推理与证明教材分析

时间:2019-05-13 04:07:37下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《推理与证明教材分析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《推理与证明教材分析》。

第一篇:推理与证明教材分析

《第三章 推理与证明》教材分析与教学建议

高2012级高二数学文科备课组

“推理与证明”是新课标新增内容(选修1-2第二章,选修2-2第二章),主要包括合情推理与演绎推理、直接证明与间接证明、数学归纳法三个部分(其中数学归纳法文科数学不作要求).“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式.本章内容是各知识模块中常用推理方法和论证方法的总结,推理方法与证明方法是从思维活动中抽象出来的,是由数学思维过程凝缩而成的,是高中数学的重要基础,在高中数学中占有极其重要的地位和作用.

一、课标要求

1.合情推理与演绎推理

(1)结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比进行简单的推理,体会并认识合情推理在数学发现中的作用.

(2)结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.

(3)通过具体实例,了解合情推理和演绎推理之间的联系和差异.

2.直接证明与间接证明

(1)结合已经学过的数学实例,了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.

(2)结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.

3.数学归纳法(文科不做要求)

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.

二、课时安排

1.本章理科教学时间约需8课时,具体分配如下:

合情推理与演绎推理约2课时

直接证明与间接证明约2课时

数学归纳法约2课时

小结与复习约2课时

2.本章文科教学时间约需10课时,具体分配如下:

合情推理与演绎推理约4课时(+2)

直接证明与间接证明约4课时(+4)

小结与复习、测试约4课时(+2)

三、教材分析与教学建议

本章结合生活实例和学生已学过的数学实例,介绍两种基本的推理--合情推理与演绎推理、两类基本的证明--直接证明与间接证明、一种特殊的方法--数学归纳法.本章的内容属于数学思维方法的范畴,把过去渗透在具体数学内容中的思维方法,以集中的、显性的形式呈现出来,使学生更加明确这些方法,并能有意识地使用它们,以培养言之有理、论证有据

1的习惯.

(一)合情推理与演绎推理

1.教学重点与难点

教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理;了解演绎推理的含义,能利用“三段论”进行一些简单推理.

教学难点:用归纳和类比进行推理,做出猜想;用“三段论”证明问题.

2.教材分析

合情推理和演绎推理是数学推理的两种基本推理形式.

(1)“合情推理”是高中数学课程标准的亮点之一.从解放后首次制定(1952年)中小学数学教学大纲开始,关于数学能力主要以三大能力为具体内容;1978年增加了“培养学生分析问题与解决问题的能力”,而对核心逻辑思维能力中推理的理解,仅局限在演绎和归纳两个方面,并且不论是教材的呈现方式,还是教师的教学、考试都是以演绎推理和严格的证明为主,归纳推理没有引起足够的重视,类比推理更难寻其踪影.2001年7月《全日制义务教育数学课程标准》(实验稿)中,提出让“学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理,能有条理地、清晰地阐述自己的观点”.合情推理首次进入国家纲领性文件,这标志着我国数学教育观念的一次转变,标志着合情推理得到了应有的重视.2003年颁布的《普通高中数学课程标准》(实验稿)中,强调在解决问题的过程中,合情推理具有猜测和发现结论的作用,而且在教材中专门设置了合情推理的内容.

(2)归纳推理和类比推理是合情推理的两种常用的思维方法.

归纳推理是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理.由于归纳推理是由部分到整体、由个别到一般,所以结论不一定可靠,只能算是一种猜想.

类比推理是由两类对象具有某些类似特性和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.其思维过程是从特殊到特殊,类比的基础是事物之间的相似性或某种特殊性.由于类比推理是由特殊到特殊的推理,因此结论不一定可靠,只能算是一种猜想.

合情推理具有两大功能:一是探索一般结论,二是发现解题思路.

(3)演绎推理是由一般到特殊的推理,“三段论”是演绎推理的一般模式.三段论由三部分构成:(两个前提,一个结论)M是P,大前提----已知的一般原理; S是M 小前提----所研究的特殊情况; ∴S是P 结论----根据一般原理,对特殊情况做出的判断.

三段论可用右边的格式来表示.用集合观点就是:若集合M的所有元素都具有性质P,S是M的子集,则S中所有元素都具有性质P.

演绎推理只要前提正确,推理的形式正确,那么推理所得结论就一定是正确的.但错误的前提会导致错误的结论.

(4)合情推理与演绎推理的联系与差异:

①从推理形式和推理所得结论的正确性上讲,二者有差异.合情推理是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,是由部分到整体、由个别到一般、由特殊到特殊的推理,合情推理作出的结论未必可靠,有待于进一步证明或否定.演绎推理是由一般到特殊的推理,只要前提正确,推理的形式正确,那么推理所得结论就一定是正确的.正如波利亚所说:“论证推理(即演绎推理)是可靠的、无可置疑的和终决的.合情推理是冒险的、有争议的和暂时的.”

②从二者在认识事物的过程中所发挥的作用的角度上讲,它们又是紧密联系,相辅相成的.合情推理的结论需要演绎推理的验证,而演绎推理的内容一般是通过合情推理获得的.演绎推理回答如何证明定理或命题的问题,是“论证”的手段,而合情推理回答如何发现定理或命题的问题,是发现的工具.合情推理可以为演绎推理提供方向和思路,演绎推理可以验证合情推理的结论的正确性.

合情推理和演绎推理是数学推理的两种基本推理形式.许多重要的科学结论(包括数学的定理、法则、公式等)的发现往往发端于对事物的观察、比较、归纳、类比等,即通过合情推理提出猜想,然后再通过演绎推理证明猜想正确或错误.对于数学学习来说,既要学会证明,也要学会猜想.

3.教学建议

(1)要注意结合实际例子,使学生了解合情推理的含义;

(2)要通过学生学过的简单的数学例子,让学生掌握归纳推理和类比推理的基本方法;

(3)要通过数学史事,使学生认识合情推理在数学发现中的作用;

(4)要通过学生学过的简单的数学例子,让学生掌握演绎推理的基本模式----“三段论”推理模式;

(5)要通过反例,让学生理解演绎推理的前提与结论之间的蕴涵关系;

(6)要通过具体实例,帮助学生了解合情推理与演绎推理之间的联系与差异,让学生既学会猜想,又学会证明.

(二)直接证明与间接证明

1.教学重点与难点

教学重点:结合已经学过的数学实例,了解直接证明的两种基本方法——分析法和综合法,了解间接证明的一种基本方法——反证法;了解分析法、综合法和反证法的思考过程、特点.

教学难点:根据问题的特点,结合分析法、综合法和反证法的思考过程、特点,选择适当的证明方法或使用不同的证明方法解决同一问题.2.教材分析

数学结论的正确性必须通过逻辑推理的方式加以证明才能得到确认,这是数学区别于其他学科的显著特点.直接证明与间接证明是两类基本的数学证明方法.

(1)综合法的思维特征是:由因导果.即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法.

(2)分析法的思维特征是:执果索因.即从结论入手进行反推,看看需要知道什么,最后推出一个已证的命题(定义、公理、定理、公式等)或已知条件,从而得到证明.很多演绎推理的证明题都是采用这种方法进行思考的,有时也将综合法和分析法结合起来使用.

(3)反证法是间接证明的一种基本方法,任何一个问题都有正反两面,当直接证明有困难时,便可以考虑使用反证法.反证法证题的步骤可归结为:反设—归谬—结论.

3.教学建议

(1)先讲综合法,后讲分析法.综合法和分析法,是直接证明中最基本的两种证明方法,也是解决数学问题时常用的思维方式.综合法是学生使用较多、较为熟悉的一种方法.分析法虽然在过去也经常使用,但学生在理解上显然不如综合法那样容易.

(2)要突破分析法这一教学难点.分析法的主要困难有两点:一是学生对这种证明方法的思考过程不理解;二是学生对这种证明方法的表达方式不习惯.突破难点的方法有两点:一是结合具体的数学实例,让学生感受分析法证明的可靠性,以及“要证„„只需证„„”这种表达的必要性;二是将分析法与综合法对比着进行讲解]帮助学生加深对分析法思考过

程及特点的理解.

(3)通过具体的数学实例,帮助学生形成既分析又综合的思维方式,学会将分析法与综合法结合起来运用.结合方式有两种:一是先用分析法探寻证题思路,再用综合法有条理地表述证明过程;二是将分析法与综合法结合起来,证明某些较复杂的数学问题.

(4)结合已经学过的数学实例,帮助学生了解间接证明的一种基本方法——反证法,了解反证法的思考过程、特点.在必修课的教学中,学生已经使用反证法证明了一些较简单的数学命题,对于反证法学生并不是完全陌生的.本次教学应尽量利用学生已有的经验,进一步加深对反证法的思考过程、特点的了解.

一是要提炼用反证法证题的基本模式.反证法证题的步骤可归结为:反设—归谬—结论.其中,正确反设是用好反证法的前提,推出矛盾(归谬)是用好反证法的关键.反设是否正确,与逻辑知识密切相关,因此,在反证法教学前,宜先复习常用逻辑用语中的相关知识.

二是总结反证法的适用范围.反证法主要适用于以下两种情形:

①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;

②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.

(三)数学归纳法

1.教学重点与难点

教学重点:借助具体实例了解数学归纳法的基本思想,掌握数学归纳法的基本步骤,运用数学归纳法证明一些与正整数n(n取无限多个值)有关的数学命题.

教学难点:(1)对数学归纳法基本原理的理解;(2)在“归纳递推”的步骤中发现具体问题的递推关系.

2.教材分析

本节分为两部分:第一部分主要内容是借助具体实例归纳出数学归纳法的基本原理、步骤;第二部分的重点是用数学归纳法证明一些简单的数学命题,教科书安排了两个例题,通过证明数学命题巩固对数学归纳法的认识.

数学归纳法是一种特殊的直接证明的方法.在证明一些与正整数n(n取无限多个值)有关的数学命题时,数学归纳法往往是非常有用的研究工具,它通过有限个步骤的推理,证明n取无限多个正整数的情形.

用数学归纳法证题分为两大步骤:

第一步(归纳奠基):证明当nn0时命题成立,其中n0是命题成立的初始值,不一定

是自然数1.这一步是论证的基本保证,是递推的基础,必须保证其真实性.

第二步(归纳递推):假设nk(kn0,kN)时命题成立,证明nk1时命题也

成立.这一步是命题具有后续传递性的保证,是递推的依据.由kk1时必须使用归纳假设,否则不算数学归纳法.

只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.

数学归纳法虽然仅限于与正整数有关的命题,但并不是所有与正整数有关的命题都能使用数学归纳法.

3.教学建议

(1)通过递推数列求通项问题,引发学习数学归纳法的欲望,说明探索新的证明方法的必要性.

(2)分析“多米诺骨牌”全部倒下的原理—递推思想.

(3)给出数学归纳法的基本原理.

(4)结合例题,讲解数学归纳法的证题步骤与要求,帮助学生理解数学归纳法证题中的“归纳奠基”和“归纳递推”两个步骤缺一不可.

(5)向学生指明数学归纳法的适用范围.教学时要使学生明确,数学归纳法一般被用于证明某些与正整数n(n取无限多个值)有关的数学命题.一般说,从nk时的情形过渡到nk1时的情形,如果问题中存在可利用的递推关系,则数学归纳法有用武之地,否则使用数学归纳法就有困难.

(6)让学生经历数学研究与发现的完整过程,并进一步熟悉数学归纳法.在教科书例2的教学中,应引导学生关注两个问题:一是归纳猜想;二是归纳递推,要注意从nk时的情形到nk1时的情形是怎样过渡的.

(7)通过变式训练,让学生形成运用数学归纳法解题的经验.

整理:王全峰

2011年3月20日星期天

第二篇:推理与证明

第3讲 推理与证明

【知识要点】

1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理

2.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。3.类比推理的一般步骤:

①找出两类事物之间的相似性或者一致性。

②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)【典型例题】

1、(2011•江西)观察下列各式:7=49,7=343,7=2401,„,则7

34201

1的末两位数字为()

A、01 B、43 C、07 D、49

2、(2011•江西)观察下列各式:5=3125,5=15625,5=78125,„,则5A、3125 B、5625 C、0625 D、8125

3、(2010•临颍县)平面内平行于同一条直线的两条直线平行,由此类比思维,我们可以得到()A、空间中平行于同一平面的两个平面平行 B、空间中平行于同一条直线的两条直线平行 C、空间中平行于同一条平面的两条直线平行 D、空间中平行于同一条直线的两个平面平行

4、(2007•广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()

A、(a*b)*a=a B、[a*(b*a)]*(a*b)=a C、b*(b*b)=b D、(a*b)*[b*(a*b)]=b

5、(2007•广东)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()

A、15 B、16 C、17 D、18

6、(2006•陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A、4,6,1,7 B、7,6,1,4 C、6,4,1,7 D、1,6,4,7

7、(2006•山东)定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为()

A、0 B、6 C、12 D、18

7201

1的末四位数字为()

8、(2006•辽宁)设⊕是R上的一个运算,A是V的非空子集,若对任意a,b∈A,有a⊕b∈A,则称A对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是()A、自然数集 B、整数集 C、有理数集 D、无理数集

9、(2006•广东)对于任意的两个实数对(a,b)和(c,d),规定:(a,b)=(c,d),当且仅当a=c,b=d;运算“⊗”为:(a,b)⊗(c,d)=(ac-bd,bc+ad);运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d),设p,q∈R,若(1,2)⊗(p,q)=(5,0),则(1,2)⊕(p,q)=()A、(4,0)B、(2,0)C、(0,2)D、(0,-4)

10、(2005•湖南)设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),„,fn+1(x)=fn′(x),n∈N,则f2005(x)=()

A、sinx B、-sinx C、cosx D、-cosx

11、(2004•安徽)已知数列{an}满足a0=1,an=a0+a1+„+an-1,n≥

1、,则当n≥1时,an=()A、2 B、n

C、2 D、2-

1n-1n

12、若数列{an}满足a1=1,a2=2,an=(n≥3且n∈N*),则a17=()

A、1 B、2 C、D、2-987

13、如图所示的三角形数阵叫“莱布尼兹调和三角形”,有,则运用归纳推理得到第11 行第2个数(从左往右数)为()A、B、C、D、14、根据给出的数塔猜测1 234 567×9+8=()

1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111.

A、11111110 B、11111111 C、11111112 D、11111113

15、将n个连续自然数按规律排成右表,根据规律,从2008到2010,箭头方向依次是()

A、B、C、D、16、下列推理过程利用的推理方法分别是()(1)通过大量试验得出抛硬币出现正面的概率为0.5;(2)函数f(x)=x2-|x|为偶函数;

(3)科学家通过研究老鹰的眼睛发明了电子鹰眼. A、演绎推理,归纳推理,类比推理 B、类比推理,演绎推理,类比推理 C、归纳推理,合情推理,类比推理 D、归纳推理,演绎推理,类比推理

17、下列表述正确的是()①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. A、①②③ B、②③④ C、②④⑤ D、①③⑤

18、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,„这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,则第n个三角形数为()A、n B、1、(2011•陕西)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 照此规律,第五个等式应为 5+6+7+8+9+10+11+12+13=81.

2、(2011•陕西)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 „

照此规律,第n个等式为 n+(n+1)+(n+2)+„+(3n-2)=(2n-1)2 .

C、n-1 D、2

第三篇:推理与证明

推理与证明

学生推理与证明的建立,是一个漫长的过程,这个过程的开始可以追溯到小孩牙牙学语时候起,小孩在爸爸妈妈跟前不停的问为什么,可以看做推理的雏形。接着到幼儿园、小学,教材里也有简单的说理,小学教材里有简单地说理题,意在培养学生的逻辑思维。

初中新教材对推理与证明的渗透,也是从说理开始的,但内容比较少,也就是教材中的直观几何内容。很快便转向推理,也就是证明。刚开始推理的步骤,是简单的两三步,接着到四五步,后面还一定要求学生写清楚为什么。在学习这一部分内容的时候,好多学生在后面的括号里不写为什么,我便给他们举例小孩子学走路的过程,一个小孩刚开始学走路的时候,需要大人或其他可依附的东西,渐渐地,她会脱离工具自己走。学习证明的过程亦如此,起先在括号里写清为什么,并且只是简单的几步,然后证明比较难一点的,步骤比较多的。

随着社会的进步,中学教材加强了解析几何、向量几何,传统的欧式几何受到冲击,并且教材对这一部分的编排分散在初中各个年级,直观几何分量多了还加入了变换如平移变换、旋转变换、对称变换,投影等内容。老师们对内容的编排不太理解,看了专家的讲座,渐渐明白了:这样编排不是降低了推理能力,而是加强了推理能力的培养,体现了逐步发展的过程,把变换放到中学,加强了中学和大学教材的统一,但一个不争的事实是,对演绎推理确实弱了。

关于开展课题学习的实践与认识

新课程教材编排了课题学习这部分内容,对授课的老师,还是学生的学习都是一个全新的内容,怎样上好这部分内容,对老师、对学生而言,都是一个创新的机会。至于课题学习的评价方式,到现在为止,大多数省份还是一个空白,考不考?怎样考?学习它吧,学习的东西不能在试卷上体现出来,于是,好多老师对这部分采取漠视的处理方法;不学习吧,课本上安排了这部分内容。还有一部分老师觉得,课题学习是对某一个问题专门研究,很深!老师不知讲到什么程度才合理,学生不知掌握到什么程度。

经过几年的实践与这次培训的认识,我觉得课题学习是“实践与综合应用”在新课课程中的主要呈现形式,是一种区别于传统的、全新的,具有挑战性的学习,课本的编写者安排的主要目的是:

1.希望为学生提供更多的实践与探索的机会。

2.让学生通过对有挑战性和综合性问题的解决,经历数学化的过程。

3.让学生获得研究问题地方法和经验,使学生的思维能力、自主探索与合作交流的意识和能力得到发展。

4.让学生体验数学知识的内在联系,以及解决问题的成功喜悦,增进学生学习数学的信心。

5.使数学学习活动成为生动活泼的、主动的和富有个性的过程。

课题学习首先提出一个主问题(问题是一个载体),然后给出资料,利用资料挖掘知识。在这个过程中,多关注知识的价值,淡化数学术语,让学生充分经历数学化的过程,激发学生参与的热情,使其体会到学习数学的乐趣,始终以学生为主体,明白课题学习是为学习服务的。

第四篇:推理与证明

推理与证明

1. 蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个

图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)

表示第n幅图的蜂巢总数.则f(4)=___37

__;f(n)=_3n23n

1__________.2.下面是按照一定规律画出的一列“树型”图:

设第n个图有an个树枝,则an1与an(n≥2)之间的关系是.

答案:an12an

2若平面内有n条直线,其中任何两条不平行,且任何三条不共点(即不相交于一点),则这n条直线将平面分成了几部分。

3.类比平面向量基本定理:“如果e1,e2是平面内两个不共线的向量,那么对于平面内任一向量a,有且只有一对实数1,2,使得a1e12e2”,写出空间向量基本定理是.

如果e1,e2,e3是空间三个不共面的向量,那么对于空间内任一向量a,有且只有一对实数



1,2,3,使得a1e12e23e

34.写出用三段论证明f(x)x3sinx(xR)为奇函数的步骤是: 大前提. 小前提结论

满足f(x)f(x)的函数是奇函数,大前提

f(x)(x)sin(x)xsinx(xsinx)f(x),小前提

所以f(x)x3sinx是奇函数.结论5. 已知f(n)1 答案:

12

1k



1n

(nN),用数学归纳法证明f(2)

n

n2

时,f(2k1)f(2k)

等于.

122

k



k1

6lg1

.53a

bclg121a2b

7.用数学归纳法证明1+2+3+„

+n2=

n

n2,则当n=k+1时左端应在n=k的基础上加

上.(k+1)+(k+2)+(k+3)++(k+1)

8

m,n成立的条件不

等式.

当mn20

9.在数列an中,a12,an1

答案:an10.

26n

5an3an1

(nN),可以猜测数列通项an的表达式为

若三角形内切圆的半径为r,三边长为a,b,c,则三角形的面积等于S

r(abc),根据类比推理的方法,若一个四面体的内切球的半径为R,四个面的面积分别是

V. S1,S2,S,S,则四面体的体积3

4答案:R(S1S2S3S4)

11.已知f(x)ax

x2x1

(a1),证明方程f(x)0没有负数根.假设x0是f(x)0的负数根,则x00且x01且ax

0a

x0

x02x01,10

x02x01

解得1,12

这与x00矛盾,故方程f(x)0x02,没有负数根.12.已知命题:“若数列an是等比数列,且an

0,则数列bn

nN)

也是等

比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.

解:类比等比数列的性质,可以得到等差数列的一个性质是:若数列an是等差数列,则数列bn

a1a2an

n

也是等差数列.

n(n1)d

2n

a1

d2(n1)

证明如下:

设等差数列an的公差为d,则bn所以数列bn是以a1为首项,13.用数学归纳法证明等式1(n212)2(n222)n(n2n2)都成立.

(1)当n1时,由以上可知等式成立;

(2)假设当nk时,等式成立,即1(k212)2(k222)k(k2k2)则当nk1时,1[(k1)1]2[(k1)2]k[(k1)k](k1)[(k1)(k1)] 1(k1)2(k2)k(kk)(2k1)2(2k1)k(2k1)14k

a1a2an

n

na1,d2

为公差的等差数列.

n

n

对一切正整数n

k

k,22222222

222222

k(2k1)·

k(k1)

(k1)

(k1)

由(1)(2)知,等式结一切正整数 都成立.

14.用数学归纳法证明42n1+3n+2能被13整除,其中n∈N*.2×1+11+2

(1)当n=1时,4+3=91能被13整除.(2)假设当n=k时,42k+1+3k+2能被13整除,则当n=k+1时,42(k+1)+1+3k+3=42k+1·42+3k+2·3-42k+1·3+42k+1·3=42k+1·13+3·(42k+1+3k+2).∵42k+1·13能被13整除,42k+1+3k+2能被13整除, ∴当n=k+1时也成立.由(1)(2)知,当n∈N*时,42n+1+3n+2能被13整除.15.用数学归纳法证明:对一切大于1的自然数,不等式(1+

2n12

13)(1+)„(1+

112n1)>

均成立.43

(1)当n=2时,左边=1+=;右边=

.∵左边>右边,∴不等式成立.(2)假设n=k(k≥2,且k∈N*)时不等式成立,即(1+)(1+)„(1+

12k1)>

2k12

12k1

.12(k1)1

]

则当n=k+1时,(1+)(1+)„(1+>

2k12)>[1

4k

2k1

·

2k22k1

=

2k222k1

=

4k

8k4

8k3

=

2k3

=

2(k1)1

.22k122k122k1

∴当n=k+1时,不等式也成立.由(1)(2)知,对于一切大于1的自然数n,不等式都成立.16。试证明:不论正数a、b、c是等差数列还是等比数列,当n>1,n∈N*且a、b、c互不相

等时,均有:an+cn>2bn.设a、b、c为等比数列,a=∴a+c=

n

n

bq,c=bq(q>0且q≠1),bq

nn

+bnqn=bn(1q

n

+qn)>2bn.a

n

(2)设a、b、c为等差数列,则2b=a+c猜想下面用数学归纳法证明:

①当n=2时,由2(a+c)>(a+c),∴②设n=k时成立,即则当n=k+1时,>

c

2n

>(ac2)n(n≥2且n∈N*)

a

c2

(ac2)

a

k

c2

k

1k

(1

4ac2),k

a

k1

c2

(ak+1+ck+1+ak+1+ck+1)

ac2

(ak+1+ck+1+ak·c+ck·a)=

(ak+ck)(a+c)>()k·(ac2)=(ac2)k+1

17.平面内有n个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,求证这n个圆把平面分成nn2个部分。

证明:(1)当n1时,一个圆把平面分成两个区域,而12122,命题成立.

(2)假设n=k(k≥1)时,命题成立,即k个圆把平面分成kk2个区域.

当n=k+1时,第k+1个圆与原有的k个圆有2k个交点,这些交点把第k+1个圆分成了2k段弧,而其中的每一段弧都把它所在的区域分成了两部分,因此增加了2k个区域,共有k2k22k(k1)2(k1)2个区域. ∴n=k+1时,命题也成立.

由(1)、(2)知,对任意的n∈N*,命题都成立.

18.如图(1),在三角形ABC中,ABAC,若ADBC,则AB2BD·BC;若类比该命题,如图(2),三棱锥ABCD中,AD面ABC,若A点在三角形BCD所在平面内的射影为M,则有什么结论?命题是否是真命题.

解:命题是:三棱锥ABCD中,AD面ABC,若A点在三角形BCD所在平面内的射影

为M,则有S△S△BCM·S△BCD是一个真命题. ABC证明如下:

在图(2)中,连结DM,并延长交BC于E,连结AE,则有DEBC. 因为AD面ABC,所以ADAE. 又AMDE,所以AE2EM·ED. 于是S

△ABC

111BC·AEBC·EM·BC·EDS△BCM·S△BCD. 222

19. 已知数列{an}中,Sn是它的前n项和,并且Sn+1=4an+2(n=1,2,„),a1=1.(1)设bn=an+1-2an(n=1,2,„),求证:数列{bn}是等比数列;(2)设cn=

an2

n

(n=1,2,„),求证:数列{cn}是等差数列.(1)∵ Sn+1=4an+2,∴Sn+2=4an+1+2.两式相减,得Sn+2-Sn+1=4an+1-4an(n=1,2,„), 即an+2=4an+1-4an,变形得an+2-2an+1=2(an+1-2an).∵ bn=an+1-2an(n=1,2,„), ∴ bn+1=2bn.由此可知,数列{bn}是公比为2的等比数列.(2)由S2=a1+a2=4a1+2,a1=1.得a2=5,b1=a2-2a1=3.故bn=3·2n-1.∵ cn=

an2

n

(n=1,2,„),∴ cn+1-cn=

an12

n1

an2

n

=

an12an

n1

=

bn2

n1

.34

将bn=3·2n-1代入得cn+1-cn=(n=1,2,„),由此可知,数列{cn}是公差为的等差数列,它的首项c1=

a12

=,故cn=n-(n=1,2,„).131

第五篇:推理与证明

“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。“推理与证明”是数学的基本思维过程,也是人们学习和生活中经常使用的思维方式。推理一般包括合情推理和演绎推理。推理与证明贯穿于数学的整个体系,它的学习是新课标教材的一个亮点,是对以前所学知识与方法的总结、归纳,并对后继学习起到引领的作用。

学生将通过对已学知识的回顾,进一步体会合情推理、演绎推理以及二者之间的联系与差异;体会数学证明的特点,了解数学证明的基本方法,包括直接证明的方法(如分析法、综合法、数学归纳法)和间接证明的方法(如反证法);感受逻辑证明在数学以及日常生活中的作用,养成言之有理、论证有据的习惯。

《新标准》要求学生“能通过观察、实验、归纳、类比等获得数学猜想,并进一步寻求证据、给出证明或举出反例。”也就是要求学生在获得数学结论时要经历合情推理到演绎推理的过程。合情推理的实质是“发现---猜想---证明”,因而关注合情推理能力的培养实际上就是希望教师能够重视数学知识的产生和发展过程,发展学生的探究和创新精神。

下载推理与证明教材分析word格式文档
下载推理与证明教材分析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    推理与证明

    浅谈我对推理与证明的几点认识 初中数学中,推理与证明是非常重要的,主要是培养学生的逻辑思维能力,推理与证明是人类认识世界的重要手段。中学数学教育的一个重要职能是培养学......

    推理与证明练习

    推理与证明课后练习一、选择题1.观察下列各式:11,2343,345675,456789107,以得出的一般结论是A.n(n1)(n2)B.n(n1)(n2)C.n(n1)(n2)D.n(n1)(n2)(3n2)n2(3n2)(2n1)2 (3n1)n2 2222,可(3n1)......

    2011推理与证明测试题

    2011推理与证明、复数测试题1一、选择题(每题5分,共55分)1.复数534i的共轭复数是 B.34i 55nA.34i nC.34iD.34i 552.设f(n)=ii(n∈N),则集合{f(n)}中元素的个数为A.4B.3C.2D.13.设z∈C,则方......

    推理与证明练习题

    推理与证明练习题1.用反证法证明命题:若整系数方程ax2bxc0(a0)有有理根,那么a,b,c中至少有一个是偶数,下列假设中正确的是.A、假设a,b,c都是偶数B、假设a,b,c都不是偶数C、假设......

    推理与证明测试题

    《推理与证明测试题》一、选择题:1、 下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊......

    23.推理与证明138

    推理与证明 1.合情推理:归纳推理与类比推理 (1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理.......

    文科推理与证明

    文科推理与证明(一)合情推理与演绎推理 1.了解合情 推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用。 2.了解演绎推理的重要性,掌握演绎推......

    推理与证明练习题

    高二数学选修1-2第二章《推理与证明》练习题 班级姓名学号 一、选择题: (本大题共10题,每小题4分,共40分) 1.如果数列an是等差数列,则 A.a1a8a4a5 B. a1a8a4a5 C.a1a8a4a5 D.a1a8a......