第一篇:2015考研数学概率重点在哪里?
2015考研数学概率重点在哪里?
概率论与数理统计虽然占据的分值不是特别大,但是因其公式、概念的复杂,也着实难为了不少同学,下面,在复习中很多同学都抱有疑问,太奇考研成都分校老师就针对学院问的最多的问题为大家作出解答,希望能帮助考生顺利通过考研秋季复习。
这个可以看作我们概率一个基础,我不知道这个网友是考数学几,随机变量分布这是一大块内容,基本每都年考一点,还有一个就是数理特征和数理统计基本考一个大题,概率和第一古典概率,一个概率的公式的推算,我们涉及到一维的也可以是二维的,我们讨论概率统计里的问题,比如分布函数问题,三个途径,布函数基础是求概率,这里面重点的是二两者,稍微难一点古典概率的题,同学没有过多关心,种思路以后,另外稍微应我们可以通过随机事件引进随机变量,反过来也可以,讨论随机事件之间关系问题也可以借用随机
第二篇:考研数学概率复习重点归纳(精)
考研数学概率复习重点归纳
考研数学的概率部分也是考查的重点所在,下面万学海文的数学考研辅导专家将概率中的复习重点逐一归纳如下,以方便2011年的考生对照复习。
一、随机事件与概率 重点难点: 重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式
难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算
常考题型:(1事件关系与概率的性质(2古典概型与几何概型(3乘法公式和条件概率公式(4全概率公式和Bayes公式(5事件的独立性(6贝努利概型
二、随机变量及其分布 重点难点
重点:离散型随机变量概率分布及其性质,连续型随机变量概率密度及其性质,随机变量分布函数及其性质,常见分布,随机变量函数的分布
难点:不同类型的随机变量用适当的概率方式的描述,随机变量函数的分布常考题型
(1分布函数的概念及其性质(2求随机变量的分布律、分布函数(3利用常见分布计算概率(4常见分布的逆问题(5随机变量函数的分布
三、多维随机变量及其分布 重点难点
重点:二维随机变量联合分布及其性质,二维随机变量联合分布函数及其性质,二维随机变量的边缘分布和条件分布,随机变量的独立性,个随机变量的简单函数的分布
难点:多维随机变量的描述方法、两个随机变量函数的分布的求解 常考题型
(1二维离散型随机变量的联合分布、边缘分布和条件分布(2二维离散型随机变量的联合分布、边缘分布和条件分布(3二维随机变量函数的分布(4二维随机变量取值的概率计算(5随机变量的独立性
四、随机变量的数字特征
重点难点
重点:随机变量的数学期望、方差的概念与性质,随机变量矩、协方差和相关系数
难点:各种数字特征的概念及算法 常考题型
(1数学期望与方差的计算(2一维随机变量函数的期望与方差(3二维随机变量函数的期望与方差(4协方差与相关系数的计算(5随机变量的独立性与不相关性
五、大数定律和中心极限定理 重点难点
重点:中心极限定理
难点:切比雪夫不等式、依概率收敛的概念。常考题型(1大数定理(2中心极限定理
(3切比雪夫(Chebyshev不等式
六、数理统计的基本概念
重点难点
重点:样本函数与统计量,样本分布函数和样本矩 难点:抽样分布 常考题型
(1正态总体的抽样分布(2求统计量的数字特征(3求统计量的分布或取值的概率
七、参数估计 重点难点
重点:矩估计法、最大似然估计法、置信区间及单侧置信区间 难点:估计量的评价标准 常考题型
(1求参数的矩估计和最大似然估计(2估计量的评价标准(数学一(3正态总体参数的区间估计(数学一
八、假设检验(数学一 重点难点
重点:单个正态总体的均值和方差的假设检验难点:假设检验的原理及方法 常考题型
(1单正态总体均值的假设检验
第三篇:考研概率
第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式P(A)1P(A)。
第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,kk及其概率计算公式PzkCnP(1P)nk
第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组。
第四句话:若题设中给出随机变量X ~ N(,2)则马上联想到标准化
问题。
第五句话:求二维随机变量(X,Y)的边缘分布密度fX(x),fY(y)的问题,应该马上联想到先画出使联合分布密度f(x,y)0的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而X~ N(0,1)来处理有关
y2(x)f(x,y)dy,fX(x)y1(x)
0,axb其它fY(y)的求法类似。
第六句话:欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分f(x,y)dxdy的计算,其积分域D是由联合密度f(x,y)0的平面区域及满足Y≥g(X)
D
或(Y≤g(X))的区域的公共部分。
第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1),第i次不发生,0 XX1X2Xm 分解。即令Xi1 ,第i次发生。
第八句话:凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。
第九句话:若X1,X2,,Xn为总体X的一组简单随机样本,则凡是涉及到统计量g(x1,x2,,xn)的分布问题,一般联想到用2分布,t分布和F分布的定义进行讨论。
第四篇:概率口诀【考研】
第一章 随机事件
互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心; 必然事件随便用,选择先试不可能。
第二、三章 一维、二维随机变量
1)离散问模型,分布列表清,边缘用加乘,条件概率定联合,独立试矩阵 2)连续必分段,草图仔细看,积分是关键,密度微分算 3)离散先列表,连续后求导;分布要分段,积分画图算
第五、六章 数理统计、参数估计 正态方和卡方出,卡方相除变F,若想得到t分布,一正n卡再相除。
样本总体相互换,矩法估计很方便; 似然函数分开算,对数求导得零蛋;
区间估计有点难,样本函数选在前; 分位维数惹人嫌,导出置信U方甜。
第七章 假设检验
检验均值用U-T,分位对称别大意; 方差检验有卡方,左窄右宽不稀奇; 不论卡方或U-T,维数减一要牢记; 代入比较临界值,拒绝必在否定域!考研加油站 http://www.xiexiebang.com/
第五篇:概率复习重点
概率复习重点
一、全概率公式和贝叶斯公式二、一维连续型随机变量给定概率密度求其中的未知参数,求分布函数和落在某区间内的概率三、二维连续型随机变量给定概率密度求其中的未知参数,求边缘概率密度,求条件概率密度,判断独立性以及落在某区域内的概率四、一维随机变量的函数的分布(单调时用公式计算)
五、二维离散型随机变量的相关系数
六、点估计中的最大似然估计法
七、单个正态总体均值的双边假设检验(t检验和z检验)
八、抽样分布的构造
九、等可能概型的计算,事件概率的性质特点.独立的定义和性质,独立不相关之间的关系,期望和方差的定义和性质,第一类第二类错误,三个重要离散型随机变量和三个重要连续型随机变量的相关内容包括期望方差,单个正态总体均值的区间估计,样本均值样本方差的性质特点,统计学中三个重要抽样分布的构造,切比雪夫不等式作估计,估计量的评选标准(无偏性,有效性),