理想数”为2004,那么数列2,1,a2,„„,a500的“理想数”为()

A、2008B、2004C、2002D、2000

10.对于任意的两个实数对(a,b)和(c,d),规定:(a,b)(c,d),当且仅当ac,bd;运算“”为:(a,b)(c,d)(acbd,bcad);运算“”为:(a,b)(c,d)(ac,bd),设p,qR,若(1,2)(p,q)(5,0),则(1,2)(p,q)„„„()A

.(4,0)B.(2,0)C.(0,2)D.(0,4)

二、填空题

11.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设是

照此规律,计算1223n(n1)

(nN).13.在平面几何里,已知直角三角形ABC中,角C为90,AC=b,BC=a,运用类比方法探求空间中三棱锥的有关结论:有三角形的勾股定理,给出空间中三棱锥的有关结论:________

*

若三角形ABC________

14.将全体正奇数排成一个三角形数阵: 1 3

57911 13151719 „„

按照以上排列的规律,第n 行(n ≥3)从左向右的第3个数为.

15.如图所示,从中间阴影算起,图1表示蜂巢有1层只有一个室,图2表示蜂巢有2层共有7个室,图3表示蜂巢有3层共有19个室,图4表示蜂巢有4层共有37个室.观察蜂巢的室的规律,指出蜂巢有n层时共有_______个室.试卷第2页,总4页

三、解答题

17.a,b,c

至少有一个大于0.18.已

知a,b,c中,求证:关于x的三个方程x4ax34a0,x2a1xa20,x24ax15a40中至少有一个方程有实数根.19.已知a,b,c

试卷第3页,总4页

20.已知a>0,b>0,且a+b=1,21.已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,„),a1=1.(1)设bn=an+1-2an(n=1,2,„),求证:数列{bn}是等比数列;(2)设cn

„),求证:数列{cn}是等差数列;

(3)求数列{an}的通项公式及前n项和公式.22.设数列

(1)猜想(2)设的前

项和为,且满足,.的通项公式,并加以证明;,且,证明:

.试卷第4页,总4页

参考答案

1.B2.C3.A4.D5.B6.D7.D8.C9.C10.B 11.三角形的内角都大于60度12

2222

13.在三棱锥O-ABC中,若三个侧面两两垂直,则SOABSOACSOBCSABC;在三棱

锥O-ABC中,若三个侧面两两垂直,且三条侧棱长分别为a,b,c,则其外接球的半径为

14.nn515.3n23n1 16.

首先,我们知道

则有,所以,同理,得

则有,.,17.证明略18.见解析19.证明见解析20.证明略 21.(1)证明略(2)证明略(3){an}的前n项和公式为Sn=(3n-4)·2n-1+2 22.(1)由

即∵∴

∴,得,即,两式作差得,是首项为1,公差为1的等差数列,∴,(2)要证只要证代入,即证

即证

∵,且∴

即得证

答案第1页,总1页

第四篇:2013版高考数学二轮复习专题训练 推理与证明

安徽财经大学附中2013版高考数学二轮复习专题训练:推理与证明

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.

第Ⅰ卷(选择题 共60分)

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1.用反证法证明命题“a,bN,如果ab可被5整除,那么a,b至少有1个能被5整除.则假设的内容是()

A.a,b都能被5整除 C.a不能被5整除【答案】B

2.设n为正整数,f(n)1

f(16)3,f(32)

21213...

1n

B.a,b都不能被5整除

D.a,b有1个不能被5整除

52,经计算得f(2),f(4)2,f(8),观察上述结果,可推测出一般结论()

A. f(2n)【答案】B

2n12

n

B.f(2)

n22

2C. f(n)

n22

D.以上都不对

3.用反证法证明命题“若a2b20,则a,b全为0”其反设正确的是()

A.a,b至少有一个不为0 C. a,b全不为0【答案】A

4.给出下面四个类比结论:

①实数a,b,若ab0则a0或b0;类比向量a,b,若ab0,则a0或b0 ②实数a,b,有(ab)a2abb;类比向量a,b,有(ab)a2abb

B. a,b至少有一个为0

D. a,b中只有一个为0

③向量a

a;类比复数z,有z

z

2222

④实数a,b有ab0,则ab0;类比复数z,z2有z1z20,则z1z20

其中类比结论正确的命题个数为()A.0 【答案】B

B.

1C.2

D.

35.若定义在正整数有序对集合上的二元函数f(x,y)满足:①f(x,x)x,②f(x,y)f(y,x)③

(xy)f(x,y)yf(x,xy),则f(12,16)的值是()

A.12 B. 16 C.24 D.48 【答案】D

6.用反证法证明命题:“若整数系数一元二次方程ax2bxc0(a0)有有理根,那么 a,b,c中至少有一个是偶数”时,应假设()

A.a,b,c中至多一个是偶数 C. a,b,c中全是奇数 【答案】C 7.由

710

5811,981025,13

921

B. a,b,c中至少一个是奇数

D. a,b,c中恰有一个偶数,„若a>b>0,m>0,则

bmam

ba

之间大小关系为()D.不确定

A.相等 B.前者大 C.后者大

【答案】B

8.下面几种推理过程是演绎推理的是()

A.两条直线平行,同旁内角互补,如果A和B是两条平行直线的同旁内角,则AB180. B.由平面三角形的性质,推测空间四面体性质.

C.某校高三共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人. D.在数列an中,a11,an【答案】A

9.在求证“数列2,3,,5 不可能为等比数列”时最好采用()

A.分析法

B.综合法

C.反证法

D.直接法

11

an1n2,由此归纳出an的通项公式. 2an1

【答案】C

10.下列哪个平面图形与空间的平行六面体作为类比对象比较合适()

A.三角形

C.平行四边形

B.梯形 D.矩形

【答案】C

11.给出下列四个推导过程:

①∵a,b∈R+,∴(b/a)+(a/b)≥2②∵x,y∈R+,∴lgx+lgy≥2

;

=2;

③∵a∈R,a≠0, ∴(4/a)+a≥2 ④∵x,y∈R,xy<0,=4;

∴(x/y)+(y/x)=-[(-(x/y))+(-(y/x))]≤-2其中正确的是()A.①② 【答案】D

B.②③

C.③④

D.①④

=-2.12.在证明命题“对于任意角,cos4sin4cos2”的过程:

“cos4sin4(cos2sin2)(cos2sin2)cos2sin2cos2”中应用了()A.分析法

B.综合法 D.间接证法

C.分析法和综合法综合使用 【答案】B

第Ⅱ卷(非选择题 共90分)

二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.观察下列式子:1

2

32,1+

3

54,1

,由此可归纳出的一般结

论是.

【答案】

14.三段论推理的规则为____________ ①如果pq,p真,则q真;②如果bc,ab则ac;③如果a//b,b//c, 则a//c④如果ab,bc,则ac 【答案】②

a2b2ab

15.若a、b是正常数,a≠b,x、y∈(0,+∞)=xyxy49

1论,可以得到函数f(x)=x∈0,的最小值为____________.

x1-2x2【答案】3

516.同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第23个图案中需用黑色瓷砖

.【答案】100

三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.如图,已知PA矩形ABCD所在平面,M,N分别是AB,PC的中点. 求证:(1)MN∥平面PAD;(2)MNCD.

【答案】(1)取PD的中点E,连结AE,NE. 分别为PC,PD的中点. ∴EN为△PCD的中位线,∵N,E

∥∴EN

CD,AM

AB,而ABCD为矩形,∴CD∥AB∴EN∥AM∴AENM,且CDAB.,且ENAM.

为平行四边形,MN∥AE,而MN平面PAC,AE平面PAD,∴MN∥平面PAD∴CDPA

(2)∵PA矩形ABCD所在平面,而CDAD,PA与AD是平面PAD内的两条直交直线,∴CD平面PAD,而AE平面PAD,.

又∵MN∥AE,∴MNCD.

∴AECD

18.若x,y都是正实数,且xy2, 求证:

1xy

1xy

2

1yx

2中至少有一个成立.【答案】假设

2

1yx

2都不成立,则有

1xy

2和

1yx

2同时成立,因为x0且y0,所以1x2y且1y2x 两式相加,得2xy2x2y.所以xy2,这与已知条件xy2矛盾.因此

1xy

2

1yx

2中至少有一个成立.19.有一种密英文的明文(真实文)按字母分解,其中英文的a,b,c,„,z的26个字母(不分大小写),依次对应1,2,3,„,26这26个自然数,见如下表格

:

给出如下变换公式:

x1

(xN,1x26,x不能被2整除)2'

X

x13(xN,1x26,x能被2整除)2

85+1

将明文转换成密文,如8→+13=17,即h变成q;如5→=3,即e变成c.22①按上述规定,将明文good译成的密文是什么?

②按上述规定,若将某明文译成的密文是shxc,那么原来的明文是什么? 【答案】①g→7→

7+115+1

=4→d;o→15→=8→h;d→o;22

则明文good的密文为dhho ②逆变换公式为

'''

2x1(xN,1x13)

x

'''

2x26(xN,14x26)

则有s→19→2×19-26=12→l;h→8→2×8-1=15→o; x→24→2×24-26=22→v;c→3→2×3-1=5→e 故密文shxc的明文为love

20.已知a是整数,a2是偶数,求证:a也是偶数. 【答案】(反证法)假设a不是偶数,即a是奇数.

设a2n1(nZ),则a24n24n1.

∵4(nn)是偶数,22

∴4n4n1是奇数,这与已知a是偶数矛盾.

由上述矛盾可知,a一定是偶数.

abc).

【答案】因为a2b2≥2ab,所以2(a2b2)≥a2b22ab(此处省略了大前提),b≥2,ab)(两次省略了大前提,小前提)

同理,bc)2

ca),abc).

(省略了大前提,小前提)

n

22.设 f(x)=x+a.记f(x)=f(x),f(x)=f(f

n-1

(x)),n=1,2,3,„,1n

M={a∈R|对所有正整数n,|f(0)|≤2}.证明,M=[-2,].

4【答案】⑴ 如果a<-2,则|f(0)|=|a|>2,a∈/M.

11nn-12

⑵ 如果-2≤a≤f(0)=a,f(0)=(f(0))+a,n=2,3,„„.则

411n

① 当0≤a≤|f(0)|≤,(n≥1).42

事实上,当n=1时,|f(0)|=|a|≤,设n=k-1时成立(k≥2为某整数),21112

则对n=k,|fk(0)|≤|fk-1(0)|+a≤(2+.

242

② 当-2≤a<0时,|f(0)|≤|a|,(n≥1).

事实上,当n=1时,|f1(0)|≤|a|,设n=k-1时成立(k≥2为某整数),则对n=k,有

n

-|a|=a≤(fk-1(0))+a≤a2+a

注意到当-2≤a<0时,总有a2≤-2a,即a2+a≤-a=|a|.从而有|fk(0)|≤|a|.由归纳法,推出[-2,1

M. 4

⑶ 当a>时,记an=fn(0),21n+1n

则对于任意n≥1,an>aan+1=f(0)=f(f(0))=f(an)=an+a.

21111

对于任意n≥1,an+1-an=an-an+a=(an)2+a-a-.则an+1-an≥a-.

2444

12-a1

所以,an+1-a=an+1-a1≥n(a).当n>时,an+1>n(a-)+a>2-a+a=2,414

a-

即fn+1(0)>2.因此a∈/M.综合⑴,⑵,⑶,我们有M=[-2,4

第五篇:推理与证明总复习

推理与证明总复习

编写人:杨素华审核:高二数学组(1)

一、知识结构框图

二、考纲分解解读

1合情推理与演绎推理

(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.

(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.(3)了解合情推理和演绎推理之间的联系和差异.

2直接证明与间接证明

(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.

(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点. 3数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.三、基础知识

(一)合情推理与演绎推理

1推理的概念

根据一个或几个已知事实(或假设)得出一个判断,这种___________叫做推理.从结构上说,推理一般由两部分组成,一部分是已知的事实(或假设)叫做___________,一部分是由已知推出的判断,叫做___________.

2合情推理

根据已有的事实,经过___________、___________、___________、___________,再进行___________、___________,然后提出___________的推理称为合情推理.合情推理又具体分为归纳推理和类比推理两类.

(1)归纳推理:由某类事物的___________对象具有某些特征,推出该类事物的___________对象具有这些特征的推理;或者由___________事实概括出___________的推理称为归纳推

1理.简言之,归纳推理是由部分到___________,由___________到___________的推理,归纳推理简称归纳.(2)类比推理:由两类对象具有___________和其中一类对象的某些___________,推出另一类对象也具有这些特征的推理,称为类比推理.简言之,类比推理是由___________到___________的推理,类比推理简称类比.

3演绎推理

(1)从___________出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由___________到___________的推理.

(2)三段论是演绎推理的一般模式,它包括:①大前提——________________;②小前提——________________;③结论——________________________________.(二)直接证明与间接证明

1.直接证明

(1)综合法:从题设的____________出发,运用一系列有关_______________作为推理的依据,逐步推演而得到要证明的结论,这种证明方法叫做综合法.综合法的推理方向是由____________到____________,表现为____________,综合法的解题步骤用符号表示是:_____________________.

特点:“由因导果”,因此综合法又叫____________法.

(2)分析法:分析法的推理方向是由____________到____________,论证中步步寻求使其成立的____________,如此逐步归结到已知的条件和已经成立的事实,从而使命题得证,表现为____________,分析法的证题步骤用符号表示为_____________________________.特点:“执果索因”,因此分析法又叫____________法或____________法.

2.间接证明

假设原命题的结论不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立.这样的证明方法叫反证法.反证法是一种间接证明的方法.

(1)反证法的解题步骤:____________——推演过程中引出矛盾——____________.

(2)反证法的理论依据是:原命题为真,则它的____________为真,在直接证明有困难时,就可以转化为证明它的____________成立.

(3)反证法证明一个命题常采用以下步骤:

①假定命题的结论不成立.

②进行推理,在推理中出现下列情况之一:与已知条件矛盾;与公理或定理矛盾. ③由于上述矛盾的出现,可以断言,原来的假定“结论不成立”是错误的.

④肯定原来命题的结论是正确的.

即“反设——归谬——结论”.

(4)一般情况下,有如下几种情况的求证题目常常采用反证法:

第一,问题共有n种情况,现要证明其中的一种情况成立时,可以想到用反证法把其它的 n-1种情况都排除,从而肯定这种情况成立;

第二,命题是以否定命题的形式叙述的;

第三,命题用“至少”、“至多”的字样叙述的;

第四,当命题成立非常明显,而要直接证明所用的理论太少,且不容易说明,而其逆命题又是非常容易证明的.(三)数学归纳法

1.数学归纳法

对于某些与正整数n有关的命题常常采用下面的方法来证明它的正确性:先证明当n取第一个值n0时命题成立;然后假设当n=k(k∈N*,k≥n0)时命题成立,证明当________时命

题也成立,这种证明方法就叫做________.

2.用数学归纳法证明一个与正整数(或自然数)有关的命题的步骤

(1)(归纳奠基)当n取第一个值________________________时,证明命题成立;

(2)(归纳递推)假设当_______________________时结论正确,证明当________时结论也正确. 由(1),(2)可知,命题对于从n0开始的所有正整数n都正确.

3.特点注意

用数学归纳法来证明与正整数有关的命题时,要注意:________不可少,________要用到,________莫忘掉.

四、题型归纳

(一)归纳推理

例1平面内的1条直线把平面分成2部分,2条相交直线把平面分成4部分,3条相交但不共点的直线把平面分成7部分,则n条彼此相交而无三条共点的直线,可把平面分成多少部分?

分析:可通过画图当直线条数n为3,4,5时,分别计算出它们将平面分成的区域数Sn,从中发现规律,再归纳出结论.

解析:设平面被n条直线分成Sn部分,则

当n=1时,S1 =1+1=2;

当n=2时,S2 =1+1+2=4;

当n=3时,S3 =1+1+2+3=7;

当n=4时,S4 =1+1+2+3+4=11.

据此猜想,得Sn=1+ n(n1)

2nn222=.

点评:本题是由部分到整体的推理,先把部分的情况都写出来,然后寻找规律,概括出整体的情况.

(二)类比推理

例2(2009年微山模拟)在平面几何中,对于Rt△ABC,设AB=c,AC=b,BC=a,则

(1)a2+b2=c2;

22(2)cos2A+cos2B=1; ab

(3)Rt△ABC的外接圆半径为r=

2.

把上面的结论类比到空间写出相类似的结论.分析:我们在空间中选取3个面两两垂直的四面体作为直角三角形的类比对象,考虑面积,二面角,及外接球的半径即可得.解析:(1)设3个两两垂直的侧面的面积

分别为S1,S2,S3,底面面积为S,则

S12+S22+S32=S2.

(2)设3个两两垂直的侧面与底面所成的角

分别为α,β,γ,则

cosα+cosβ+cosγ=1.

(3)设3个两两垂直的侧面形成的侧棱长分

别为a,b,c,则这个四面体的外接球的半径

为R=a2222b

32c2.

(三)演绎推理

演绎推理是证明数学问题的基本推理形式,因此在高考中经常出现,三段论推理是演绎推理的一种重要的推理形式,是由一般到特殊的推理,在前提真实并且推理形式正确的前提下,其结论就必然真实.2例3证明:函数f(x)=-x+2x在[1,+∞)上是减函数.(四)用综合法证明数学命题

例4已知PA⊥⊙O所在的平面,AB是⊙O的直径,C是圆周上不同于A,B的任一点,过A点作AE⊥PC于点E,如右图所示.求证:AE⊥平面PBC.(五)用分析法证明数学命题

例5若a>0,求证: a212a

(六)用反证法证明数学命题

例6已知:a3+b3=2,求证:a+b≤2.分析:本题直接证明命题较困难,宜用反证法.

证明:假设a+b>2,则b>2-a.

于是a+b>a+(2-a)=8-12a+6a

=6(a-1)2+2≥2.与已知相矛盾,所以 a+b≤2.(七)数学归纳法

ⅰ归纳、猜想、证明

例7在各项为正的数列{an}中,数列的前n项和Sn满足

(1)求a1,a2,a3.ⅱ用数学归纳法证明恒等式11an.Sn= 2 a  n333322a1a2.(2)由(1)猜想数列{an}的通项公式,并且用数学归纳法证明你的猜想.

22例8用数学归纳法证明:n(n1)2n(n1)(3n1  223 12

211n10)

ⅲ用数学归纳法证明整除问题

例9用数学归纳法证明:对于任意自然数n,数11n+2+122n+1是133的倍数.

ⅳ用数学归纳法证明不等式问题

例10设函数f(x)xxlnx.数列an满足0a11,an1f(an).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;

(Ⅱ)证明:anan11;

1),整数k≥(Ⅲ)设b(a1,a1ba1lnb.证明:ak1b.

解:

(I)当0

f′(x)=1-lnx-1=-lnx>0

所以函数f(x)在区间(0,1)是增函数,(II)当0x

又由(I)有f(x)在x=1处连续知,当0

因此,当0

下面用数学归纳法证明: 0

(i)由0

则由①可得0

故当n=k+1时,不等式②也成立

综合(i)(ii)证得:an

(III)由(II)知,{an}逐项递增,故若存在正整数m≤k,使得am≥b,则ak+1>am≥b 否则,若am

ak+1=ak-aklnak

=ak-1-ak-1lnak-1-aklnak

……

k

=a1-amlnam

m1

k

由③知amlnam

m1

于是ak+1>a1+k|a1lnb|

≥a1+(b-a1)=b

下载2015届高考数学总复习第七章 推理与证明第3课时 数学归纳法课时训练word格式文档
下载2015届高考数学总复习第七章 推理与证明第3课时 数学归纳法课时训练.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高考数学推理与证明

    高考数学推理与证明1.(08江苏10)将全体正整数排成一个三角形数阵:2 34 5 67 8 9 10。 。 。 。 。按照以上排列的规律,第n行(n3)从左向右的第3个数为▲. n2n6【答案】 2【解析】本......

    2014高考数学模块跟踪训练:推理与证明1

    2014高考数学模块跟踪训练一、选择题1.如下图为一串白黑相间排列的珠子,按这种规律往下排起来,那么第36颗珠子A.是白色的B.是黑色的C.是白色的可能性大D.是黑色的可能性大A2.由直线与圆相......

    (全国通用)2014届高考数学总复习(考点引领+技巧点拨)第七章 推理与证明第2课时 直接证明与间接证明

    《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)第七章 推理与证明第2课时 直接证明与间接证明1. 已知向量m=(1,1)与向量n=(x,2-2x)垂直,则x=________.答案:2解析:m......

    高二文科数学合情推理与证明训练

    高二文科数学选修1-2《推理与证明》训练1. 下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是......

    2014高考数学复习选修2--3推理与证明(理科版)(3.21)

    2014高考数学复习选修2-3推理与证明专题讲义(理科班)知识点:1、归纳推理把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳). 简言之,归纳推理是由部分到整体、......

    高二文科数学期末复习---推理与证明

    2008年高二文科数学期末复习教学案高二文科数学期末复习---推理与证明一.1.二.1. 观察下列数:1,3,2,6,5,15,14,x,y,z,122,„中x,y,z的值依次是 (A)42,41,123;(B) 13,39,12......

    2014高考数学考前20天冲刺 推理与证明

    2014高考数学考前20天冲刺 推理与证明1.古希腊毕达哥拉斯学派的数学家研究过各种多边形数.如三角形数1, n(n+1)113,6,10,…,第n个三角形数为+n.记第n个k边形数为N(n,k)(k≥3),222 以下列......

    2013高考历史人教版总复习:第二单元 第7课 课时跟踪训练

    [课时跟踪训练] (时间:25分钟 满分:50分) 一、选择题(每小题4分,共32分) 1.《共产党宣言》中写道:“市场总是在扩大,需求总是在增加,工场手工业再也不能满足这种需求了,于是蒸汽和机......