第一篇:浅谈《九章算术》与《几何原本》的异同
浅谈《九章算术》与《几何原本》的异同
就数学而言,古代东西方文明都对其发展作出了不可磨灭的贡献;其中以中国的《九章算术》和西方的欧几里得的《几何原本》的贡献最大。以下,我就这两部经典的数学著作谈谈我的读后感。
一、结构:
《几何原本》分十三篇。含有467个命题;有5个公理和5条公设;大部分的命题都是由极少数的公理逻辑推理而来
《九章算术》共收有246个数学问题,包括方田、粟米、衰分、少广、商功、均输、盈不足、方程、勾股九章。其中的绝大多数内容是与当时的社会生活密切相关的。其数学成就也是多方面的。
贡献:
《几何原本》对世界数学的贡献主要是:
1.建立了公理体系,明确提出所用的公理、公设和定义。由浅入深地揭示一系列定理,使得用一小批公理证出几百个定理。
2.把逻辑证明系统地引入数学中,强调逻辑证明是确立数学命题真实性的一个基本方法。
3.示范地规定了几何证明的方法:分析法、综合法及归谬法。
《几何原本》精辟地总结了人类长时期积累的数学成就,建工了数学的科学体系。为后世继续学习和研究数学提供了课题和资料,使几何学的发展充满了活的生机。二千年来,一直被公认为初等数学的基础教材。
《九章算术》对世界数学的贡献主要有:
1.开方术,反应了中国数学的高超计算水平,显示中国独有的算法体系。
2.方程理论,多元联立一次方程组的出现,相当于高斯消去法的总结,独步于世界。
3.负数的引入,特别是正负数加减法则的确立,是一项了不起的贡献。
二、两部著作中的一些内容比较:
《九章算术》在方程理论中的多元联立一次方程组的出现比高斯后来提出的消去法早了很多年;在解线性方程组时,首次提出了负数的加减法法则,这对数学的贡献是非常巨大的;在代数方面,开方术也是《九章算术》的一大贡献;其开方程序是独创先河;例如,秦九韶算法也的源于此;
在几何方面,《九章算术》主要是面积(方田)和体积(商功)的计算;以计算为中心;任何问题,都要计算出具体的数字作为答案;几乎没有关于任何数的性质、图形的定性的关系命题。例如三角形全等、三角形相似的条件在《九章算术》中都没有相关的表述。有的只有算出线段的长、图形的面积和体积。
《几何原本》中的命题是通过公理和定义以及公设经逻辑推理而来;它建立了公理化的思想;也赋予了数学逻辑性强、严密的特点。
《几何原本》更多的是在给出相关图形的概念、性质等的表述;这就是它与《九章算术》最大的不同之处。
在几何方面,《几何原本》进一步地概括了一些概念;例如,对于“曲线”的概念,古希腊人只限于用尺规作图来得到;而由《几何原本》而来的解析几何把“曲线”概括成任意的几何图形。其次,再一次突破直观的限制,打开了数学发展的新思路。笛卡儿和费马首先建立起来的是二维平面上的点和有序实数对之间的对应,按同样的思想,不难得出通过三个坐标轴得出三维空间的点和实数的有序三数组之间的对应关系。现实的空间仅限于三维,由于解析几何中采用了代数方法,平面上的点对应于有序实数对,空间的点对应着三元有序实数组,那么代数中的四元有序实数组当然可以与此类比,构成一个四维空间,由此类推,提出了高维空间的理论。这是现代数学极重要的思想,开拓了数学的新领域
《九章算术》涵盖的开放化的归纳体系中对不同的问题都有一定的归纳总结,算法化的内容对不同的实际问题予以程序化的求解;模型化的思想针对具体问题予以模型化的求解。所以,它像一台计算机。然而一些一般性的问题,可能就不能求解。
《几何原本》创立的公理化体系,以及解析几何的思想,揭示了数学的内在统一性;同时《几何原本》也提供了解决一般性问题的方法。但它其中的一些定理存在错误或者并不严密;例如,第五公设在球面几何上就不成立。
三、传播:
《九章算术》采用的是中国古代的天干地支语言进行编写;其语言生涩难懂;因此,不便于传播;而《几何原本》用的是相对通俗易懂的数学符号语言书写,方便书写也方便记忆。
以上,是我对这两部数学著作的一些浅见;还望老师予以批评和指导。
第二篇:《几何原本》读后感
万物皆有秩序
——《几何原本》读后感
几何,是空间之秩序,是物质之规律,是造化之解析,是宇宙之始基,是逻辑之诗篇,是理性之美感。
——题记
几何证明的引入,是初中数学的一个分水岭,许多同学的成绩出现了明显的下滑,也逐渐产生了对数学的恐惧,这不再只是一门计算的课程,而要开始与那些老师口中“大同小异” 但学生眼中“大相径庭”的各类几何图形作斗争。学生们把对几何的困惑归结为“没感觉”,甚至开始有了遇到几何题就放弃的思想;一些家长也开始“妖魔化”几何,在孩子还没学几何时就开始不断吓唬他们:“不要以为数学很简单,等以后学了几何就困难了”云云。那究竟几何是否真的如此难学?还有无挽回学生学习几何的热情的可能?我想回到几何学的本源,从两千多年前伟大的数学家欧几里得的巨著《几何原本》中去寻找答案。
欧几里得,是一个熟悉的名字,常常出现在与数学有关的各个角落,我也曾在课堂上为学生演示“勾股定理”的证明时,使用过“欧几里得证法”;这也是一个陌生的名字,他的生平已经失传,仅存的著作便是这部《几何原本》,但仅凭这部著作便足以让他被冠以“几何之父”的头衔。
中国古代的数学体系以算术、代数为主,重视应用,如《九章算术》提出的谷物粮食按比例分配的算法、如何解决合理摊派赋税等问题。而古希腊的数学体系脱胎于哲学,对计算类问题涉及不深,旨在寻找宇宙的基本构成和数量关系。也许是因为古希腊的数学家们在面对浩瀚的星空时感受到了自身的渺小,所以想藉由建立起物质与精神世界的确定体系来获得些许自信。于是通过自明的简单公理进行演绎推理得出结论的方法诞生了,逻辑的三段论由亚里士多德提出,并被欧几里得应用于实际知识体系构建,这也是我们现在所运用的几何证明的推理演绎法的起源。
书中提出了五条公设和五条公理,这些都是无需证明的显在事实,如“凡直角都相等”、“整体大于部分”……这些都不需要什么数学基础,只要稍有生活常识的人都很明了。就是靠着这些简单的基础原理,通过演绎推理的方法,在本书中论证了465个命题。我在此不愿过多赘述这些论证的过程,因为这并不是一本数学教本,我更愿把它作为一本建立秩序的书。万物都要依托空间而存在,《几何原本》是一部建立空间秩序最久远的方案之书,也意味着为万物的秩序建立树立了标榜。
几何中的空间秩序是客观存在的,欧几里得不满足于发现这些秩序,更试图去证明这些秩序的正确性。我们生活中常有这样的现象:我们常被告知要遵守某些秩序,但在不明就里时我们会有一种抵触情绪;一旦我们了解了这些秩序的由来或原因后,往往会更愿意遵守。一个简单的例子,有些国家习惯靠左行,有些国家习惯靠右行,仅仅以“因为大家都这样所以你也要这样”来解释实在太牵强,一些人尤其是孩子就不容易接受。如果告诉了他们英国人靠右行因为骑士骑马习惯左脚先上马镫,所以要靠路左上马;而法国本来也是这个习惯,后来拿破仑大革命后,为了彻底打破贵族习俗,开创了靠右行的习惯并沿用至今,那么知道这些后,有理可循,自然更容易接受这些秩序。所以有理有据的秩序才更容易被人接受,这个道理早在两千多年前就被欧几里得表述在了《几何原本》中。再联系到我们几何的教学,一些学生记不住定理或者不会用定理,也许也是因为在学习定理的初始阶段,没有向他们阐述清楚定理证明的过程,对定理的证明理解得越透彻,也就会越理解在怎样的情况下更适合运用哪些定理。先学会证明定理,再学会应用它,这就是学习几何的秩序。
每个人都有求知欲、都有探索客观世界的意愿、都有对美的向往,因此不应该有人对几何失去兴趣与热情,也不存在对几何“没感觉”,只是有时对几何的理解太浅显,觉得就是认识几个图形、解几道题。通过《几何原本》中由点、线、面、角为万物始基所构筑的空间,我们会发现几何学就是物质世界乃至精神世界的表述方式,她定义了万物的秩序,所以只要你愿意去了解世界,你就会愿意接触几何,就有学习她的动力。同时几何的美不仅仅是图形变幻组合所产生的视觉效果,更蕴含逻辑的最美剧本,而重视几何学的人也不会忽视数学在美学上的意义,因此爱美是爱几何的充要条件。如果还要纠结几何是否难学,我只想说,对优雅事物的欣赏,是一件难事吗?
总有学生会问,有没有学习几何的捷径?被托勒密王问到相同的问题时,欧几里得回答:“几何无王者之道。”另一个常被学生问及的问题就是,学了几何之后有什么用能得到什么?这个问题欧几里得同样有他的解答,他对身边的侍从说:“给他三个钱币,因为他想在学习中获取实利。”学习没有一步登天只有脚踏实地;对真理的追寻与求证不是为了功利的索取,而是在培植素养与情怀,这是几何学的秩序,更是人生的箴言。
第三篇:几何原本读后感
《几何原本》是古希腊数学家欧几里得的一部不朽之作,大约成书于公元前 300 年左右,是一部划时代的著作,下面为大家分享了几何原本读后感,欢迎借鉴!
几何原本读后感
1读《几何原本》的作者欧几里得能够代表整个古希腊人民,那么我可以说,古希腊是古代文化中最灿烂的一支——因为古希腊的数学中,所包含的不仅仅是数学,还有着难得的逻辑,更有着耐人寻味的哲学。
《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。
就我目前拜访的几个命题来看,欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;而《几何原本》非常容易就被我接受,其原因大概就在于欧几里得反复运用一种思想、使读者不断接受的缘故吧。
不过,我要着重讲的,是他的哲学。
书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”,这些命题,我在读时,内心一直承受着几何外的震撼。
我们七年级已经学了几何。想想那时做这类证明题,需要证明一个三角形中的两个角相等的时候,我们总是会这么写:“因为它是一个等腰三角形,所以两底角相等”——我们总是习惯性的认为,等腰三角形的两个底角就是相等的;而看《几何原本》,他思考的是“等腰三角形的两个底角为什么相等”。想想看吧,一个思想习以为常,一个思想在思考为什么,这难道还不够说明现代人的问题吗?
大多数现代人,好奇心似乎已经泯灭了。这里所说的好奇心不单单是指那种对新奇的事物感兴趣,同样指对平常的事物感兴趣。比如说,许多人会问“宇航员在空中为什么会飘起来”,但也许不会问“我们为什么能够站在地上而不会飘起来”;许多人会问“吃什么东西能减肥”,但也许不会问“羊为什么吃草而不吃肉”。
我们对身边的事物太习以为常了,以致不会对许多“平常”的事物感兴趣,进而去琢磨透它。牛顿为什么会发现万有引力?很大一部分原因,就在于他有好奇心。
如果仅把《几何原本》当做数学书看,那可就大错特错了:因为古希腊的数学渗透着哲学,学数学,就是学哲学。
哲学第一课:人要建立好奇心,不仅探索新奇的事物,更要探索身边的平常事,这就是我读《几何原本》意外的收获吧!
几何原本读后感
2《几何原本》作为数学的圣经,第一部系统的数学著作,牛顿,爱因斯坦,就是以这种形式写的《自然哲学的数学原理》和《相对论》,斯宾诺莎写出哲学著作《伦理学》,伦理学可以作为哲学与社会科学以及心理学的接口,都是推理性很强。
几何原本总共13卷,研究前六卷就可以了,因为后边的都是应用前边的理论,应用到具体的领域,无理数,立体几何等领域,几何原本我认为最精髓的就是合理的假设,对点线面的抽象,这样才得以使得后面的定理成立,其中第五个公设后来还被推翻了,以点线面作为基础,以欧几里得工具作为工具,进行了各种几何现象的严密推理,我认为这些定理成立的条件必须是在,对几条哲学原则默许了之后,才能成立。主要是最简单的几何形状,从怎么画出来,画出来也是有根据的,再就是各种形状的性质,以及各种形状之间关系的定理,都是一步一步推理出来的。
在几何原本后续的有阿波罗尼奥斯的《圆锥截线论》,牛顿的《自然哲学的数学原理》,算是比较系统的数学著作,也都是用欧几里得工具进行证明的,后来的微积分工具的出现,我认为是圆周率的求解过程,无限接近的思想,才使得微积分工具产生,现代数学看似阵容豪华,可是并没有新的工具的出现,只是对微积分工具在各个形状上进行应用,数学主要是在空间上做文章,现在数学能干的活看似挺多,但是也要得益于物理学的发展,数学一方面往一般性方面发展,都忘了,细想数学思想是比较没什么,只是脑力劳作比较大,特别是只是纯数学研究,不做思想的人,很累也做不出有意义的工作。
看完二十世纪数学史,发现里面的人的著作,我一本也不想看,太虚。
几何原本读后感
3《几何原本》内容简介:《几何原本》是古希腊数学家欧几里得的一部不朽之作,集整个古希腊数学的成果与精神于一身。既是数学巨著,也是哲学巨著,并且第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里,历经多次翻译和修订,自1482年第一个印刷本出版,至今已有一千多种不同版本。除《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛能够与《几何原本》相比。汉语的最早译本是由意大利传教士利玛窦和明代科学家徐光启于1607年合作完成的,但他们只译出了前六卷。证实这个残本断定了中国现代数学的基本术语,诸如三角形、角、直角等。日本、印度等东方国家皆使用中国译法,沿用至今。近百年来,虽然大陆的中学课本必提及这一伟大著作,但对中国读者来说,却无缘一睹它的全貌,纳入家庭藏书更是妄想。徐光启在译此作时,对该书有极高的评价,他说:“能精此书者,无一事不可精;好学此书者,无一事不科学。”现代科学的奠基者爱因斯坦更是认为:如果欧几里得未能激发起你少年时代的科学热情,那你肯定不会是一个天才的科学家。由此可见,《几何原本》对人们理性推演能力的影响,即对人的科学思想的影响是何等巨大。
几何原本的读后感,来自淘宝网的网友:几何原本真的是一部很经典的著作啊,手上的这本已经翻得很旧了。准备入手一本新的,正好遇到这个修订版。希望翻译质量能够更好,之前的版本总觉得有些地方译得有些含糊。这本的包装看上去也还不错。
几何原本的读后感,来自卓越网的网友:不愧是古希腊的数学家,推导能力太强了。里面对几何问题的解析,对思维的培养帮助很大;尤其推荐给要学习习近平面几何的学生作为补充读物来读,启发会很大的。本来这种科学类的书,翻译得不好的话,就会非常难懂,江苏人民出版社最近出的几本自然科学的书,翻译倒是都还可以,像我这种非专业的,也能看明白。
第四篇:肖临骏:从数学教育的角度比较分析《九章算术》与《几何原本》
《九章算术》是“算经十书”中最重要的一种,该书内容非常丰富,且系统化总结并概括了战国、秦朝,以及汉时期的数学成就。此外,该书在数学领域也取得了杰出的成就,首次提出分数、负数及加减运算法则等。概括来说,《九章算术》是一本综合性的数学历史著作,该书的出现标志着中国古代数学体系的基本形成。《几何原本》在数学界又被称为《原本》,该书为欧洲数学的发展奠定了良好的基础,且被广泛认为是历史上最成功的教科书,书中主要总结并归纳了平面几何的五大公设。除此之外,《几何原本》在西方也占据着相当重要的位置,仅次于《圣经》。这两本著名的数学著作对数学的发展都发挥着非常重要的作用,但是二者还存在诸多差异。本文对这两本书从成书背景、体例、内容等方面进行研究后,得出二者的差异所在。在此基础上,对其数学教育观、数学教育目的、数学教材及数学文化也进行了详细论述,基于现代数学视野,对现代数学教育改革提供启示,以供参考。
一、成书背景的对比
《九章算术》是中国古代的数学专著,也是“算经十书”中最重要的一种。众所周知,我国春秋战国时期,诸子百家争鸣,众多学派相继出现,在形式逻辑研究方面,相比其他学派而言,墨家比较突出,但之后形式逻辑在我国并没有太大的进展,而《九章算术》恰巧问世。该书成书最迟是在东汉前期,但内容的定型却在西汉后期,这时候出现,就注定其呈现出非逻辑结构的特点。中国古代数学专著都是在不断总结生活现象的过程中逐渐衍生而来的,《九章算术》也不例外,该书主要强调的是数学知识的应用,在不断地总结、归纳、推理、论证的过程中,最终发展成演绎推理。
《几何原本》是一部集前人思想和欧几里得个人创造于一体的不朽之作,整本书的内容是把人们公认的一些事实归纳成定义和公理,将形式逻辑的方法运用于教学研究。通过这些定义和公理对几何图形的性质进行探讨,最终建立起一套数学理论体系,简称几何学。该书的成书与《九章算术》有着不同的背景,当时古希腊正处于形式逻辑的发展时期,形式逻辑的思想方法被运用到了数学及其应用领域中,逐渐形成了强大的数学思潮,之后欧几里得不断研究和探索,将其用演绎法进行归类和整理,编写成《几何原本》一书。这本书也是欧式几何的奠基之作。此书主要囊括了几何学从公元前7世纪的古埃及,一直到公元前4世纪――欧几里得生活时期――前后四百多年的数学发展历史。从内容上分析,该书保存了古希腊早期的几何学理论,之后欧几里得对其进行了系统化的整理,使其成为现代数学发展的思想源泉。总体来说,《几何原本》开创了古典数论的研究,创立了欧几里得几何学体系,成为用公理化方法建立起来的数学演绎体系的最早典范。
二、《九章算术》与《几何原本》在体例方面的对比
研究这两本书发现,其在体例方面存在一定的差异性,表现在:《九章算术》是按照问题的性质和解法具体分类的,总共九类,且每一类为一章节,每一章节又分多个小类,每一小类都有解题步骤,包括数学公式、推理等。这种结构体系,是以算法为中心,根据算法组建理论体系,表现出了中国特有的数学思想。《几何原本》在结构方面与《九章算术》存在较大的差异性,该书共十三篇,主要包含两大部分。第一部分中,有4条作图公法,36条定义,19条公设和公理,为全书的推理基础。第二部分主要是题,其中每一道题都相当于一条定理,后面附注证明过程和推论过程,还有少部分题后面有图解。总之,《几何原本》主要是将逻辑推理进行系统化归纳,形成数学体系中的逻辑演绎系统。
三、《九章算术》和《几何原本》的内容对比
从内容方面对比发现,《九章算术》和《几何原本》也存在较大的差异性。其中《九章算术》的内容呈现出丰富性和多样性特征。它主要是对从春秋至秦汉时代社会生产过程中各方面累积的教学知识的汇总。整本书包含246题,涉及生活的各个领域,故被称为“数学百科全书”。此外,该书中的代数水平和算术水平相当高,但在几何图形方面,却与《几何原本》存在较大的差距。《几何原本》是代数几何化,且数论问题都是通过严格的逻辑证明来具体解决的,它为几何学的发展奠定了理论基础。《几何原本》的诞生,标志着几何学已经成为一个有着比较严密的理论体系和科学方法的数学学科。除此之外,《几何原本》还对勾股定理做了详细证明。由此可见,这两本数学名著各有优势。
四、《九章算术》和《几何原本》对当代数学教育改革的启示
关于《九章算术》和《几何原本》对当代数学教学改革和发展的启示,需从数学教育观、数学教育目的、数学教材、数学文化几大方面来了解。
1.数学教育观
数学教育观主要包含两大类,一类是动态数学教育观,认为数学是一项人类活动,也是一个动态学科,活动之间存在着一定的关联性,内部要素之间也呈现出动态发展趋势;另一类是静态数学教育观,认为数学是一个永恒不变的学科,其内容主要包含数学定理、公式。《九章算术》表现出动态教育观,主要是由于其丰富的内容都是在不断总结和积累后得到的。《几何原本》表现出静态教育观,认为教学活动是一种程序化过程,即数学概念-定理-公式-例题-练习,整个过程中,学生占被动地位,一味地接受教师的灌输。相对来说,这种教育观比较死板。由此可见,为了促进现代数学教育的发展,要主张学生理论与实践相结合,从理论中解释实践,从实践中总结理论,打破传统的教学模式,实施并创新情境化教学模式。
2.数学教育目的
《九章算术》强调数学与实际生活之间的联系,体现出数学学习的实用性特征,通过学习能够促使学生将理论与实践相结合。而《几何原本》强调学生要关注内部的逻辑结构,体现出数学学习的抽象性和严密性特征,该书在一定程度上忽视了数学的应用意识和对学生数学综合能力的培养。其实这两本书都有自己的优越性和局限性,我们在研究现代数学学科时,应将二者相结合,取长补短,从而达到提升数学教育的目的。
3.数学教材
从上文中了解到,《九章算术》是一部数学百科全书,自隋唐时数学教育制度建立以来,该书已经成为国家统一审定的数学课程之一,且逐步形成了以该书为中心的古代数学课程体系。而《几何原本》则过度强调形式化的数学教学,忽视了与实际相结合。这两本书在教材上都有一定的优越性和局限性,我们要认真分析,相互借鉴,为推动现代化数学学科的改革和发展不断努力。
4.数学文化
《九章算术》和《几何原本》存在诸多方面的差异,其根本原因在于中西方文化之间存在一定的差异性,从而形成了不同的数学思想方法体系。所以,在进行现代化数学学科改革时,要对这两本书的数学文化多加重视,教师在教学过程中应该多引导学生去了解和领悟数学本身所蕴含的文化内容。在此基础上,结合数学内容,逐步渗透思想方法、意识精神等,让学生真正体会到数学学科中蕴含的各种魅力。
五、结语
综上,数学是一门研究数量、结构、空间、变化及信息等概念的综合学科,也属于一种形式科学。为了促进数学学科的改革和发展,通过上文对《九章算术》和《几何原本》的比较得到的启示是:要引导学生理论联系实际,通过实践进行总结、归纳,了解数学的本质,从而达到提高数学素养的目的。笔者希望更多有关人士参与到《九章算术》和《几何原本》的比较研究中来,为推动现代化数学学科的改革做出更大的贡献。
第五篇:《几何原本》读后感(通用)
《几何原本》读后感(通用8篇)
读完一本经典名著后,想必你有不少可以分享的东西,现在就让我们写一篇走心的读后感吧。想必许多人都在为如何写好读后感而烦恼吧,下面是小编帮大家整理的《几何原本》读后感(通用8篇),欢迎阅读与收藏。
《几何原本》读后感1“古希腊”这个词,我们耳熟能详,很多人却不了解它。
如果《几何原本》的作者欧几里得能够代表整个古希腊人民,那么我可以说,古希腊是古代文化中最灿烂的一支——因为古希腊的数学中,所包含的不仅仅是数学,还有着难得的逻辑,更有着耐人寻味的哲学。
《几何原本》这本数学著作,以几个显而易见、众所周知的定义、公设和公理,互相搭桥,展开了一系列的命题:由简单到复杂,相辅而成。其逻辑的严密,不能不令我们佩服。
就我目前拜访的几个命题来看,欧几里得证明关于线段“一样长”的题,最常用、也是最基本的,便是画圆:因为,一个圆的所有半径都相等。一般的数学思想,都是很复杂的,这边刚讲一点,就又跑到那边去了;而《几何原本》非常容易就被我接受,其原因大概就在于欧几里得反复运用一种思想、使读者不断接受的缘故吧。
不过,我要着重讲的,是他的哲学。
书中有这样几个命题:如,“等腰三角形的两底角相等,将腰延长,与底边形成的两个补角亦相等”,再如,“如果在一个三角形里,有两个角相等,那么也有两条边相等”。这些命题,我在读时,内心一直承受着几何外的震撼。
我们七年级已经学了几何。想想那时做这类证明题,需要证明一个三角形中的两个角相等的时候,我们总是会这么写:“因为它是一个等腰三角形,所以两底角相等”——我们总是习惯性的认为,等腰三角形的两个底角就是相等的;而看《几何原本》,他思考的是“等腰三角形的两个底角为什么相等”。想想看吧,一个思想习以为常,一个思想在思考为什么,这难道还不够说明现代人的问题吗?
大多数现代人,好奇心似乎已经泯灭了。这里所说的好奇心不单单是指那种对新奇的事物感兴趣,同样指对平常的事物感兴趣。比如说,许多人会问“宇航员在空中为什么会飘起来”,但也许不会问“我们为什么能够站在地上而不会飘起来”;许多人会问“吃什么东西能减肥”,但也许不会问“羊为什么吃草而不吃肉”。
我们对身边的事物太习以为常了,以致不会对许多“平常”的事物感兴趣,进而去琢磨透它。牛顿为什么会发现万有引力?很大一部分原因,就在于他有好奇心。
如果仅把《几何原本》当做数学书看,那可就大错特错了:因为古希腊的数学渗透着哲学,学数学,就是学哲学。
哲学第一课:人要建立好奇心,不仅探索新奇的事物,更要探索身边的平常事,这就是我读《几何原本》意外的收获吧!
《几何原本》读后感2数学中最古老的一门分科。据说是起源于古埃及尼罗河泛滥后为整修土地而产生的测量法,它的外国语名称geometry就是由geo(土地)与metry(测量)组成的。泰勒斯曾经利用两三角形的等同性质,做了间接的测量工作;
毕达哥拉斯学派则以勾股定理等著名。
在中国古代早有勾股测量,汉朝人撰写的《周髀算经》的第一章叙述了西周开国时期(约公元前1000)周公姬旦同商高的问答,讨论用矩测量的方法,得出了著名的勾股定律,并举出了“勾三、股四、弦五”的例子。在埃及产生的几何学传到希腊,然后逐步发展起来而变为理论的数学。
哲学家柏拉图(公元前429~前348)对几何学作了深奥的探讨,确立起今天几何学中的定义、公设、公理、定理等概念,而且树立了哲学与数学中的分析法与综合法的概念。此外,梅内克缪斯(约公元前340)已经有了圆锥曲线的概念。
希腊文化以柏拉图学派的时代为顶峰,以后逐渐衰落,而埃及的亚历山大学派则渐渐繁荣起来,它长时间成了文化的中心。欧几里得把至希腊时代为止所得到的数学知识集其大成,编成十三卷的《几何原本》,这就是直到今天仍广泛地作为几何学的教科书使用下来的欧几里得几何学(简称欧氏几何)。
徐光启于1606年翻译了《几何原本》前六卷,至1847年李善兰才把其余七卷译完。“几何”与其说是geo的音译,毋宁解释为“大小”较为妥当。
诚然,现代几何学是有关图形的一门数学分科,但是在希腊时代则代表了数学的全部。欧几里得在《几何原本》中首先叙述了一些定义,然后提出五个公设和五个公理。其中第五公设尤为著名:如果两直线和第三直线相交而且在同一侧所构成的两个同侧内角之和小于二直角,那么这两直线向这一侧适当延长后一定相交。《几何原本》中的公理系统虽然不能说是那么完备,但它恰恰成了现代几何学基础论的先驱。
直到19世纪末,D.希尔伯特才建立了严密的欧氏几何公理体系。
第五公设和其余公设相比较,内容显得复杂,于是引起后来人们的注意,但用其余公设来推导它的企图,都失败了。这个公设等价于下述的公设:在平面上,过一直线外的一点可引一条而且只有一条和这直线不相交的直线。
Η.И.罗巴切夫斯基和J.波尔约独立地创建了一种新几何学,其中扬弃了第五公设而代之以另一公设:在平面上,过一直线外的一点可引无限条和这直线不相交的直线。这样创建起来的无矛盾的几何学称为双曲的非欧几里得几何。
(G.F.)B.黎曼则把第五公设换作“在平面上,过一直线外的一点所引的任何直线一定和这直线相交”,这样创建的无矛盾的几何学称椭圆的非欧几里得几何。
《几何原本》读后感3今天我读了一本书,叫《几何原本》。它是古希腊数学家、哲学家欧几里德的一本不朽之作,集合希腊数学家的成果和精神于一书。
《几何原本》收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题,即先提出公理、公设和定义,再由简到繁予以证明,并在此基础上形成欧氏几何学体系。欧几里德认为,数学是一个高贵的世界,即使身为世俗的君主,在这里也毫无特权。与时间中速朽的物质相比,数学所揭示的世界才是永恒的。
《几何原本》既是数学著作,又极富哲学精神,并第一次完成了人类对空间的认识。古希腊数学脱胎于哲学,它使用各种可能的描述,解析了我们的宇宙,使它不在混沌、分离,它完全有别于起源并应用于世俗的中国和古埃及数学。它建立起物质与精神世界的确定体系,致使渺小如人类也能从中获得些许自信。
本书命题1便提出了如何作等边三角形,由此产生了三角形全等定理。即角、边、角或边、角、边或边、边、边相等,并进一步提出了等腰三角形——等边即等角;等角即等边。就这样欧几里德分别从点、线、面、角四个部分,由浅入深,提出了自己的几何理论。前面的命题为后面的铺垫;后面的命题由前面的推导,环环相扣,十分严谨。
这本书博大精深,我只能看懂十分之一左右,非常震撼,欧几里德不愧为几何之父!他就是数学史上最亮的一颗星。我要向他学习,沿着自己的目标坚定的走下去。
《几何原本》读后感4《几何原本》是古希腊数学家欧几里得的'一部不朽之作,集整个古希腊数学的成果和精神于一身。既是数学巨著,也是哲学巨著,并且第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里,历经多次翻译和修订,自1482年第一个印刷本出版,至今已有一千多种不同版本。
除《圣经》以外,没有任何其他著作,其研究、使用和传播之广泛能够和《几何原本》相比。汉语的最早译本是由意大利传教士利玛窦和明代科学家徐光启于1607年合作完成的,但他们只译出了前六卷。证实这个残本断定了中国现代数学的基本术语,诸如三角形、角、直角等。日本、印度等东方国家皆使用中国译法,沿用至今。近百年来,虽然大陆的中学课本必提及这一伟大著作,但对中国读者来说,却无缘一睹它的全貌,纳入家庭藏书更是妄想。
徐光启在译此作时,对该书有极高的评价,他说:“能精此书者,无一事不可精;好学此书者,无一事不科学。”现代科学的奠基者爱因斯坦更是认为:如果欧几里得未能激发起你少年时代的科学热情,那你肯定不会是一个天才的科学家。由此可见,《几何原本》对人们理性推演能力的影响,即对人的科学思想的影响是何等巨大。
《几何原本》读后感5公理化结构是近代数学的主要特征。而《原本》是完成公理化结构的最早典范,它产生于两千多年前,这是难能可贵的。不过用现代的标准去衡量,也有不少缺点。首先,一个公理系统都有若干原始概念,或称不定义概念,作为其他概念定义的基础。点、线、面就属于这一类。而在《原本》中一一给出定义,这些定义本身就是含混不清的。其次是公理系统不完备,没有运动、顺序、连续性等公理,所以许多证明不得不借助于直观。此外,有的公理不是独立的,即可以由别的公理推出。这些缺陷直到1899年希尔伯特(Hilbert)的《几何基础》出版才得到了补救。尽管如此,毕竟瑕不掩瑜,《原本》开创了数学公理化的正确道路,对整个数学发展的影响,超过了历史上任何其他著作。
《原本》的两个理论支柱——比例论和穷竭法。为了论述相似形的理论,欧几里得安排了比例论,引用了欧多克索斯的比例论。这个理论是无比的成功,它避开了无理数,而建立了可公度与不可公度的正确的比例论,因而顺利地建立了相似形的理论。在几何发展的历史上,解决曲边围成的面积和曲面围成的体积等问题,一直是人们关注的重要课题。这也是微积分最初涉及的问题。它的解决依赖于极限理论,这已是17世纪的事了。然而在古希腊于公元前三四世纪对一些重要的面积、体积问题的证明却没有明显的极限过程,他们解决这些问题的理念和方法是如此的超前,并且深刻地影响着数学的发展。
化圆为方问题是古希腊数学家欧多克索斯提出的,后来以“穷竭法”而得名的方法。“穷竭法”的依据是阿基米得公理和反证法。在《几何原本》中欧几里得利用“穷竭法”证明了许多命题,如圆与圆的面积之比等于直径平方比。两球体积之比等于它们的直径的立方比。阿基米德应用“穷竭法”更加熟练,而且技巧很高。并且用它解决了一批重要的面积和体积命题。当然,利用“穷竭法”证明命题,首先要知道命题的结论,而结论往往是由推测、判断等确定的。阿基米德在此做了重要的工作,他在《方法》一文中阐述了发现结论的一般方法,这实际又包含了积分的思想。他在数学上的贡献,奠定了他在数学史上的突出地位。
作图问题的研究与终结。欧几里得在《原本》中谈了正三角形、正方形、正五边形、正六边形、正十五边形的作图,未提及其他正多边形的作法。可见他已尝试着作过其他正多边形,碰到了“不能”作出的情形。但当时还无法判断真正的“不能作”,还是暂时找不到作图方法。
高斯并未满足于寻求个别正多边形的作图方法,他希望能找到一种判别准则,哪些正多边形用直尺和圆规可以作出、哪些正多边形不能作出。也就是说,他已经意识到直尺和圆规的“效能”不是万能的,可能对某些正多边形不能作出,而不是人们找不到作图方法。1801年,他发现了新的研究结果,这个结果可以判断一个正多边形“能作”或“不能作”的准则。判断这个问题是否可作,首先把问题化为代数方程。
然后,用代数方法来判断。判断的准则是:“对一个几何量用直尺和圆规能作出的充分必要条件是:这个几何量所对应的数能由已知量所对应的数,经有限次的加、减、乘、除及开平方而得到。”(圆周率不可能如此得到,它是超越数,还有e、刘维尔数都是超越数,我们知道,实数是不可数的,实数分为有理数和无理数,其中有理数和一部分无理数,比如根号2,是代数数,而代数数是可数的,因此实数中不可数是因为超越数的存在。虽然超越数比较多,但要判定一个数是否为超越数却不是那么的简单。)至此,“三大难题”即“化圆为方、三等分角、二倍立方体”问题是用尺规不能作出的作图题。正十七边形可作,但其作法不易给出。高斯(Gauss)在1796年19岁时,给出了正十七边形的尺规作图法,并作了详尽的讨论。为了表彰他的这一发现,他去世后,在他的故乡不伦瑞克建立的纪念碑上面刻了一个正十七边形。
几何中连续公理的引入。由欧氏公设、公理不能推出作图题中“交点”存在。因为,其中没有连续性(公理)概念。这就需要给欧氏的公理系统中添加新的公理——连续性公理。虽然19世纪之前费马与笛卡尔已经发现解析几何,代数有了长驱直入的进展,微积分进入了大学课堂,拓扑学和射影几何已经出现。但是,数学家对数系理论基础仍然是模糊的,没有引起重视。直观地承认了实数与直线上的点都是连续的,且一一对应。直到19世纪末叶才完满地解决了这一重大问题。从事这一工作的学者有康托(Cantor)、戴德金(Dedekind)、皮亚诺(Peano)、希尔伯特(Hilbert)等人。
当时,康托希望用基本序列建立实数理论,代德金也深入地研究了无理数理念,他的一篇论文发表在1872年。在此之前的1858年,他给学生开设微积分时,知道实数系还没有逻辑基础的保证。因此,当他要证明“单调递增有界变量序列趋向于一个极限”时,只得借助于几何的直观性。
实际上,“直线上全体点是连续统”也是没有逻辑基础的。更没有明确全体实数和直线全体点是一一对应这一重大关系。如,数学家波尔查奴(Bolzano)把两个数之间至少存在一个数,认为是数的连续性。实际上,这是误解。因为,任何两个有理数之间一定能求到一个有理数。但是,有理数并不是数的全体。有了戴德金分割之后,人们认识至波尔查奴的说法只是数的稠密性,而不是连续性。由无理数引发的数学危机一直延续到19世纪。直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数,并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机。
《原本》还研究了其它许多问题,如求两数(可推广至任意有限数)最大公因数,数论中的素数的个数无穷多等。
在高等数学中,有正交的概念,最早的概念起源应该是毕达哥拉斯定理,我们称之为勾股定理,只是勾3股4弦5是一种特例,而毕氏定理对任意直角三角形都成立。并由毕氏定理,发现了无理数根号2。在数学方法上初步涉及演绎法,又在证明命题时用了归谬法(即反证法)。可能由于受丢番图(Diophantus)对一个平方数分成两个平方数整数解的启发,350多年前,法国数学家费马提出了著名的费马大定理,吸引了历代数学家为它的证明付出了巨大的努力,有力地推动了数论用至整个数学的进步。1994年,这一旷世难题被英国数学家安德鲁威乐斯解决。
多少年来,千千万万人(著名的有牛顿(Newton)、阿基米德(Archimedes)等)通过欧几里得几何的学习受到了逻辑的训练,从而迈入科学的殿堂。
《几何原本》读后感6只要上过初中的人都学过几何,可是不一定知道把几何介绍到中国来的是明朝的大科学家徐光启和来自意大利的传教士利玛窦,更不一定知道是徐光启把这门“测地学”创造性地意译为“几何”的。从1667年《几何原本》前六卷译完至今已有四百年,11月9日上海等地举行了形式多样的纪念活动。来自意大利、美国、加拿大、法国、日本、比利时、芬兰、荷兰、中国等9个国家及两岸四地的60余位中外学者聚会徐光启的安息之地——上海徐汇区,纪念徐光启暨《几何原本》翻译出版400周年。
“一物不知,儒者之耻。”
徐光启家世平凡,父亲是一个不成功的商人,破产后在上海务农,家境不佳。徐光启19岁时中秀才,过了16年才中举人,此后又7年才中进士。在参加翰林院选拔时列第四名,即被选为翰林院庶吉士,相当于是明帝国皇家学院的博士研究生。他殿试排名三甲五十二名,名次靠后,照理没有资格申请入翰林院。他的同科进士、也是他年满花甲的老师黄体仁主动让贤,把考翰林院的机会让给了他。
《明史·徐光启传》中开篇用33个字讲完他的科举经历,紧接着就说他“从西洋人利玛窦学天文、历算、火器,尽其术。遂遍习兵机、屯田、盐策、水利诸书”,可见如果没有跟随利玛窦学习西方科学,徐光启只是有明一代数以千万计的官僚中不出奇的一员。但是因为在1600年遇上了利玛窦,且在翰林院学习期间有机会从学于利玛窦,他得从一干庸众中脱颖而出。
利玛窦(MatteoRicci)1552年生于意大利马切拉塔,1571年在罗马成为耶稣会的见习修士,在教会里接受了神学、古典文学和自然科学的广泛训练,又在印度的果阿学会了绘制地图和制造各类科学仪器,尤其是天文仪器。
利玛窦于1577年5月离开罗马,于1583年2月来到中国。8月在广东肇庆建立“仙花寺”,开始传教。可是一开始很不顺利。为此,利玛窦转变了策略,决定采取曲线传教的方针,为了接近中国人,利玛窦不仅说中文,写汉字,而且生活也力求中国化。正式服装也改成了宽衣博带的儒生装束。
1598年6月利玛窦去北京见皇帝,未能见到,次年返回南京。在南京期间,利玛窦早已赫赫有名,尤其是他过目不忘、倒背如流的记忆术给人留下了深刻的印象,一传十,十传百,已神乎其神。加之利玛窦高明的社交手段,以及他的那些引人入胜的、代表着西方工艺水平的工艺品和科学仪器,引得高官显贵和名士文人都乐于和他交往。利玛窦则借此来达到自己的目的——推动传教活动。
也正是利玛窦的学识和魅力吸引了徐光启。根据利玛窦的日记记载,约在1597年7月到1600年5月之间。徐光启和利玛窦曾见过一面,利玛窦说这是一次短暂的见面。徐光启主要向利玛窦讨教一些基督教教义,双方并没有深谈。和利玛窦分手之后,徐光启花了两三年时间研究基督教义,思考自己的命运。1603年,徐光启再次去找利玛窦,但利玛窦这时已经离开南京到北京去了。徐光启拜见了留在南京的传教士罗如望,和之长谈数日后,终于受洗成为了基督教徒。
1601年1月,利玛窦再次晋京面圣,此次获得成功,利玛窦带来的见面礼是自鸣钟和钢琴,这两样东西是要经常修理的,于是他被要求留在京城,以便可以经常为皇帝修理这两样东西。正好1604年4月,徐光启中进士后要留在北京。两人的交往也多起来。在此之前,徐光启对中国传统数字已有较深入的了解,他跟利玛窦学习了西方科技后,向利玛窦请求合作翻译《几何原本》,以克服传统数学只言“法”而不言“义”的缺陷,认为“此书未译,则他书俱不可得论。”利玛窦劝他不要冲动,因为翻译实在太难,徐光启回答说:“一物不知,儒者之耻。”
《几何原本》读后感7《几何原本》作为数学的圣经,第一部系统的数学著作,牛顿,爱因斯坦,就是以这种形式写的《自然哲学的数学原理》和《相对论》,斯宾诺莎写出哲学著作《伦理学》,伦理学可以作为哲学与社会科学以及心理学的接口,都是推理性很强。
几何原本总共13卷,研究前六卷就可以了,因为后边的都是应用前边的理论,应用到具体的领域,无理数,立体几何等领域,几何原本我认为最精髓的就是合理的假设,对点线面的抽象,这样才得以使得后面的定理成立,其中第五个公设后来还被推翻了,以点线面作为基础,以欧几里得工具作为工具,进行了各种几何现象的严密推理,我认为这些定理成立的条件必须是在,对几条哲学原则默许了之后,才能成立。主要是最简单的几何形状,从怎么画出来,画出来也是有根据的,再就是各种形状的性质,以及各种形状之间关系的定理,都是一步一步推理出来的。
在几何原本后续的有阿波罗尼奥斯的《圆锥截线论》,牛顿的《自然哲学的数学原理》,算是比较系统的数学著作,也都是用欧几里得工具进行证明的,后来的微积分工具的出现,我认为是圆周率的求解过程,无限接近的思想,才使得微积分工具产生,现代数学看似阵容豪华,可是并没有新的工具的出现,只是对微积分工具在各个形状上进行应用,数学主要是在空间上做文章,现在数学能干的活看似挺多,但是也要得益于物理学的发展,数学一方面往一般性方面发展,都忘了,细想数学思想是比较没什么,只是脑力劳作比较大,特别是只是纯数学研究,不做思想的人,很累也做不出有意义的工作。
看完二十世纪数学史,发现里面的人的著作,我一本也不想看,太虚。
《几何原本》读后感8古希腊大数学家欧几里德是与他的巨著——《几何原本》一起名垂千古的。这本书是世界上最著名、最完整而且流传最广的数学著作,也是欧几里德最有价值的一部著作,在《原本》里,欧几里德系统地总结了古代劳动人民和学者们在实践和思考中获得的几何知识,欧几里德把人们公认的一些事实列成定义和公理,以形式逻辑的方法,用这些定义和公理来研究各种几何图形的性质,从而建立了一套从公理、定义出发,论证命题得到定理得几何学论证方法,形成了一个严密的逻辑体系——几何学。而这本书,也就成了欧式几何的奠基之作。
两千多年来,《几何原本》一直是学习几何的主要教材。哥白尼、伽利略、笛卡尔、牛顿等许多伟大的学者都曾学习过《几何原本》,从中吸取了丰富的营养,从而作出了许多伟大的成就。
从欧几里得发表《几何原本》到现在,已经过去了两千多年,尽管科学技术日新月异,由于欧氏几何具有鲜明的直观性和有着严密的逻辑演绎方法相结合的特点,在长期的实践中表明,它巳成为培养、提高青少年逻辑思维能力的好教材。历史上不知有多少科学家从学习几何中得到益处,从而作出了伟大的贡献。
少年时代的牛顿在剑桥大学附近的夜店里买了一本《几何原本》。开始他认为这本书的内容没有超出常识范围,因而并没有认真地去读它,而对笛卡儿的“坐标几何”很感兴趣而专心攻读,后来,牛顿于1664年4月在参加特列台奖学金考试的时候遭到落选,当时的考官巴罗博士对他说:“因为你的几何基础知识太贫乏,无论怎样用功也是不行的。”这席谈话对牛顿的震动很大,于是,牛顿又重新把《几何原本》从头到尾地反复进行了深入钻研,为以后的科学工作打下了坚实的数学基础。
但是,在人类认识的长河中,无论怎样高明的前辈和名家。都不可能把问题全部解决。由于历史条件的限制,欧几里得在《几何原本》中提出几何学的“根据”问题并没有得到彻底的解决,他的理论体系并不是完美无缺的。比如,对直线的定义实际上是用一个未知的定义来解释另一个未知的定义,这样的定义不可能在逻辑推理中起什么作用。又如,欧几里得在逻辑推理中使用了“连续”的概念,但是在《几何原本》中从未提到过这个概念。