第一篇:大众数学观与中师数学教育刍议
世纪之交,教育面临着新的机遇和挑战。时代在发展,人们的观念在发生变化,数学教育也经历着深刻的变革。数学无论对普通劳动者和专家学者,在高科技的信息社会中,都具有特殊重要的意义。几乎人人都知道,数学已成为日常工作和生活中必不可少的工具,因而数学教育,特别是基础阶段的数学教育改革,自然地成了教育改革的带头学科,从六十年代开始的国内外几次
教育改革都证明了这一点。究其原因,一是数学重要,二是数学难学。大众数学(MathematicsforAll)是当今世界上数学教育中最响亮的口号。大众数学即数学大众化,它为大众所掌握和利用,成为人们适应社会生活和促进社会发展的有力武器。大众数学不求高难度,但求应用数学知识解决实际问题的数学思想方法,带有较强的普及性。显然,大众数学与我们的素质教育观是一致的。大众数学将从长期以来以传授知识,追求完整的知识体系的“知识型”人才培养格局,转向知识、能力素质并重的“素质型”人才培养模式;大众数学将降低数学课程严密的逻辑体系,大众数学意义下的数学课程将是一种注意应用和生活的开放的体系。中师数学教育应如何适应这一改革呢?笔者以为要从如下几方面进行思考。
一、数学教育观
大众数学观下的数学教育首先面临的就是数学教育观念的转变,使学生了解数学之特点,明确数学之应用,体会数学之美妙,形成对数学的整体认识。作为中师毕业生,代数、几何各科考试合格,而对数学发展的历史、数学家的业绩、数学的意义和用处、数学思想方法的价值等等这样一些有关数学的问题一无所知,这样的数学教育不应认为是成功的数学教育。未来的数学教育,要使学与不学数学的人,区别不仅仅在于掌握了多少数学知识,而且还在于是否具有运用数学的意识,是否认识到数学在社会生活中的重要性,简言之是否具有数学头脑。
大众数学的教育观要求把数学作为教育“管道”中的“泵”,这一点对于承担启蒙任务的小学教育尤为重要。小学阶段就让学生对数学望而生畏以至厌恶,不能不说是数学教育工作者的失职。
二、数学的应用意识
树立“数学为大众”的教育新观念,还突出地表现为应重视对学生数学应用意识的培养。众所周知,抽象性、严谨性和应用的广泛性是数学的三大特性,在现行的教材中,前两个特性体现得有过之而无不及,而后一个特性则显得薄弱和勉强。
数学的应用意识是指当学生接受一个新的数学理论时,能主动地探索这一新知识的实际应用价值,能尝试着从数学的角度思考问题,运用数学的思想方法去解决问题。
美国一所学校的六年级学生在从事这样的数学活动:在老师的指导下观看洛杉矶奥运会100米短跑录像。他们的任务是通过统计来分析运动成绩与步频、步幅的关系。他们发现跑得最快的并非步频最高,跑得最慢的不一定步幅最小。英国的中学数学课竟要求学生走上街头,解决的问题是该地区车牌号是按什么规则编制的,这些事例无不体现了一种强烈的数学应用意识。
事实上中国古代数学具有很强的实用性,以《九章算术》为代表的中国古代数学无论从思想方法,还是成果上都带有浓厚的实用色彩,现传本《九章算术》由246个数学问题及其答案和术文组成,按算法分属方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股等九章,前六章定的是实用名称,鲜明地反映它的应用属性。
三、课程教材
数学课程教材向以体系是否完整,结构是否严密作为取舍标准。然而一味追求其完整严密,以至于苛求,则会产生负面效应,会把不喜欢数学的学生吓跑。学好数学,主要是抓住数学思想,形成数学观念,掌握数学技能,不应被那些无关宏旨,貌似深刻的问题所左右,以免浪费精力,由此想到在一些小学的数学习题中讨论0/5是不是真分数、X=3是不是方程,在一些中师的教材中讨论繁分数、带分数的定义,都让人有故弄玄虚的感觉。波利亚曾经一针见血地指出:用那些缺乏推动力、得不到什么收获的乏味的证明充塞着教本的每一页,会给最好的学生带来极坏的印象。数学的内容如此丰富,应用如此广泛,为什么不可以让它严肃的面孔露出些笑靥呢?抽屉原理、容斥原理、统筹法、对策论都可以十分生动的题材提前与小学生见面。教材的体例也可打破例题+习题的传统模式。可以是一组卡通片,一套漫画,一个故事,尽可以迎合小学生的心理。令人欣慰的是《九年义务教育小学课本》已透出这种气息,我们应该怎样让中师生从中汲取营养呢?
四、教学方法
有人认为:“能激发学生学习数学的兴趣就是高明的教师。”培养学生的数学兴趣应该成为衡量教学方法优劣的指标,教师必须生动活泼地教数学。教学实践证明,当教师讲些“活数学”或者把数学与哲学、美学及其它文化相联系时,学生就会表现出兴趣,缺乏文化气息的数学教学,学生会索然寡味,认为数学仅仅是计算和推演。优秀数学教师的教学大都有较强的文化气息,这一特点
也是他们成功的因素之一。只有在生动活泼的方式中学习数学的未来教师,才可能以相似的方式成功地教学生。
斯托利亚尔讲过:“数学教学是数学活动的教学”,教师要引导学生深入到学习过程中去,鼓励他们探索、争论和发现。以下两个例子可以给人们一些启示。
讲坐标系:在课堂上,用两根塑料绳拉成坐标架,指定一个同学为原点,然后让每个同学找
出自己的坐标。
认识“一分钟”的概念:让学生在一分钟时间内,翻书页、写名字、跳绳、走步、拍手、感受一分钟的长短,而不是仅仅指出1分钟等于60秒。
数学是生动的,激动人心的,让学生在主动参与的过程中深刻理解,使所有学生都建立起能够学好数学的自信心。
新世纪已经向我们走来,时代向我们提出了素质教育的要求,我们应当努力创造适应新的时代要求的数学教育,使未来公民的文化素养中有更多的数学含量。*
第二篇:数学语言教学刍议
数学语言作为一种表达科学思想的通用语言和数学思维的最佳载体,包含着多方面的内容;其中较为突出的是叙述语言、符号语言及图形语言,其特点是准确、严密、简明。由于数学语言是一种高度抽象的人工符号系统,因此,它常成为数学教学的难点。一些学生之所以害怕数学,一方面在于数学语言难懂难学,另一方面是教师对数学语言的教学不够重视,缺少训练,以致不
能准确、熟练地驾驭数学语言。本文根据数学语言的特点及数学要求,谈谈教学中的实践与认识。
首先,注重普通语言与数学语言的互译普通语言即日常生活中所用语言,这是学生熟悉的,用它来表达的事物,学生感到亲切,也容易理解。其他任何一种语言的学习,都必须以普通语言为解释系统。数学语言也是如此,通过两种语言的互译,就可以使抽象的数学语言在现实生活中找到借鉴,从而能透彻理解,运用自如。
“互译”含有两方面的意思:一是将普通语言译为数学符号语言,也就是通常所说的“数学化”,例如方程是把文字表达的条件改用数学符号,这是利用数学知识来解决实际问题的必要程序。二是将数学语言译为普通语言。数学实践告诉我们,凡是学生能用普通语言复述概念的定义和解释概念所揭示的本质属性,那么他们对概念的理解就深刻。由于数学语言是一种抽象的人工符号系统,不适于口头表达,因此也只有翻译成普通语言使之“通俗化”才便于交流。
其次,注重数学语言学习的过程,合理安排教学数学概念和数学符号的形成一般包括逻辑过程、心理过程和教学过程三个环节。逻辑过程能够揭示概念之间的各种逻辑关系,便于对数学结构从整体上理解,有助于学生对数学本质的理解与认识。心理过程是指学生从学习数学语言到掌握数学语言的过程,这种过程往往是因人而异。数学符号和规则从现实世界得到其意义,又在更大的范围内作用于现实。学生只有在理解数学语言的来龙去脉及意义,而且熟练地掌握他们的各种用法,从而得到理性的认识之后,在数学学习中才能灵活地对它们进行各种等价叙述,并在一个抽象的符号系统中正确应用,从而达到对数学符号语言学习的最高水平。教学过程则是教师具体对某个数学符号进行讲解、分析、举例、考查的过程,教师在教学中要善于驾驭数学语言。
1.善于推敲叙述语言的关键词句。
叙述语言是介绍数学概念的最基本的表达形式,其中每一个关键的字和词都有确切的意义,须仔细推敲,明确关键词句之间的依存和制约关系。例如平行线的概念“在同一平面内不相交的两条直线叫做平行线”中的关键词句有:“在同一平面内”,“不相交”,“两条直线”。教学时要着重说明平行线是反映直线之间的相互位置关系的,不能孤立地说某一条直线是平行线;要强调“在同一平面内”这个前提,可让学生观察不在同一平面内的两条直线也不相交;通过延长直线使学生理解“不相交”的正确含义。这样通过对关键词句的推敲、变更、删简,使学生认识到“在同一平面内”、“不相交的两条直线”这些关键词句不可欠缺,从而加深对平行线的理解。
2.深入探究符号语言的数学意义。
符号语言是叙述语言的符号化,在引进一个新的数学符号时,首先要向学生介绍各种有代表性的具体模型,形成一定的感性认识;然后再根据定义,离开具体的模型对符号的实质进行理性的分析,使学生在抽象的水平上真正掌握概念(内涵和外延);最后又重新回到具体的模型,这里具体的模型在数学符号的教学中具有双重意义:一是作为一般化的起点,为引进抽象符号作准备,二是作为特殊化的途径,便于符号的应用。
数学符号语言,由于其高度的集约性、抽象性、内涵的丰富性,往往难以读懂。这就要求学生对符号语言具有相当的理解能力,善于将简约的符号语言译成一般的数学语言,从而有利于问题的转化与处理。
3.合理破译图形语言的数形关系。
图形语言是一种视觉语言,通过图形给出某些条件,其特点是直观,便于观察与联想,观察题设图形的形状、位置、范围,联想相关的数量或方程,这是“破译”图形语言的数形关系的基本思想。例如,长方体的表面积教学,学生初次接触空间图形的平面直观图———这种特殊的图形语言,学生难于理解,教学时可采用以下步骤进行操作:①从模型到图形,即根据具体的模型画出直观图;②从图形到模型,即根据所画的直观图,用具体的模型表现出来,这样的设计重在建立图形与模型之间的视觉联系,为学生提供充分的感性认识,并使它们熟悉直观图的画法结构和特点;③从图形到符号,即把已有的直观图中的各种位置关系用符号表示;④从符号到图形,即根据符号所表示的条件,准确地画出相应的直观图。这两步设计是为了建立图像语言与符号语言之间的对应关系,利用图形语言来辅助思维,利用符号语言来表达思维。
总之,在数学教学中,教师应指导学生严谨准确地使用数学语言,善于发现并灵活掌握各种数学语言所描述的条件及其相互转化,以加深对数学概念的理解和应用。
第三篇:浅谈中师数学题库建设的若干问题
中师教育要实现标准化、现代化,教育、教学管理就要科学化、规范化。为此,建立一套完善的评估制度和各学科教学质量评估标准,建设中师各学科题库,充分利用计算机这一现代化工具优化教学质量管理,势在必行。本文试图就中师数学题库建设中的若干问题作些探讨。
一、建设题库有利于中师教学质量评估科学化、规范化
中师教育是定向的职业教育,因此,中师考试(包括全省毕业会考、校际统考和校内的各种考试)不像高中考试那样在很大程度上受全国性“高考”的影响和制约,然而,它的基本功能同样是科学、客观、准确地检测学生的学习效果,有效、可靠地评价教学质量。对中师考试命题同样有高标准的质量要求,即要求这具有科学性、可靠性和有效性。这里的科学性是指符合教育测量原理,采用适当的测量手段和合理的评判标准;这里的可靠性又称作信度,是指考试分数的稳定性和一致性;这里的有效性又称作效度,是指一次考试对所要测量的指标实施测量后所得结果的准确程度。
近年来,各地中师的管理干部和教师在改革考试方法、提高考试命题质量方面作了许多探索。例如不少学校都采用了“教考分离”的方法,在期中和期末考试前,或者组织校内交叉命题,或者聘请外校优秀教师命题。有些省组织全省统一命题。有些地区的若干所中师联合起来协作命题,请协作单位内各学科第一流的教师分工负责命题,编制供各校选用的参考试卷。例如1994年底苏州、无锡、常州、泰兴等地的8所中师联合组织了涉及8个主要学科的期末考试协作命题。应当说,采取这些措施对于提高考试命题的客观性和权威性,对于增强命题教师的责任感、提高考试命题的质量等,都有一定的成效。但是,实践表明这些改革举措在提高考试命题的质量和效率方面并没有取得突破性的进展,没有产生“质”的飞跃。其根本原因在于命题教师目前只具备沿用传统方式,即经验型的、手工作坊式的命题方式进行命题的条件,不具备运用现代化命题手段的条件。目前供命题教师选择试题的“资料库”是一些参考书和习题集(其中供中师专用的很少),试题的取舍完全取决于少数命题者对教学内容、教学目标的理解,对试题难度的把握多半取决于他们对学生学习水平的估计,命题的整个操作过程以少数命题者的教学经验为参照系,因此主观认识上的局限性、随意性难以避免,命题质量往往低于人们的期望值。常见的命题失误有以下几种:
1、试题内容的知识覆盖面过窄。各部分考核内容在试题数量、权重分配方面比例失调,某些章节的试题过多(或过少),权重过大(或过小)。或者考核内容与考核目标的分层要求之间出现明显的不协调,例如某一考核内容的试题其最低层次(识记)和最高层次(创见)的比重过大,中间层次(理解和运用)的比重过小。
2、同一份试卷中试题的难度高低起伏太大,有些题特别难,有些题特别容易,因为导致部分试题的区分度接近于0。或者,试卷中全部是中等难度的题,难度差异过小。这样,使整套试题的信度、效度都不高。
3、试题的总量偏多(或偏少),试卷的总体要求偏高(或偏低),使考生的考试用时偏紧(或偏松),平均考分过低(或过高)。
4、试题的内容和表达形式比较陈旧,试卷中流传已久的“保留题”、“成题”过多,经加工、创新的题目少,反映新教材编写新意的题目少。
采用经验型的、手工作坊式的命题方式,有时免不了要作低水平的重复劳动,不仅使考试命题的质量难以提高,而且使命题工作乃至学校对考试的组织管理工作的效率都难以提高。因此,教师常有“出试卷难,出高质量试卷更难”的感叹。
题库应用技术是提高教育测量效果与效率的一种新技术。建立题库,在现代教育理论指导下在命题技术方面来一场革命,这是提高中师考试命题质量,使教学质量评估科学化、规范化的重要途径。题库应用技术推广以后,教师将告别手工命题的传统方式,只要通过键盘操作就能让计算机自动产生高质量的试卷。这对于提高教学质量管理水平,对于逐步实现教师办公自动化等都有重要意义。这是因为:
1、题库是大批优良试题的储存库,凡是入库的试题都是经过严格筛选,并按合理的原则组织起来的,其技术参数、质量指标(如难度、区分度等)是经过测定的。题库犹如“零件库”,题目数量多,品种齐全,规格型号标注清楚,检索方使,可为组装各类优质“产品”提供足够多的“标准件”。而且库内的优良试题不会只用一次就丢弃,可以不断积累、充实。
2、题库内的全部试题都具有标准统一的技术参数,便于人们按照一定的科学程序,按试题已有的技术参数挑选试题,优化组合成内容、性质、难度等各不相同的试卷,使试卷符合预定的各项质量指标,保证考试的信度和效度,从而使整个测量系统具有较好的稳定性、一致性和通用性。
3、由计算机管理题库,自动化程度高,可大大提高命题工作的效率,减轻命题教师负担。计算机题库系统具有自动寻找的功能,便于教师通过手指击键、自行选题编卷。利
用这种管理系统还能让计算机根据命题要求自动自成试卷,自动完成试卷及考分的等值处理,必要时还能生成互相等值的平行试卷,能客观地比较历次考试的不同水平,从而为教学质量的优化管理提供科学依据。
4、利用题库系统自动生成试卷,要求命题者事先制订好详细的命题计划,并按规定输入有关信息,这有助于克服命题的盲目性和随意性,使命题过程规范化。
二、建设中师数学题库的指导思想与原则
学科题库与习题集、题典的实质性区别在于它是一个运用教育测量学、教育统计学的原理和方法,借助于先进的计算机软件技术而建立起来的教学测量系统。构建题库是一项复杂的系统工程。在建立一个规模较大、功能齐全、水平较高的题库前,首先必须明确建库的工作目标、指导思想与原则。
构建中师数学题库的工作目标是要形成一个适应目前和未来中师数学教学需要,能服务于各地中师日常教学和各类学习水平测试需要的通用测试系统。这个系统的核心部分由一个具有分层结构的题库群组成。这个题库群中有一个是总库,还有若干个相互独立又有密切联系的一级分库(例如代数分库、立体几何分库、解析几何分库、小学数学基础理论分库、小学数学教材教法分库等),每个一级分库下可再设二级分库(例如代数分库下面再设集合分库、函数分库、不等式分库、数列分库、排列组合分库、复数分库等等)。总库与各级分库之间的关系呈树形结构。总库和各级分库都配备有相应的试卷生成系统等处理系统。这样安排,既有利于分阶段、分工完成建库工作,又有利于灵活使用各级题库。
构建中师数学题库的指导思想应是:以国家教委发布的中师数学教学大纲和全国通用中师数学教材为依据,以教育学、心理学原理为指导,以科学的教育测量技术和计算机应用技术为基础,以各地优秀的中师数学教师先进的教学实践经验为参照。不仅要使题库质量充分体现本学科最优秀的专家、教师的水平,同时还要融合心理与教育测理人员、计算机专业人员,同时还要融合心理与教育测理人员、计算机专业人员和中师教育行政管理人员的集体智慧。
就建库实践而言,应贯彻以下几项原则:
1、在建库的初级阶段,应以经典测量理论为指导理论。这样有利于题库的协作共建和迅速推广应用。目前最有代表性的教育测量理论有两种:经典测量理论(简称CTT)和题目反应理论(简称IRT)。它们在本质上是一致的,都是通过考试分数来推测学生的能力水平,主要区别在于对试题的技术参数的分析及演绎的功能方面。
CTT是传统教育测量理论的代表。它对试题的难度、区分度等参数采用直接测算的办法。例如,用一组被试解答某个试题的实际得分相对于满分值的比率来确定该试题的难度参数。这比较符合人们的思维习惯和一般教师的操作习惯。CTT的主要缺点是它对试题技术参数的测定结果受样本的影响较大,这对组拼试卷会有不利影响(这种影响经多次实测、对试题参数不断修正后可望减小)。
IRT是现代教育测量理论的代表。从理论的严密性、深刻性来说它比CTT更优越。IRT通过把学生的能力水平与答对题目的概率挂钩来决定试题的技术参数(如难度、区分度等),借助题目特征曲线来表征这种关系,与样本不直接相关。在这方面较CTT更合理。但是,由于IRT的技术复杂,参数测试的工作量大,不如CTT直观、简明,因此目前难以大面积推广。
2、中师数学题库应具有鲜明的中师特色,体现中师数学教学大纲的各项要求,适应中师生的学习水平,应与经国家教委审定的“中师数学学科教学质量评估标准”配套。对于“高中数学题库”、“中专数学题库”中的优秀试题,只要内容相符,可以移值或借鉴,但不可原封不动照搬,对其技术参数等应作相应处理。
3、题题中试题的储存量要足够大。中师数学教学大纲中的每一部分内容,都应有从不同角度考查的题,都应有不同难度的题。试题总量就充分满足中师各年级“节”的形成性测验、“章”的单元测验以及学期考试、学年考试、结业考试等命题的需要。
4、题库中试题的分类要清楚,组织要严密。可先按考试类别分类,再按教学内容分类,同一教学内容的试题,根据教学目标的层次高低、试题的难度高低按顺序排列。
5、入库的每道试题的题意要清楚,题文用语要准确、精炼,题图要规范,并附标准答案(或答案要点)、满分值、评分规定、难度参数、区分度参数、答题时间等信息。
6、题库应是一个动态系统,能供用户随时增删题目,更换题中数据。
7、题库作为一个数学测量系统,应随时保持其整体性和可靠性。
8、建设中师数学题库应有一个高起点,应充分吸收和利用国内外题库建设的先进经验。
三、中师数学题库管理系统的组成与主要功能
中师数学题库的计算机管理系统应有五个方面的功能:建库和维护,查询检索,生成试卷,编辑输出,测试分析。为了实现这些功能,要建立以下六个子系统:
1、建库和维护子系统。其一能用于建库,将每道入选试题的题文、题图、答文、答图、技术指标等有关信息分别存在题文库、题图库、答文库、答图库、指标库等子库内。各子库内属于同一道试题的信息通过统一的题号联系起来,以便于作同步处理。其二能用于题库的维护,如增、删、修改、替换试题,调整试题。
2、查询和检索子系统。其功能是查询库中试题的分布情况,可根据用户要求,检索任一试题的题文、题图等有关信息。
3、交互式组卷子系统。其功能是供用户通过与机器“对话”的方式,提出命题要求和选择项目,自行选题编卷。
4、自动组卷子系统。其功能是根据用户所输入的命题要求,如考试类别、试题所属章节、试题类型与个数、考试用时、试题难度、区分度等指标,自动生成符合要求的试卷。
5、编辑输出子系统。其功能是对所生成的试卷自动排版、编辑,并打印输出(包括打印试卷、答案、评分规定及有关指标等)。
6、测试分析子系统。其功能是对所输入的考试结果进行统计分析,然后输出试卷和各试题的实测指标,为个性库中试题的有关指标提供依据。
以上六个子系统在主控模块的控制下互相联系,协同配合,组成一个多功能的管理系统。
四、建设中师数学题库的实施步骤
建设中师数学题库是一项计划性强、工作量大、化费时间长的复杂工作。其主要工作的流程可这样安排:
建立课题组→确定命题计划→编题与征题→试测与题目分析→等值化处理→编辑和组织试题→计算机软件设计→输入程序和数据→检验和试用软件。
关于上述各个工作环节的实施要点,本文不一一详述。这里只对其中几个主要环节提一些看法和建议。
1、建立课题组。最适当的主持单位可以是国家教委考试管理中心,也可以是“全国高师数学教育研究会中师工作委员会”。这个课题组的主要成员,似应包括编订中师数学教学大纲的专家、编写中师数学教材的行家、在教学第一线任教的优秀数学教师、从事考试研究的专业人员和高水平的计算机软件工作者。由于工作量巨大,可考虑成立若干个以省、市为单位的协作组。可先在少数省市搞试点。
2、确定命题计划。主要任务是编制出一套详细的“双向细目表”,反映各部分教学内容与教学目标分层要求之间的量化关系,这样的“双向细目表”应逐章逐节编,为整个题库建设工作提出一个具体的蓝图。其中教学目标的分层要求可设“识记”、“理解”、“简单应用”、“综合应用”、“创见”等五项。此项工作最好由各册全国通用教材的编者先完成初稿,然后组织严格的鉴定。
3、编题与征题。大量的入库试题主要通过三种渠道得到,其一是组织一部分学科专家和有经验的教师按命题计划编拟试题;其二是从国内处各种教材、习题集、试题集中精选试题;其三是向各地中师教师广泛征集试题,然后进行必要的加工。此项工作可充分领先各省市数学中心组的力量,将具体任务分解、落实到师资力量较强的省市。
4、计算机软件设计。题库的各种优越性最终是通过计算机管理系统的功能显示出来的,只有高水平的软件才能圆满实现预期的功能。此项工作可委托给专业水平高的软件研究和开发机构来完成,也可适当吸收一些确有专长的中师计算机教师参与部分软件的开发工作。无论是从实用性还是从经济效益来考虑,全国各地使用的中师数学题库应当配备规格相同、运行环境相同的计算机管理系统,这样,在条件成熟的时候可实行联网,实现资源共享,实现远距离信息交流。
第四篇:现实数学观与生活数学观
案例分析:现实数学观与生活数学观
儿童的生活经验是指小学生在生活中通过亲身经历、体验而获得的对事物的认识和反映,具有自然性、生成性、发展性等特点。自然性是指学生生活在瞬息万变的社会中,各种各样的生活现象都会毫无阻拦地进入他们的认知领域,从而形成他们“自己的经验”。当然这种经验很大程度上是原始的、粗浅的、局部的、零散的,甚至是不准确的、不科学的,但却是十分难得和可贵的。生成性是指学生在生活和学习的过程中,存在着对自己已有的经验进行调用、调整、提升或者重新确立的过程,也存在着对活动中新的认识不断接受、理解和内化的过程。这些过程实质上就是新的经验建立和生成的过程。发展性是指经验的建立和运用是一个动态的、不断积累、丰富发展的过程,这也是人的内在素质和能力提高的过程。任何学习都是在先前经验基础上的主动建构,这种建构的结果又会导致经验系统的变化,在这种螺旋上升的发展过程中,学生的经验得以进一步丰富和发展,学习的质量进一步提高。
小学数学学习应是儿童自己的实践活动,要让数学学习与儿童自己的生活充分融合起来,将学习纳入他们的生活背景之中,再让他们自己寻找、发现、探究、认识和掌握数学。儿童的数学学习的组织,应源于他们的数学先生,即数学学习活动存在于儿童与外部世界的沟通与交流的过程中。数学学习应当成为让学生亲身体验数学问题解决的一种活动,让学生通过自己去仔细地观察,粗略地发现和简单地证明。
在本例中,教师设计了实际的生活化情境,让学生从已有的经验出发,观察、辨析并实验、操作,使数学概念的形成过程变为在问题情境的尝试操作下的思考和分析过程,这种融生活化策略和操作性策略为一体的教学设计,充分考虑了儿童数学学习的特点,体现了现实数学观和生活数学观。但是,数学概念的学习和表示数学概念的语言学习上不同的。“平均数”作为表示数学概念的语言,指的是一种词汇的认识;“平均数”作为一个数学概念,是对一组数的集中和离散程度的本质认识。掌握了单个词汇并不一定就是理解了概念。本例中,在采用“常规方法”来组织学习“平均数”知识的班级中,虽然在概念的形成过程中,设计了生活化情境,可在跟进活动中学生仍然不能将问题与习得知识建立联系甚至不能理解真实情境问题本身的意义,就是因为他们没有真正理解作为数学概念的“平均数”的本质意义。
小学生数学学习的实质是,用自己与世界相互作用的独特经验去建构有关数学学科知识和技能的过程。从这个意义上说,小学儿童的生活经验理所当然地成为他们数学学习的一个重要基础,进而成为我们构建小学数学教学模式和开发小学数学活动课程的庞大资源库。小学儿童的数学学习与生活经验是紧密相连的,他们的学习过程就是一个经验的激活、利用、调整、提升的过程,是“自己对生活现象的解读”,是“建立在经验基础上的一个主动建构的过程”。小学儿童的数学学习活动与其说是“学习数学”,倒还不如说是生活经验的“数学化”。学生从现实出发,经过反思,达到“数学化”。在这一过程中,“数学现实”是十分重要的。对于小学生来说,“数学现实”也许就是他们的“生活经验”。一方面丰富的生活经验是小学生数学学习的前提、基础和重要资源,是保证数学学习质量的重要条件;另一方面,有效的数学学习也能促进经验的应用、提炼和积累。数学学习的过程其实就是一种经验积累的过程,就是一种新的“经历”和“体验”,这种“在生活中学习数学”的方法是数学思想的具体体现。因此孩子应更多地通过真实的问题情景,产生运用数学来解决问题的需要,并且亲自实践,在探索中发现数学和学习数学。
请举例说明,影响小学数学课程目标的基本因素有哪些?
小学数学课程目标的设置受多方面因素的影响,主要有以下三个方面:
一、社会进步对数学课程目标的影响
首先,随着科学技术的发展,信息时代的到来,对人的数学素养提出了更高的要求。如对每天的天气预报中的“降水概率”等的理解问题。
其次,市场经济需要人们掌握更多有用的数学。如对股市中的各类“趋势统计图表”掌握与理解。最后,生活中需要面对越来越多的数学语言。如报纸、杂志中随处可见的统计图表、比例、分数、小数、百分数等符号的理解、识别与阅读。
二、数学自身发展对数学课程目标的影响
随着经典数学的繁荣和统一,许多数学应用方法的产生,特别是与计算机的结合,使得数学在研究领域、研究方式、应用范围等方面得到了空前的拓展。数学科学自身的发展必然对数学学科教育教学的课程目标提出了新的要求。一是课程目标的地位得到显著提高,二是学生可以通过做数学来学数学,体会观察、尝试、合情推理、猜想实验等科学研究方法,另外,随着计算机的发展,计算与解题技能的培养目标削弱,判断、优化的能力目标需要加强。
三、儿童的发展观对数学课程目标的影响
新的儿童发展观关注儿童的发展,从关注精英数学转向关注大众数学,强调学习适合每一个个体的数学,培养人的数学素养,提升公民的素质成为重要的课程目标。
第五篇:刍议小学数学几何教学
刍议小学数学几何教学
摘 要:数学是小学教育基础教学内容,关系到学生数学思维的培养,关系到学生抽象能力的提升。几何是小学数学教学中的重要组成部分,?P系到学生对生活中空间的认识和描述。所以,做好几何教学,保证教学质量是提升儿童空间观念的必然选择。本文就小学数学几何教学策略进行了分析研究。
关键词:小学数学;几何;抽象思维
图形和几何作为小学生数学概念的重要内容,在实际的课程中常常会发现教学目标不明确、学生理解能力差等问题。对此,教师必须要积极运用多种教学方式,帮助学生认识到几何教学中图形的特征、大小、位置关系等,引导学生感受图形变化背后的几何知识。
一、从生活实际出发,重视直观教学
对于儿童来说,尤其是低年级的儿童,通过观察和操作建立学习经验是学生几何学习的起点。通过游戏儿童可以积累一定的几何经验,比如通过积木搭建某种图案的时候,他们已经可以区分积木的不同形状,他们选择用球形的积木作为人的脑袋,长方体形状作为人的四肢。同样,儿童在利用积木搭建房屋的时候,他们会注意到一些图案的对称性。
所以在低年级开展几何教学的过程中,教师可以利用学生对直观物体的体验帮助他们区分几何图形。比如通过拼、搭等活动让他们利用直观物体对对象进行分类,用火柴棍构建图形来加深学生对图形特征的认识。
二、注意经验积累
几何图形的性质还是形成具有空间观念的基础,儿童在明确几何图形的性质特征后,从具体的观察对象开展,建立关于图形形状特征的认识。必须要先经过儿童的观察才能认识图形性质,了解图形性质之间的关系。儿童观察可以从多个角度进行,可以直观的观察具体实物,也可以观察几何模型。实物观察可以提高学生对形状的认识,比如对正方体实物的观察可以让学生认识到正方体有6个面,12条同样长的棱等;几何模型的观察,可以帮助学生对图形的性质进行观察,比如通过圆柱体的侧面展开图学生可以直观认识到圆柱体的侧面是一个长方形,并且底面是一个圆形。要让学生学会“虚实”结合的进行观察。学生在观察物体及图形时,由于往往只能从一个角度进行观察,如观察长方体时,有时只能看到一个面,有时能同时看到两个面,最多同时看到三个面,但无论从哪个角度观察都是不能同时看到长方体的六个面,无法观察到完整的一个长方体整体,在解决问题时就需要学生在观察时想象出观察不到的面的情况,甚至有时要想象出不同的角度可以看到什么图形,从而引导学生不仅观察形体的表面现象,更要透过表面现象观察形体的本质,学生在这样边观察边想象的活动中,才能更有效的积累空间经验,发展空间观念,提高空间想象能力。
三、强化动手操作
儿童学习几何知识更多的是直观几何,即经验几何。所以,儿童获得几何知识形成空间意识主要是靠他们动手操作得来的。在这个过程中,通过不断对物体的搭建、分类、组合来提高自己对几何知识的想象力,积累丰富经验。
比如低年级学生几何学习操作可以加深他们对直观特征的认识。老师通过让学生去触摸卡片来区分图片的形状所获得的经验就不如让儿童自己用小木棒去搭建这些图形所获得的经验更好。等学生经验稍微高点后,就可以开始更为抽象的几何学习。比如对长方形计算面积的学习是通过方格形式获得的。通过割补的方法来学习习近平行四边形或者是三角形的计算方法。
四、提倡生活应用
从生活中获得的经验是学生几何思维发展的重要途径,课程教学中教师需要积极利用学生生活经验,提高学生将几何知识和几何能力应用性,解决生活中的几何问题。让学生在几何知识的应用过程中发展空间意识,培养学生抽象思维能力。
五、丰富学生的想象力和交流能力
儿童几何语言的学习是学生在对图形操作实验完成后,通过交流逐渐发展起来的。运用几何语言是提高学生几何概念的重要途径。学生在经过不断尝试后才能实现几何概念的准确传输,才能促进儿童空间思维的发展。所以在教师教学的过程中应多利用图形描述法,让学生描述其所看到的图形的各个部分的名称和结构给另外一个学生听,使得这个同学可以准确画出原图。
六、结束语
总而言之,小学数学几何学习对儿童来说不仅仅要学习知识,更需要提升他们的空间观念和空间能力。教师必须要认识到几何教学的重要性,从直观教学、丰富学生想象力、促进学生交流、强化动手操作、促进学生在生活中的应用等各个方面来提高学生度几何知识学习的质量,从而培养学生空间意识,提升学生抽象思维能力。
参考文献:
[1]徐璐“图形与几何”.教学策略现状调查与对策研究[D].扬州大学,2017.[2]曹翠婷.小学几何教学研究[D].内蒙古师范大学,2014.