第一篇:八年级下册拓展资源——勾股定理与第一次数学危机
八年级下册拓展资源——勾股定理与第一次数学危机
在国外,最早给出这一定理证明的是古希腊的毕达哥拉斯。毕达哥拉斯是公元前五世纪古希腊的著名数学家与哲学家。他曾创立了一个合政治、学术、宗教三位一体的神秘主义派别:毕达哥拉斯学派。由毕达哥拉斯提出的著名命题“万物皆数”是该学派的哲学基石。而“一切数均可表成整数或整数之比”则是这一学派的数学信仰。然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。希帕索斯的发现导致了数学史上第一个无理数的诞生。小小的出现,却在当时的数学界掀起了一场巨大风暴。它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。对于当时所有古希腊人的观念这都是一个极大的冲击。这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被小小的√2的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。更糟糕的是,面对这一荒谬人们竟然毫无办法。这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的**,史称“第一次数学危机”。
二百年后,大约在公元前370年,才华横溢的欧多克索斯建立起一套完整的比例论。他本人的著作已失传,他的成果被保存在欧几里德《几何原本》一书第五篇中。欧多克索斯的巧妙方法可以避开无理数这一“逻辑上的丑闻”,并保留住与之相关的一些结论,从而解决了由无理数出现而引起的数学危机。但欧多克索斯的解决方式,是借助几何方法,通过避免直接出现无理数而实现的。这就生硬地把数和量肢解开来。在这种解决方案下,对无理数的使用只有在几何中是允许的,合法的,在代数中就是非法的,不合逻辑的。或者说无理数只被当作是附在几何量上的单纯符号,而不被当作真正的数。一直到18世纪,当数学家证明了基本常数如圆周率是无理数时,拥护无理数存在的人才多起来。到十九世纪下半叶,现在意义上的实数理论建立起来后,无理数本质被彻底搞清,无理数在数学园地中才真正扎下了根。无理数在数学中合法地位的确立,一方面使人类对数的认识从有理数拓展到实数,另一方面也真正彻底、圆满地解决了第一次数学危机。
第二篇:八年级数学-勾股定理的证明及拓展
八年级数学
勾股定理的证明及其延伸
1.说明
勾股定理是数学中一个重要知识。虽然在教材章节内容中所占篇幅不多,在考试中也往往不会作为一个独立知识点进行命题,但其实其内容及方法常常包含在其他各类题目中,是问题解答过程中一个很重要的手段。所以学生对勾股定理要能够十分熟练地进行使用。本文对勾股定理进行证明及拓展,以使学生对其进行深刻理解。
2.勾股定理的证明
命题:在直角三角形中,a、b为直角边长,c为斜边边长,则有abc。勾股定理一个最简单的证明方法是使用图形证明法。如下图,我们使用4个同样大小的红色直角三角形(a、b为直角边长,c为斜边边长)拼出2个图形: 22
2图1和图2这两个蓝色正方形的面积是相等的(它们的边长都是a+b),而4个红色直角三角形的面积也是相等的,所以2个图形中白色部分的面积也应该相等(都等于蓝色正方
形面积减去4个红色三角形的面积)。而左边图形中白色部分的面积是ab,右边图形中白色部分的面积是c,所以abc。
222222
3.圆与三角形
在讨论勾股定理的延伸之前,我们先来看圆与三角形的关系。
如图3,以BC为直径做圆,圆心为BC的中点O。在圆上任取一点A,则三角形ABC为直角三角形,其中∠A=90°。
如图4,同样做圆。如果A点在圆外,则∠A为锐角。可以这样来证明:连接AO,和圆交与点D。容易得到∠BAC<∠BDC,而∠BDC=90°,故∠A<90°。
如图5,同样做圆。如果A点在圆内,则∠A为钝角。可以这样来证明:连接OA,并延长和圆交与点D。容易得到∠BAC>∠BDC,而∠BDC=90°,故∠A>90°。
综合起来,我们可以得到如下命题:
命题:在三角形ABC中,以BC为直径、BC的中心点为圆心做圆,如果A在圆上,则∠A=90°;如果A在圆外,则∠A<90°;如果A在圆内,则∠A>90°。
注意,这个命题的逆命题也是成立的,即:
命题:在三角形ABC中,以BC为直径、BC的中心点为圆心做圆,如果∠A=90°,则A在圆上;如果∠A<90°,则A在圆外;如果∠A>90°,则A在圆内。
这个逆命题可以利用上面几副图用反证法很容易证得。
4.勾股定理的延伸
现在,我们对勾股定理进行延伸,如下:
命题:在三角形中,a、b、c为其3条边长,其中c为最长边(c≥a、c≥b),如果三角形为直角三角形,则abc;如果三角形为锐角三角形,则abc;如果三角形为钝角三角形,则abc。
请注意上面“c为最长边(c≥a、c≥b)”的条件限定。如果c不是最长边,那么必然是abc,这就不存在任何讨论的必要了。
下面我们来证明这一命题。对于直角三角形的情况,那就是勾股定理,前面我们已经证明了。现在只要证明锐角和钝角三角形的情况。
见下图,仍然如上一节那样,去最长边c为直径做圆(设这条边为BC),那么直径所对应的∠A也会是三角形ABC中最大的角(大角对大边)。
222222222222从上节的讨论中,如果是锐角三角形,A必然在圆外,如图6所示。从A点做直径BC的垂线,交圆于D点。显然AB>BD、AC>DC,而BDDCBC,所以222AB2AC2BC2。
如果是钝角三角形,A必然在圆内,如图7所示。从A点做直径BC的垂线,反向延长交圆于D点。显然AB 命题:在三角形中,a、b、c为其3条边长,其中c为最长边(c≥a、c≥b),如果222222a2b2c2,则三角形为直角三角形;如果a2b2c2,则三角形为锐角三角形;如果 a2b2c2,则三角形为钝角三角形。 5.勾股定理的增强描述 综合以上的讨论,我们可以对勾股定理进行增强型的表述,如下: 在三角形中,a、b、c为其3条边长,其中c为最长边(c≥a、c≥b),则三角形为直角三角形的充分必要条件是abc;三角形为锐角三角形的充分必要条件是222 a2b2c2;三角形为钝角三角形的充分必要条件是a2b2c2。 第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理(1) 了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算. 重点 勾股定理的内容和证明及简单应用. 难点 勾股定理的证明. 一、创设情境,引入新课 让学生画一个直角边分别为3 cm和4 cm的直角△ABC,用刻度尺量出斜边的长. 再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长. 你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗? 由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么? 拼图实验,探求新知 1.多媒体课件演示教材第22~23页图17.1-2和图17.1-3,引导学生观察思考. 2.组织学生小组合作学习. 问题:每组的三个正方形之间有什么关系?试说一说你的想法. 引导学生用拼图法初步体验结论. 生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和. 师:这只是猜想,一个数学命题的成立,还要经过我们的证明. 归纳验证,得出定理 (1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的. ①用多媒体课件演示. ②小组合作探究: a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗? b.它们的面积分别怎样表示?它们有什么关系? c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法? 师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理. 即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦. 二、例题讲解 【例1】填空题. (1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________; (2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________; (3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________; (4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________; (5)已知等边三角形的边长为2 cm,则它的高为________cm,面积为________cm2.【答案】(1)17(2)(3)6 8(4)6,8,10(5) 【例2】已知直角三角形的两边长分别为5和12,求第三边. 分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想. 【答案】或13 三、巩固练习 填空题. 在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________; (2)如果∠A=30°,a=4,则b=________; (3)如果∠A=45°,a=3,则c=________; (4)如果c=10,a-b=2,则b=________; (5)如果a,b,c是连续整数,则a+b+c=________; (6)如果b=8,a∶c=3∶5,则c=________. 【答案】(1)24(2)4(3)3(4)6(5)12 (6)10 四、课堂小结 1.本节课学到了什么数学知识? 2.你了解了勾股定理的发现和验证方法了吗? 3.你还有什么困惑? 本节课的设计关注学生是否积极参与探索勾股定理的活动,关注学生能否在活动中积极思考、能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理地表达活动过程和所获得的结论等.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理. 第2课时 勾股定理(2) 能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题. 重点 将实际问题转化为直角三角形模型. 难点 如何用解直角三角形的知识和勾股定理来解决实际问题. 一、复习导入 问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子? 师生行为: 学生分小组讨论,建立直角三角形的数学模型. 教师深入到小组活动中,倾听学生的想法. 生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子. 师:很好! 由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长. 问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么? 学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径. 生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过. 生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过. 师生共析: 解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=≈2.236.因为AC>木板的宽,所以木板可以从门框内通过. 二、例题讲解 【例1】如图,山坡上两棵树之间的坡面距离是4米,则这两棵树之间的垂直距离是________米,水平距离是________米. 分析:由∠CAB=30°易知垂直距离为2米,水平距离是6米. 【答案】2 6 【例2】教材第25页例2 三、巩固练习 1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________. 【答案】50米 2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度. 【答案】约480 m 四、课堂小结 1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形. 2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答. 这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角三角形的数学模型的过程,激发了学生的学习兴趣,锻炼了学生独立思考的能力. 第3课时 勾股定理(3) 1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等. 2.利用勾股定理,能在数轴上找到表示无理数的点. 3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题. 重点 在数轴上寻找表示,,…这样的表示无理数的点. 难点 利用勾股定理寻找直角三角形中长度为无理数的线段. 一、复习导入 复习勾股定理的内容. 本节课探究勾股定理的综合应用. 师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗? 学生思考并独立完成,教师巡视指导,并总结. 先画出图形,再写出已知、求证如下: 已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC=,B′C′=.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC≌△A′B′C′(SSS). 师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出所对应的点吗? 教师可指导学生寻找像长度为,,…这样的包含在直角三角形中的线段. 师:由于要在数轴上表示点到原点的距离为,,…,所以只需画出长为,,…的线段即可,我们不妨先来画出长为,,…的线段. 生:长为的线段是直角边都为1的直角三角形的斜边,而长为的线段是直角边为1和2的直角三角形的斜边. 师:长为的线段能否是直角边为正整数的直角三角形的斜边呢? 生:设c=,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为的线段是直角边长分别为2,3的直角三角形的斜边. 师:下面就请同学们在数轴上画出表示的点. 生:步骤如下: 1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示的点. 二、例题讲解 【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米? 分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题. 解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米. 飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时. 【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少? 解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC=4.5,所以这里的水深为4.5分米. 【例3】在数轴上作出表示的点. 解:以为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示的点,如下图: 师生行为: 由学生独立思考完成,教师巡视指导. 此活动中,教师应重点关注以下两个方面: ①学生能否积极主动地思考问题; ②能否找到斜边为,另外两条直角边为整数的直角三角形. 三、课堂小结 1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题. 2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应. 本节课的教学中,在培养逻辑推理的能力方面,做了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续,注重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到课堂教学当中,很好地激发了学生学习数学的兴趣,培养了学生善于提出问题、敢于提出问题、解决问题的能力. 17.2 勾股定理的逆定理 第1课时 勾股定理的逆定理(1) 1.掌握直角三角形的判别条件. 2.熟记一些勾股数. 3.掌握勾股定理的逆定理的探究方法. 重点 探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系. 难点 归纳猜想出命题2的结论. 一、复习导入 活动探究 (1)总结直角三角形有哪些性质; (2)一个三角形满足什么条件时才能是直角三角形? 生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半. 师:那么一个三角形满足什么条件时,才能是直角三角形呢? 生1:如果三角形有一个内角是90°,那么这个三角形就为直角三角形. 生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形. 师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的? 问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角. 这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+42=52,那么围成的三角形是直角三角形. 画画看,如果三角形的三边长分别为2.5 cm,6 cm,6.5 cm,有下面的关系:2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4 cm,7.5 cm,8.5 cm,再试一试. 生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形. 生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且2.52+62=6.52.再换成三边长分别为4 cm,7.5 cm,8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+7.52=8.52.师:很好!我们通过实际操作,猜想结论. 命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形. 再看下面的命题: 命题1 如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.它们的题设和结论各有何关系? 师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题. 二、例题讲解 【例1】说出下列命题的逆命题,这些命题的逆命题成立吗? (1)同旁内角互补,两条直线平行; (2)如果两个实数的平方相等,那么这两个实数相等; (3)线段垂直平分线上的点到线段两端点的距离相等; (4)直角三角形中30°角所对的直角边等于斜边的一半. 分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用; (2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假. 解略. 三、巩固练习 教材第33页练习第2题. 四、课堂小结 师:通过这节课的学习,你对本节内容有哪些认识? 学生发言,教师点评. 本节课的教学设计中,将教学内容精简化,实行分层教学.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正体现学生是学习的主人.将目标分层后,满足不同层次学生的做题要求,达到巩固课堂知识的目的. 第2课时 勾股定理的逆定理(2) 1.理解并掌握证明勾股定理的逆定理的方法. 2.理解逆定理、互逆定理的概念. 重点 勾股定理的逆定理的证明及互逆定理的概念. 难点 理解互逆定理的概念. 一、复习导入 师:我们学过的勾股定理的内容是什么? 生:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.师:根据上节课学过的内容,我们得到了勾股定理逆命题的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形. 师:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢? 师生行为: 让学生试着寻找解题思路,教师可引导学生理清证明的思路. 师:△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗? 我们画一个直角三角形A′B′C′,使B′C′=a,A′C′=b,∠C′=90°(如图),把画好的△A′B′C′剪下,放在△ABC上,它们重合吗? 生:我们所画的Rt△A′B′C′,(A′B′)2=a2+b2,又因为c2=a2+b2,所以(A′B′)2=c2,即A′B′=c.△ABC和△A′B′C′三边对应相等,所以两个三角形全等,∠C=∠C′=90°,所以△ABC为直角三角形. 即命题2是正确的. 师:很好!我们证明了命题2是正确的,那么命题2就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理. 师:但是不是原命题成立,逆命题一定成立呢? 生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立. 师:你还能举出类似的例子吗? 生:例如原命题:如果两个实数相等,那么它们的绝对值也相等. 逆命题:如果两个数的绝对值相等,那么这两个实数相等. 显然原命题成立,而逆命题不一定成立. 二、新课教授 【例1】教材第32页例1 【例2】教材第33页例2 【例3】一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角.工人师傅量出了这个零件各边的尺寸,那么这个零件符合要求吗? 分析:这是一个利用直角三角形的判定条件解决实际问题的例子. 解:在△ABD中,AB2+AD2=9+16=25=BD2,所以△ABD是直角三角形,∠A是直角. 在△BCD中,BD2+BC2=25+144=169=132=CD2,所以△BCD是直角三角形,∠DBC是直角. 因此这个零件符合要求. 三、巩固练习 1.小强在操场上向东走80 m后,又走了60 m,再走100 m回到原地.小强在操场上向东走了80 m后,又走60 m的方向是________. 【答案】向正南或正北 2.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A,B两个基地前去拦截,6分钟后同时到达C地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,求甲巡逻艇的航向. 【答案】解:由题意可知:AC=120×6×=12,BC=50×6×=5,122+52=132.又AB=13,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,∴∠CAB=40°,航向为北偏东50°.四、课堂小结 1.同学们对本节的内容有哪些认识? 2.勾股定理的逆定理及其应用,熟记几组勾股数. 本节课我采用以学生为主体,引导发现、操作探究的教学设计,符合学生的认知规律和认知水平,最大限度地调动了学生学习的积极性,有利于培养学生动手、观察、分析、猜想、验证、推理的能力,切实使学生在获取知识的过程中得到能力的培养. 不可通约性的发现引起第一次数学危机。有人说,这种性质是希帕索斯约在公元前400年发现的,为此,他的同伴把他抛进大海。不过更有可能是毕达哥拉斯已经知道这种事实,而希帕索斯因泄密而被处死。不管怎样,这个发现对古希腊的数学观点有极大的冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之数却可以由几何量表示出来。整数的尊崇地位受到挑战,于是几何学开始在希腊数学中占有特殊地位。 同时这也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始由“自明的”公理出发,经过演绎推理,并由此建立几何学体系,这不能不说是数学思想上一次巨大革命,这也是第一次数学危机的自然产物。古代数学家认为,这样能把直线上所有的点用完。但是,毕氏学派大约在公元前400年发现:直线上存在不对应任何有理数的点。特别是,他们证明了:这条直线上存在点p不对应于有理数,这里距离op等于边长为单位长的正方形的对角线。于是就必须发明新的数对应这样的点,并且因为这些数不可能是有理数,只好称它们为无理数。无理数的发现,是毕氏学派的最伟大成就之一,也是数学史上的重要里程碑。 无理数的发现,引起了第一次数学危机。首先,对于全部依靠整数的毕氏哲学,这是一次致命的打击。其次,无理数看来与常识似乎相矛盾。在几何上的对应情况同样也是令人惊讶的,因为与直观相反,存在不可通约的线段,即没有公共的量度单位的线段。由于毕氏学派关于比例定义假定了任何两个同类量是可通约的,所以毕氏学派比例理论中的所有命题都局限在可通约的量上,这样,他们的关于相似形的一般理论也失效了。随着时间的推移,无理数的存在逐渐成为人所共知的事实。 诱发第一次数学危机的一个间接因素是之后“芝诺悖论”的出现,它更增加了数学家们的担忧:数学作为一门精确的科学是否还有可能?宇宙的和谐性是否还存在? 在大约公元前370年,这个矛盾被毕氏学派的欧多克斯通过给比例下新定义的方法解决了。他的处理不可通约量的方法,出现在欧几里得《原本》第5卷中,并且和狄德金于1872年绘出的无理数的现代解释基本一致。今天中学几何课本中对相似三角形的处理,仍然反映出由不可通约量而带来的某些困难和微炒之处。 意义:第一次数学危机表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示。反之,数却可以由几何量表示出来。整数的尊祟地位受到挑战,古希腊的数学观点受到极大的冲击。于是,几何学开始在希腊数学中占有特殊地位。同时也反映出,直觉和经验不一定靠得住,而推理证明才是可靠的。从此希腊人开始从“自明的”公理出发,经过演绎推理,并由此建立几何学体系。这是数学思想上的一次革命,是第一次数学危机的自然产物。 我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾(短直角边)等于三,股(长直角边)等于四,那么弦等于五。即“勾 三、股 四、弦五”。它被记载于我国古代著名的数学著作《周髀算经》中,在这本书的另一处,还记载了勾股定理的一般形式。中国古代的几何学家研究几何是为了实用,是唯用是尚的。在讲完《勾股定理逆定理》这节课后,我的反思如下: 本节课的教学目标是:在掌握了勾股定理的基础上,让学生如何从三边的关系来判定一个三角形是否为直角三角形.即:勾股定理的逆定理。 勾股定理的逆定理的教学设计说明:本教案的教学设计是围绕勾股定理的逆定理的证明与应用来展开,结合新课标的要求,根据我班学生的认知结构与教材地位为了达到本节课的教学目标,我做了以下设计(也是成功之处): 一、创设情境,提出猜想达到直观性的教学要求。让几个学生要全班同学前面做一个“数学实验”,三条分别为:3,4,5的三角形是一个直角三角形。第二步骤是让学生画已知三边的一定长度的三角形,判断是不是直角三角形,并分析三边满足什么关系条件,同时,引导学生从特殊到一般提出猜想。 二、将教学内容精简化.考虑到我所教班级的学生认识水平,做了如下教学设计:⑴将教学目标定为让学生掌握勾股定理的逆定理.以及逆定理的应用,而对于本课中逆定理的证明.以及其探究都放在一下节课再进行讲解.⑵对于本课中所出现了的逆定理的定义,及其真假性的判断也简单化.本节课也不详细讲.本节课的的重点放在掌握勾股定理的逆定理,及其应用.从课堂效果来看,这样的教学设计是合理的,学生较好的掌握了勾股定理的逆定理,所以取得了良好的课堂效果。 三、应用训练,巩固新知为了巩固新知,灵活运用所学知识解决相应问题,提高学生的分析解题能力,基于对我班的学情分析,为了让学生都能动起手做,学案的设计上做了很多脚手架,目的就是让学生能够按照脚手架的步骤一步步完成,最终也形成了解题的“操作性”。此外,脚手架的设置对我们的中下水平的学生是很多帮助的.从课堂上看,他们也能在脚手架的帮助下,完成一定的题目中,而如果没有的话,这部分学生对一些基本的题都会束手无策.四、实行分层教学,让不同水平的学生在同一课堂都能学好,为此,我设计了三个层次的问题,以达到分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理基本运用;第二层次是强调已知三角形三边长或三边关系,就有意识的判断三角形是否是直角三角形,这样既巩固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理与逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生的理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验.真正体现学生是学习的主人.。将目标分层后,我设计的学案里的题目也是相应的进行了分层设计,满足不同层次的学生的做题要求,达到巩固课堂知识的目的。最后,布置作业,也是分层布置的,分为三层,对应不同的学生,让他们的作业都在他们的能力范围。 诚然,这节课也存在许多不足。只有分析好不足是教学课后的重要环节,只有分析明白了自己的不足才能在今后的课堂里避免犯同样的错误,让课堂更加的完美起来。是我们新老师快速成长的途径,第一、新课导入部分:存在如下值得改进的地方:①复习旧知部分,复习勾股定理的内容应用了填空的形式,这个形式不是最佳的.因为学生书写勾股定理耗时,既使书写出来,复习效果也不太好。最佳的应该是以简单的题目形式来复习勾股定理.这样快而有效;②如何从复习勾股定理中巧妙的切入本课的主题,过渡语的设置,应该将过渡语言简单明了,可设计成:怎么从边的关系来叛断一个三角形是直角三角形呢?这就是本节课要学习的内容.③导入部分的课时分配估计不足,显得冗长,也一定程度上造成后面的教学时间紧张。应该对导入部分的时效再进行分析简化。第三、多媒体辅助教学方面存在不足。本节课我没有利用多媒体辅助教学,如学习目标的发展、习题训练内容的展示、学生活动的要求、作业布置等,这些内容都是为教学服务的。如果用多媒体课件的展示,可以增大了教学密度,使学生的双基训练得到了加强,使传统的课堂走向了开放,使学生真正感受到学习方式在发生变化。也在一定程度上让课堂更生动,更具有直观性,更加吸引学生的注意力,提高课堂效果。在以后的教学中我应加强。 第四,教师专业素养方面的不足。⒈对本节课的教学内容把握上有所欠缺,没有充分参考<<广州市义务教育阶段学科学业质量评价标准&&里的教学要点,考点,让自己的授课以它为准.让课堂符合它的要求.⒉讲课的语速过快,应该减速,因为个人的原因习惯的原因,语速可能存在过快,让学生很难跟的上来,从而影响学生的学习兴趣和学习效果。 在备每一节课中,对于课堂的每一个细节,第一刻钟,第一个教学设计的思考都无不直接影响着你的这一节课,影响着你的课堂效果。静心思考,反思整个过程是一种全新的收获,也是全新的开始,让自己能够重新起步,向前。第三篇:八年级数学专题-勾股定理
第四篇:第一次数学危机
第五篇:八年级数学下册《勾股定理逆定理》教学反思