第一篇:七年级数轴教案
课题:1.2.2数轴
学习目标:
1、掌握数轴概念,理解数轴上的点和有理数的对应关系。
2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数
轴上的点读出所表示的有理数。
3、使学生初步理解数形结合的思想。
教学重点:数轴的概念。
教学难点:从直观认识到理性认识,从而建立数轴的概念,并初步体会数形结合的思想方法。
教学过程:
一、创设情境:
问题1:在一条东西走向的马路上,有一个汽车站,汽车站东3米和
7.5米处分别有一棵柳树和一棵杨树,汽车站西3米和4.8米处分别有一棵槐树和一根电线杆,你能画图表示这一情境吗?
师提出问题:(1)先画什么呢?
(2)先找什么?再找什么?
(3)怎样正确摆放这几者的位置呢?
问题2:怎样用数轴简明地表示这些树,电线杆与汽车站的相对位置
关系(方向、距离)
师生合作完成二、合作交流,探索新知
引导学生思考上面的问题,引导学生建立数轴的概念。
问题3:怎样正确地画一条数轴,数轴需哪几个条件?
怎样才能将不同数的点清楚表示出来?
尝试画满足条件的数轴。
可以先让学生试着画出自己想象的数轴,并把学生不同画法展示出来。先让学生交流哪种画法规范,然后师生共同分析归纳得出数轴的特征:
(1)数轴是一条直线。
(2)数轴三要素:原点
正方向
单位长度
由此我们可以说:规定了原点、正方向和单位长度的直线叫做数轴。练习:下列图形哪些是数轴?哪些不是,为什么?
(题目及图形在导学案上)
三、动手操作,亲身体验。
问题
4、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?
(1)画出数轴并表示下列有理数
91.5-22-2.52(2)写出数轴上A、B、C、D、E表示的数
(图形在导学案上)
观察发现:(1)哪些数在原点的左边?哪些数在原点的右边?由此你会
发现什么规律?
(2)每个数到原点的距离是多少?由此你会发现什么规律?
小组讨论,交流归纳完成上述问题。
四、巩固提高
1、画出数轴并表示下列有理数。
(1)-3-2-10123
(2)-30-20-100102030
(3)155122-2-
2五、课堂小节:、数轴的概念。、数轴的三要素。、数轴的作法及数与点转化过程。
六、作业:
必做题:教科书第14面习题1、2第二题123
第二篇:七年级上册数轴教案
数 轴
一、教学目标
(一)知识目标:
1.使学生正确理解数轴的意义,掌握数轴的三要素
2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.
(二)能力目标
1.使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识,提高应用数学的能力
2.让学生渗透数形结合的思想方法.
(三)情感态度目标
1、通过对实数进行分类的练习,让学生进一步领会分类的思想,鼓励学生要从不同角度入手,寻解决问题的多种途径,训练学生的多角度思维,为他们以后更好地工作作准备。
2、体会数学知识与现实世界的联系,体现数学充满着探索性,培养学生良好的数学兴趣;能够在师评、生评、自评的影响下,树立学习数学的自信心。
二、教材分析
本节课取于新人教版七年级上册,主要是在学生学习了有理数概念的基础上,从标有刻度的温度计来表示温度高低这一实例出发,引出数轴的画法,定义和用数轴上的点来表示数的方法,初步向学生渗透数形结合的教学思想,以使学生借助直观的图形来理解有理数的有关问题。数轴不仅是学生学校相反数、绝对值等有理数只是的重要工具,还是以后学好不等式的解法、函数图象及其性质等内容的必要基础只是。
三、学习者分析
七年级学生对生活中的丰富现实情境有强烈的好奇心;学生好动,爱发表见解,希望得到老师的表扬,但是注意力容易分散,缺乏学习的方法和语言概括能力,并且对基础只是不够重视,因为容易造成对概念分析不清,把握不透。在教学中充分利用学生的好奇心,一方面要运用直观生动的教学,引发学生的兴趣,使他们的注意始终集中在课堂上;另一方面要创造条件和机会让学生发表见解,发挥学生学习的主动性,主动与他人交流、合作。
四、教学重难点
1.重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数. 2.难点:有理数和数轴上的点的对应关系。
五、教学方法
1.教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣—手脑并用—启发诱导—反馈矫正”的教学方法.
2.学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习.
六、教具准备
三角板、电脑、投影仪、PPT幻灯片
七、教学步骤
(一)创设情境,引入新课
1、复习以前学过的知识——有理数包括正数、负数和0,以及怎样来表示有理数,除了用数值来表示外,还可以用刻度来表示。
2、让同学们思考,在日常生活中,有那些例子是用刻度来表示数值的,从而引出温度计。
3、让同学们回忆,温度计有些什么特征,通过分析温度计的特征——刻度均匀、有零刻度等,引导学生思考,能不能把所有的有理数都表示在这样一条线上?然后引出这节课的内容——数轴。
【教法说明】从温度计用标有读数的刻度来表示温度的高低这个事实出发,引出本节课所要学的内容—数轴.再从温度计这个实物形象抽象出数轴来研究.既激发了学生的学习兴趣,又使学生受到把实际问题抽象成数学问题的训练,培养了用数学的意识.
(二)探索新知识,讲授新课
1.数轴的画法
与温度计类似,可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零,具体做法如下:
(1)画一条水平的直线(要表示出所有的有理数,就需要一条能够两段无限延伸的直线)
(2)在数轴上取一个点,表示0,命名为原点。原点讲直线分成了以原点为端点的两条射线,用这两条射线,分别来表示正数和负数,原点左边表示负数,右边表示正数。(3)把从原点向右的方向标为正方向。
(4)选适当的长度作为单位长度,并标出„,-3,-2,-1,1,2,3„各点。具体如下图。
【教法说明】教师边讲解边示范,学生跟着一起画图.培养学生动手、动脑和实际操作能力,同时,把类比作为一种重要方法贯穿于概念形成过程的始终,让学生在认知过程中领悟这种思想方法.
3.数轴的定义
让学生观察画好的直线,思考这条直线包括了哪些元素,让学生根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义.
数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴.
向学生提出问题:数轴上是不是都规定了原点、正方向和单位长度,引导学生结合温度计正确回答这个问题,从而知道数轴三要素的重要性,了解三者缺一不可,认识和掌握判断一条直线是不是数轴的依据.
【教法说明】通过“观察—类比—思考—概括—表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力. 3.画数轴常见几种错误
请一位同学到黑板上画一条书走,其他同学在草稿本上面画。发现同学们在画数轴时出现得错误,进行讲解,指出容易画错的地方:
1)没有方向
2)没有原点
3)单位长度不统一
4.有理数与数轴上点的关系
通过刚才的学习我们知道所有的有理数都可以用数轴上的点来表示.
例1 画一条数轴,并画出表示下列各数的点:
1,5,0,-2.5,.
学生练习:同学们在练习本上画一条数轴,然后在数轴上标出各点,一名学生板演.教师巡回指导,发现问题及时纠正.
【教法说明】让学生动手自己画数轴,有助于培养学生实际操作能力.例1是把给定的有理数用数轴上的点来表示,完成由“数”到“形”的思维过程,有助于学生加深对数轴概念的理解.
5.尝试反馈,巩固练习
①说出下面数轴上A、B、C、D、O、M各点表示什么数?
【教法说明】进一步巩固加深本节所学的内容.
(三)归纳小结
①数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示数与形之间的内在联系,是帮助学生理解数学、学习数学的重要思想方法.本章有理数的有关性质和运算都是结合数轴进行的.
②掌握数轴三要素,正确地画出数轴,提醒同学们,所有的有理数都可用数轴上的各点来表示,但是反过来不成立,即数轴上的各点,并不是都表示有理数.以后再研究.
八、板书设计
数
轴
一、复习旧知识
二、数轴的画法
四、数轴与有理数的关系
例1 正数
+1、3 0 负数
三、数轴的定义
规定了原点、正方向和
单位长度的直线叫做数轴
例2
九、教学反思
在教学过程中,要始终注意发挥学生的主体作用,让学生通过自主、探究、合作学习来从中主动发现结论,实现师生互动,通过这样的教学实践取得好的教学效果。教师不仅要教给学生知识,更要培养学生良好的素养和学习习惯,让学生学会学习。
第三篇:数轴教案
学科:数学 教学内容:数轴
【学习目标】
1.通过与温度计的类比,认识数轴,会用数轴上的点表示有理数.
2.借助数轴了解相反数的概念,认识互为相反数的一对数在数轴上的位置关系,能用数轴比较有理数的大小.
【基础知识精讲】
1.数轴三要素及数轴画法
(1)数轴三要素:原点、单位长度、正方向.其中可以选取某一长度作为单位长度,规定直线上向右的方向为正方向.
(2)取一直线,直线上具备了数轴的三要素,那么它就可以称为数轴了. 2.数轴与有理数的关系
任何一个有理数都可以用数轴上的点来表示.(反之则不成立.因为数轴上的点不仅可以表示有理数,还有一些点表示的数不在有理数的范围内)3.利用数轴比较两个有理数的大小
(1)数轴上两个点表示的数,右边的总比左边的大.
图2—1(2)正数大于0,负数小于0,正数大于负数.
图2—2 由于数轴上正数在0的右边,0在负数的右边,所以正数>0,0>负数,正数>负数. 如:+7>-10(正数大于负数)0>-3(0大于负数),0<+2(0小于正数)4.相反数的有关知识
(1)定义:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数.
如:-3和3,11和-,-3.2和+3.2„„ 77(2)在数轴上,表示互为相反数的两个点位于原点的两侧,并且与原点的距离相等.
图2—3 如:-3和+3是一对互为相反数,它们在原点的左右两侧,且它们到原点的距离都是3个单位长度.
(3)相反数是它本身的数是0. 说明:数轴是数学中数与图形结合的典范.理解数轴及和数轴有关的知识都可以从几何和代数两方面入手.
【学习方法指导】
[例1]画一个数轴,并在数轴上表示出下列各数,并用“<”号连接起来.
111,-3,-1,0,2 23点拨:①画数轴应必须具备数轴三要素:原点、单位长度、正方向.②用“<”号连接这些数,需要将这些数从小到大排列.而在数轴上右边的数总是大于左边的数,所以只要将数轴上的数从左到右用“<”号连接即可.
解答:图2—4 -3<-
111<0<1<2 32[例2]m,n在数轴上位置如图2—5,则下面结论正确的是„()
图2—5 A.m>0,n<0 B.m>0,n>0 C.m<0,n<0 D.m<0,n>0 点拨:在数轴上的数,右边的总比左边的大.对于m和0,m在0的右边,即m>0,而n在0的左边,所以0>n即n<0.
解答:m>0,n<0.选A.
[例3]数轴上距离原点3个单位长度的数是_____.
点拨:先画出数轴,找到原点.从原点开始向左、向右各数3个单位长度,这两个点到原点的距离相等,且符合题意.
记住:类似的题目答案一般会有两个数. 解答:+3和-3 [例4]填空:(1)-
5的相反数是_____ 2(2)b的相反数是_____(3)-m的相反数是_____ 点拨:不管是数字或是字母,互为相反数的两个数只有符号不同.
解答:(1)5(2)-b(3)m 2[例5]数轴上表示互为相反数的两个点A和B,它们两点间的距离是5,则这两个数分别是_____和_____.
点拨:画出数轴,表示出A和
B.由于它们互为相反数,所以这两个点到原点的距离相等,则每个点距原点2.5个单位长度.在原点左边的点为-2.5,在原点右边则为+2.5.
图2—6 解答:+2.5和-2.5. [例6]比较大小(1)0_____-(2)-
1_____-(3)7_____-10 2点拨:若正数、负数、0互相比较,则用“正数>0>负数”进行比较.若两负数进行比较,将它们标注在数轴上,右边的数大于左边的数.
解答:(1)>(0大于负数)(2)>(数轴上,-1所对应的点在-2所对应点的右侧)2
图2—7(3)>(正数大于负数)
【拓展训练】
求下列各数的相反数.
(1)-(+7)
(2)+(-m)点拨:由于互为相反数的两个数只有一个符号不同:一个为正,一个为负.因为在此题中将括号里的数看做一个整体,括号外的才是它的符号.找相反数时,只要改变括号外的符号即可.
解答:(1)-(+7)的相反数是+(+7)(2)+(-m)的相反数是-(-m)
第四篇:数轴教案
1.2.2 数轴
教学目标:
1.使学生知道数轴上有原点、正方向和单位长度,能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示; 2.向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。
3.使学生进一步理解有理数与数轴上的点的对应关系;巩固在数轴上由数找点、由点读数的方法;4.会借用数轴直观的进行有理数的大小比较,体会数形结合的数学思想。
教学重点:是掌握数轴的概念和画法,明确其三要素缺一不可;利用数轴比较有理数的大小,并归纳出一般规律。
教学难点:数轴上的点与有理数的对应关系的理解是难点。教学中要求学生多动手,增强对“形”的感性认识,培养动手、动脑和实际操作能力。【流程设计】
一、情景创设
1.有理数包括哪些数?0是正数还是负数?
2.温度计的用途是什么?类似于这种用带有刻度的物体表示数的东西还有哪些(直数学中,在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零。链接课件素材20301,展示实物模型,演示从温度计抽象成数轴的动画,激发学生学习兴趣,使学生受到把实际问题抽象成数学问题的训练,同时把类比的思想方法贯穿于概念的形成过程。
二、新知探索
1.请学生阅读新课第52-53页,思考并讨论:
①零上25℃用正数_____表示。0℃用数____表示;零下10℃用负数_____表示。②数轴要具备哪三个要素?
③原点表示什么数?原点右方表示什么数?原点左方表示什么数? ④表示+2的点在什么位置?表示-3的点在什么位置?
⑤原点向右0.5个单位长度的A点表示什么数?原点向左11个单位长度的B点表示
2尺、弹簧秤等)?
什么数?
2.数轴的画法
师生共同总结数轴的画法步骤:
第一步:画一条直线(通常是水平的直线),在这条直线上任取一点O,叫做原点,用这点表示数0;(相当于温度计上的0℃。)
第二步:规定这条直线的一个方向为正方向(一般取从左到右的方向,用箭头表示出来)。相反的方向就是负方向;(相当于温度计0℃以上为正,0℃以下为负。)
第三步:适当地选取一条线段的长度作为单位长度,也就是在0的右面取一点表示1,0与1之间的长就是单位长度。(相当于温度计上1℃占1小格的长度。)
在数轴上从原点向右,每隔一个单位长度取一点,这些点依次表示1,2,3,„,从 原点向左,每隔一个单位长度取一点,它们依次表示–1,–2,–3,„。
3.数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴。
原点、正方向和单位长度是数轴的三要素,原点位置的选定、正方向的取向、单位长度大小的确定,都是根据需要认为规定的。直线也不一定是水平的。
链接课件素材20302,动态演示各种类型的数轴。认识和掌握判断一条直线是不是数轴的依据。
4.温度计里的大小:观察温度计的刻度,发现上边的温度总比下边的高。类似地,在数轴上表示的两个数,右边的数总比左边的数大。
进一步观察数轴,发现所有的负数都在“0”的左边,所有的正数都在“0”的右边,这说明什么? 由学生归纳出: 正数都大于0;负数都小于0;正数大于一切负数。
三、范例共做
例1:判断下图中所画的数轴是否正确?如不正确,指出错在哪里?
分析:原点、正方向、单位长度这数轴的三要素缺一不可。
解答:都不正确,(1)缺少单位长度;(2)缺少正方向;(3)缺少原点;(4)单位长度不一致。
例2:把下面各小题的数分别表示在三条数轴上:
(1)2,-1,0,32,+3.5 3(2)-5,0,+5,15,20;
(3)-1500,-500,0,500,1000。
分析:要在数轴上表示数,首先要正确画出数轴,标明原点、正方向(一般从左到右为正方向)和单位长度这三要素,然后再表示数,第(1)题,数不大,单位长度取1cm代表1,第(2)、(3)题数轴较大,可取1cm分别代表5和500。数轴上原点的位置要根据需要来定,不一定要居中,如第(1)题的原点可居中,(2)的原点可偏左,(3)的原点可偏右,单位长度也应根据需要来确定,但在同一条数轴上,单位长度不能变。表示某个数的点,在图形上一定要用较大的“.”突出来,并且在数轴上写出该点表示的数。这样画出的图形较合理、美观。
例3:借助数轴回答下列问题
(1)有没有最小的正整数?有没有最大的正整数?如果有,把它指出来;(2)有没有最小的负整数?有没有最大的负整数?如果有,把它标出来。解答:观察数轴易知:
(1)有最小的正整数,它是1,没有最大的正整数;
(2)没有最小的负整数,有最大的负整数,它是-1.
例4:比较–3,0,2的大小。
分析一:先在数轴上分别找到表示–3、0、2的点,由“右边的数总比左边的数大”得到–3<0<2;
分析二:直接由“正数都大于0;负数都小于0;正数大于一切负数”的规律得出–3<0<2。
例5:把下列各组数用“<”号连接起来.(1)–10,2,–14;(2)
5–100,0,0.01;
(3)34,–4.75,3.75。解:(1)–14<–10<2;(2)–100<0<0.01;(3)–4.75<3.75<34。
说明:按题意用“<”号连接,解题中不能用“>”号连接,否则与题意不符,更不能把“<”与“>”混用,如第(1)小题不能写成“–10<2>–14”或者写成“2>–14<–10”的形式。
四、检测反馈
1.判断下图中所画的数轴是否正确?
(1)
2.下面数轴上的点A、B、C、D、E分别表示什么数?
(2)
3.将-
3、1.5、21、-
6、2.25、1、-
5、1各数用数轴上的点表示出来。
224.画一条数轴,并在上面标出下列的点。
±100 ±200 ±300 提示:1.图(1)是数据标注错误;图(2)的画法是正确的,在以后的学习中会遇到。
五、小结提高
1.数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数与形之间的内在联系;所有的有理数都可以用数轴上的点表示,但反过来并不是数轴上的所有点都表示有理数;
2.画数轴时,原点的位置以及单位长度的大小可根据实际情况适当选取,注意不要漏画正方向、不要漏画原点,单位长度一定要统一,数轴上数的排列顺序(尤其是负数)要正确。
六、巩固练习
教材P.56 1、2、3
七、课后思考
1.一个点从原点开始,按下列条件移动两次后到达终点,说出它是表示什么数的点?(1)向右移动11个单位长度,再向左移动2个单位。
2(2)向左移动3个单位长度,再向左移动2个单位长度。
2.数轴上表示3和-3的点离开原点的距离是多少?这两个点的位置有什么不同? 3.数轴上到原点的距离是5的点有几个?它们分别表示什么数?
4.某数轴的单位长度是1cm,若在这个数轴上随意画一条长100cm的线段AB,则线段AB盖住的整数点有()A.99个或100个
C.99个或101个
教后感:
B.100个或101个
D.99个、100个或101个
第五篇:数轴教案
数轴教案
[教学目标]
1.掌握数轴的概念,理解数轴上的点和有理数的对应关系;
2.会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
3.感受在特定的条件下数与形是可以互相转化的,体验生活中的数学.[教学重点与难点]
重点:数轴的概念和用数轴上的点表示有理数.难点:同上.[教学设计]
一.创设情境引入新知
观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)
[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)
二.合作交流探究新知
通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件?(原点,单位长度,正方向,说出含义就可以)
[小游戏]:在一条直线上的同学站起来,我们规定原点,正方向,单位长度,按老师发的数字口令回答“到” 游戏前可先不加任何条件,游戏中发现问题,进行弥补.总结游戏,明确用直线表示有理数的要求, 提出数轴的概念和要求(教科书第11页).三.动手动脑学用新知
1.你能举出生活中用直线表示数的实际例子吗?(温度计,测量尺,电视音量,量杯容量标志,血压计等).2.画一个数轴,观察原点左侧是什么数,原点右侧是什么数?每个数到原点的距离是多少?
四.反复演练掌握新知
教科书12练习.画出数轴并表示下列有理数:
1.5,-2.2,-2.5, , ,0.2.写出数轴上点A,B,C,D,E所表示的数:
问题1先给出情境,学生观察,思考,研究,表示.增强学生的合作意识.满足的条件可以先不必明确,基本能明确就可以,在后面逐步明确.游戏的目的是使学生明白数与点的对应关系,并知道要想在直线上表示数必须满足的条件是什么.明确数轴的正确画法和要求.练习中注意纠正学生数轴画法的错误和点的表示错误.[小结]
1.数轴需要满足什么样的条件;
2.数轴的作用是什么?
[作业]
必做题:教科书第18页习题1.2:第2题.[备选题]
1.在数轴上,表示数-3,2.6, ,0, , ,-1的点中,在原点左边的点有个.2.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是()
A.B.-4C.D.3.(1)(请先在头脑中想象点的移动,尝试解决下面问题,然后再画图解答)一个点在数轴上表示的数是-5,这个点先向左边移动3个单位,然后再向右边移动6个单位,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数?
(2)你觉得数轴上的点表示数的大小与点的位置有关吗?为什么?
总结可以由教师提出问题,学生总结,教师完善.2题也可以启发学生反过来想,即点A向正方向移动1.5个单位.3题有一定的难度,两次变动可转化成原点实际怎样移动了,移动了几个单位,那么-5实际上怎样移动了.