第一篇:推理与证明知识方法总结
推理证明
一、合情推理与演绎推理
1.合情推理(合情推理对于数学发现的作用,为复数铺垫)
合情推理可分为归纳推理和类比推理两类:
(1)归纳推理:部分到整体,特殊到一般
【例1】 观察以下不等式
13,22
2115122, 23
311171222234
41
可归纳出对大于1的正整数n成立的一个不等式1
表达式应为_________
【例2】 十个圆能把平面最多分为多少份?92
(2)类比推理:特殊到特殊
111f(n),则不等式右端f(n)的2232n2
① 关于空间问题与平面问题的类比,通常可抓住几何要素的如下对应关系作对比:(亮点)多面体 二面角多边形;面平面角;面 积边;体积线段长;面积 ;
【例3】 在平面几何里,可以得出正确结论:“正三角形的内切圆半径等于这正三角形的高的平面几何的上述结论,则正四面体的内切球半径等于这个正四面体的高的()
” .类比
② 数列中的相关应用
9aabbb2{b}b2129n5【例4】 已知为等比数列,则.若n为等差数列,a52,则n的类似结论为_____________
③ 圆锥曲线中的相关应用
【例5】 在平面直角坐标系中,点,顶点的顶点、分别是离心率为的圆锥曲线时,有的焦.类似在该曲线上.一同学已正确地推得:当
Page 1 of
3地,当、时,有
.④ 函数中的相关应用
【例5】 如图所示,对于函数,分向量的比为,线段
上任意两点的上方,设点在点的必在曲线段,则由图象中点上方可得不等式。请分析函数的图象,类比上述不等式可以得到的不等式
是.
⑤平面向量中的相关应用
【例6】 设平面向量顺时针旋转30°后与的和为同向,其中,如果平面向量满足,且则下列命题中正确的为.
①
②③④
⑥ 不等式中的相关应用
【例7】 研究问题:“已知关于的不等
式的解集
为,解关于的不等式
”,有如下解法:
解:
由,令,则,所以不等式的解集为. 参考上述解法,已知关于的不等式的解集为,则关于的不等式Page 2 of
3的解集为.
2.演绎推理一般到特殊
【例6】 有个小偷在警察面前作了如下辩解:是我的录象机,我就一定能把它打开.看,我把它打开了.所
以它是我的录象机.请问这一推理错在哪里?()
A.大前提B.小前提C.结论D.以上都不是
二、直接证明与间接证明
1.综合法顺推,由因导果
综合法是由原因推导到结果的证明方法,它是利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法.
2.分析法逆推,执果索因
分析法是从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、公理、定理等)为止的证明方法.
3.反证法
假设原命题的结论不成立,经过正确的推理,最后得出矛盾,由此说明假设错误,从而证明了原命题成立,这样的方法叫反证法;它是一种间接的证明方法.用这种方法证明一个命题的一般步骤:(1)假设命题的结论不成立;(2)根据假设进行推理,直到推理中导出矛盾为止 ;(3)断言假设不成立(4)肯定原命题的结论成立
Page 3 of 3
第二篇:知识归纳:推理与证明范文
推理与证明 【整体感知】:知识网络
推
理
与
证
明
注意:理科要求数学归纳法,文科不要求....................
【热点点击】:合情推理、演绎推理和直接证明、间接证明涉及到几种方法几乎渗透到数学的方方面面,虽然没有单独考查,但是都是以其他知识为载体,考查综合应用.【本章考点】1.合情推理和演绎推理,2.综合法、分析法和反证法3.数学归纳法(理科)。
【归纳】
1.归纳推理与类比推理统称为合情推理.它们的特点是:归纳推理是由特殊到一般、由部分到整体的推理;而类比推理是由特殊到特殊的推理;都能由已知推测、猜想未知,从而推理结论.但是结论的可靠性有待证明.合情推理的推理过程:从具体问题出发到观察、分析、比较、联想,再到归纳、/
2类比,最后到猜想。
2.演绎推理的特点是由一般到特殊的推理,是数学中证明的基本推理形式;推理模式:“三段论”,也可以从集合的角度理解。
3.和情推理与演绎推理的关系:
①和情推理是由特殊到一般的推理,演绎推理是由一般到特殊的推理;
②它们又是相辅相成的,前者是后者的前提,后者论证前者的可靠性。
4.证明方法常用的有综合法、分析法和反证法(理科还有数学归纳法)
在解决问题时,经常把综合法与分析法和起来使用;使用分析法寻找成立的条件,再用综合法写出证明过程.反证法可以解决条件较少,含有“至少”、“至多”、“不可能”等关键词的命题或“存在性”、“唯一性”命题。反证法是一种间接证法.它是数学学习中一种很重要的证题方法.反证法证题的步骤大致分为三步:
(1)反设:作出与求证的结论相反的假设;
(2)归谬:由反设出发,导出矛盾结果;
(3)作出结论:证明了反设不能成立,从而证明了所求证的结论成立.其中,导出矛盾是关键,通常有以下几种途径:与已知矛盾,与公理、定理矛盾,与假设矛盾,自相矛盾等.5.数学归纳法常用于证明一个与正整数n有关的命题。第一步是推理的基础,第二步是推理的依据,两者缺一不可.特别地,在证明第二步时命题成立,一定要用上归纳假设时命题成立;另外在证明第二步时首先要有明确的目标式,即确定证题方向。/ 2
第三篇:新课标高中数学《推理与证明》知识归纳总结
《推理与证明》知识归纳总结
第一部分合情推理
学习目标:
了解合情推理的含义(易混点)
理解归纳推理和类比推理的含义,并能运用它进行简单的推理(重点、难点)了解合情推理在数学发展中的作用(难点)
一、知识归纳:
合情推理可分为归纳推理和类比推理两类:
归纳推理:
1.归纳推理:由某类事物的对象具有某些特征,推出该类事物的具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.2.归纳推理的一般步骤:
第一步,通过观察个别情况发现某些相同的性质;
第二步,从已知的相同性质中推出一个明确表述的一般命题(猜想).思考探究:
1.归纳推理的结论一定正确吗?
2.统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?
题型1用归纳推理发现规律
.对于任意正实数a,b
成立的一个条件可以是____.点拨:前面所列式子的共同特征特征是被开方数之和为22,故ab222、蜜蜂被认为是自然界中最杰出的建筑师,单个蜂
巢可以近似地看作是一个正六边形,如图为一组蜂
巢的截面图.其中第一个图有1个蜂巢,第二个图
有7个蜂巢,第三个图有19个蜂巢,按此规律,以
f(n)表示第n幅图的蜂巢总数.则f(4)=_____;f(n)=___________.【解题思路】找出f(n)f(n1)的关系式
[解析]f(1)1,f(2)16,f(3)1612,f(4)16121837
f(n)1612186(n1)3n23n
1总结:处理“递推型”问题的方法之一是寻找相邻两组数据的关系
类比推理
1.类比推理:由两类对象具有某些类似特征和其中对象的某些已知特征,推出另一类对象也具有这些特征的推理.简言之,类比推理是由特殊到特殊的推理.2.类比推理的一般步骤:
第一步:找出两类对象之间可以确切表述的相似特征;
第二步:用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想.思考探究:
1.类比推理的结论能作为定理应用吗?
2.(1)圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径.由此结论如何类比到球体?
(2)平面内不共线的三点确定一个圆.由此结论如何类比得到空间的结论?
题型2用类比推理猜想新的命题
[例]已知正三角形内切圆的半径是高的______.【解题思路】从方法的类比入手
[解析]原问题的解法为等面积法,即S
等体积法,V1,把这个结论推广到空间正四面体,类似的结论是3111ah3arrh,类比问题的解法应为2231111Sh4Srrh即正四面体的内切球的半径是高 334
4总结:(1)不仅要注意形式的类比,还要注意方法的类比
(2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比;实数集的性质向复数集的性质类比;圆锥曲线间的类比等
合情推理
1.定义:归纳推理和类比推理都有是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想的推理,我们把它们统称为合情推理.简言之,合情推理就是合乎情理的推理.2.推理的过程:
→
→
思考探究:
1.归纳推理与类比推理有何区别与联系?
1)归纳推理是由部分到整体,从特殊到一般的推理。通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
2)类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。第二部分演绎推理
学习目标:
理解演绎推理的含义(重点)
掌握演绎推理的模式,会利用三段论进行简单推理(重点、难点)
合情推理与演绎推理之间的区别与联系
一、知识归纳:
演绎推理的含义:
1.演绎推理是从一般性的原理出发,推出的结论.演绎推理又叫推理.2.演绎推理的特点是由的推理.思考探究:
演绎推理的结论一定正确吗?
演绎推理的模式
1.演绎推理的模式采用“三段论”:
(1)大前提——已知的(M是P);
(2)小前提——所研究的(S是M);
(3)结论——根据一般原理,对特殊情况做出的判断(S是P).2.从集合的角度看演绎推理:
(1)大前提:x∈M且x具有性质P;
(2)小前提:y∈S且SM
(3)结论:y具有性质P.演绎推理与合情推理
合情推理与演绎推理的关系:
(1)从推理形式上看,归纳是由部分到整体、个别到一般的推理,类比是由特殊到特说的推理;演绎推理是由一般到特殊的推理.(2)从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确.第三部分直接证明与间接证明
学习目标:
1、了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
2、了解间接证明的一种基本方法──反证法;了解反证法的思考过程、特点。
知识归纳:
三种证明方法:
综合法、分析法、反证法
分析法和综合法是思维方向相反的两种思考方法。在数学解题中,分析法是从数学题的待证
结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。
反证法:它是一种间接的证明方法.用这种方法证明一个命题的一般步骤:
(1)假设命题的结论不成立;
(2)根据假设进行推理,直到推理中导出矛盾为止
(3)断言假设不成立
(4)肯定原命题的结论成立
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
重难点:在函数、三角变换、不等式、立体几何、解析几何等不同的数学问题中,选择好证明方法并运用三种证明方法分析问题或证明数学命题
考点1综合法
在锐角三角形ABC中,求证:sinAsinBsinCcosAcosBcosC
[解析]ABC为锐角三角形,AB
2A
2B,ysinx在(0,)上是增函数,sinAsin(B)cosB 22
同理可得sinBcosC,sinCcosA
sinAsinBsinCcosAcosBcosC
考点2分析法
已知ab0,求证abab
[解析]要证aab,只需证(a)2(ab)2
即ab2abab,只需证bab,即证ba
显然ba成立,因此aab成立
总结:注意分析法的“格式”是“要证---只需证---”,而不是“因为---所以---” 考点3反证法已知f(x)axx2(a1),证明方程f(x)0没有负数根 x1
x02 x01【解题思路】“正难则反”,选择反证法,因涉及方程的根,可从范围方面寻找矛盾[解析]假设x0是f(x)0的负数根,则x00且x01且ax0
0ax0101x021,解得x02,这与x00矛盾,2x01
故方程f(x)0没有负数根
总结:否定性命题从正面突破往往比较困难,故用反证法比较多
第四部分数学归纳法
学习目标:
1.了解数学归纳法的原理,理解数学归纳法的一般步骤。
2.掌握数学归纳法证明问题的方法,能用数学归纳法证明一些简单的数学命题
3.能通过“归纳-猜想-证明”处理问题。
知识归纳:
数学归纳法的定义:
一般地,当要证明一个命题对于不小于某正整数N的所有正整数n都成立时,可以用以下两个步骤:
(1)证明当n=n0时命题成立;
(2)假设当n=k(
第四篇:推理与证明
第3讲 推理与证明
【知识要点】
1.归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或由个别事实概括出一般结论的推理
2.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。3.类比推理的一般步骤:
①找出两类事物之间的相似性或者一致性。
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)【典型例题】
1、(2011•江西)观察下列各式:7=49,7=343,7=2401,„,则7
34201
1的末两位数字为()
A、01 B、43 C、07 D、49
2、(2011•江西)观察下列各式:5=3125,5=15625,5=78125,„,则5A、3125 B、5625 C、0625 D、8125
3、(2010•临颍县)平面内平行于同一条直线的两条直线平行,由此类比思维,我们可以得到()A、空间中平行于同一平面的两个平面平行 B、空间中平行于同一条直线的两条直线平行 C、空间中平行于同一条平面的两条直线平行 D、空间中平行于同一条直线的两个平面平行
4、(2007•广东)设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素与之对应)有a*(b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()
A、(a*b)*a=a B、[a*(b*a)]*(a*b)=a C、b*(b*b)=b D、(a*b)*[b*(a*b)]=b
5、(2007•广东)如图是某汽车维修公司的维修点环形分布图.公司在年初分配给A,B,C,D四个维修点某种配件各50件.在使用前发现需将A,B,C,D四个维修点的这批配件分别调整为40,45,54,61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n件配件从一个维修点调整到相邻维修点的调动件次为n)为()
A、15 B、16 C、17 D、18
6、(2006•陕西)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A、4,6,1,7 B、7,6,1,4 C、6,4,1,7 D、1,6,4,7
7、(2006•山东)定义集合运算:A⊙B={z︳z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A⊙B的所有元素之和为()
A、0 B、6 C、12 D、18
7201
1的末四位数字为()
8、(2006•辽宁)设⊕是R上的一个运算,A是V的非空子集,若对任意a,b∈A,有a⊕b∈A,则称A对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是()A、自然数集 B、整数集 C、有理数集 D、无理数集
9、(2006•广东)对于任意的两个实数对(a,b)和(c,d),规定:(a,b)=(c,d),当且仅当a=c,b=d;运算“⊗”为:(a,b)⊗(c,d)=(ac-bd,bc+ad);运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d),设p,q∈R,若(1,2)⊗(p,q)=(5,0),则(1,2)⊕(p,q)=()A、(4,0)B、(2,0)C、(0,2)D、(0,-4)
10、(2005•湖南)设f0(x)=sinx,f1(x)=f0′(x),f2(x)=f1′(x),„,fn+1(x)=fn′(x),n∈N,则f2005(x)=()
A、sinx B、-sinx C、cosx D、-cosx
11、(2004•安徽)已知数列{an}满足a0=1,an=a0+a1+„+an-1,n≥
1、,则当n≥1时,an=()A、2 B、n
C、2 D、2-
1n-1n
12、若数列{an}满足a1=1,a2=2,an=(n≥3且n∈N*),则a17=()
A、1 B、2 C、D、2-987
13、如图所示的三角形数阵叫“莱布尼兹调和三角形”,有,则运用归纳推理得到第11 行第2个数(从左往右数)为()A、B、C、D、14、根据给出的数塔猜测1 234 567×9+8=()
1×9+2=11 12×9+3=111 123×9+4=1 111 1 234×9+5=11 111 12 345×9+6=111 111.
A、11111110 B、11111111 C、11111112 D、11111113
15、将n个连续自然数按规律排成右表,根据规律,从2008到2010,箭头方向依次是()
A、B、C、D、16、下列推理过程利用的推理方法分别是()(1)通过大量试验得出抛硬币出现正面的概率为0.5;(2)函数f(x)=x2-|x|为偶函数;
(3)科学家通过研究老鹰的眼睛发明了电子鹰眼. A、演绎推理,归纳推理,类比推理 B、类比推理,演绎推理,类比推理 C、归纳推理,合情推理,类比推理 D、归纳推理,演绎推理,类比推理
17、下列表述正确的是()①归纳推理是由部分到整体的推理; ②归纳推理是由一般到一般的推理; ③演绎推理是由一般到特殊的推理; ④类比推理是由特殊到一般的推理; ⑤类比推理是由特殊到特殊的推理. A、①②③ B、②③④ C、②④⑤ D、①③⑤
18、在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,„这些数叫做三角形数,因为这些数对应的点可以排成一个正三角形,则第n个三角形数为()A、n B、1、(2011•陕西)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 照此规律,第五个等式应为 5+6+7+8+9+10+11+12+13=81.
2、(2011•陕西)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49 „
照此规律,第n个等式为 n+(n+1)+(n+2)+„+(3n-2)=(2n-1)2 .
C、n-1 D、2
第五篇:推理与证明
推理与证明
学生推理与证明的建立,是一个漫长的过程,这个过程的开始可以追溯到小孩牙牙学语时候起,小孩在爸爸妈妈跟前不停的问为什么,可以看做推理的雏形。接着到幼儿园、小学,教材里也有简单的说理,小学教材里有简单地说理题,意在培养学生的逻辑思维。
初中新教材对推理与证明的渗透,也是从说理开始的,但内容比较少,也就是教材中的直观几何内容。很快便转向推理,也就是证明。刚开始推理的步骤,是简单的两三步,接着到四五步,后面还一定要求学生写清楚为什么。在学习这一部分内容的时候,好多学生在后面的括号里不写为什么,我便给他们举例小孩子学走路的过程,一个小孩刚开始学走路的时候,需要大人或其他可依附的东西,渐渐地,她会脱离工具自己走。学习证明的过程亦如此,起先在括号里写清为什么,并且只是简单的几步,然后证明比较难一点的,步骤比较多的。
随着社会的进步,中学教材加强了解析几何、向量几何,传统的欧式几何受到冲击,并且教材对这一部分的编排分散在初中各个年级,直观几何分量多了还加入了变换如平移变换、旋转变换、对称变换,投影等内容。老师们对内容的编排不太理解,看了专家的讲座,渐渐明白了:这样编排不是降低了推理能力,而是加强了推理能力的培养,体现了逐步发展的过程,把变换放到中学,加强了中学和大学教材的统一,但一个不争的事实是,对演绎推理确实弱了。
关于开展课题学习的实践与认识
新课程教材编排了课题学习这部分内容,对授课的老师,还是学生的学习都是一个全新的内容,怎样上好这部分内容,对老师、对学生而言,都是一个创新的机会。至于课题学习的评价方式,到现在为止,大多数省份还是一个空白,考不考?怎样考?学习它吧,学习的东西不能在试卷上体现出来,于是,好多老师对这部分采取漠视的处理方法;不学习吧,课本上安排了这部分内容。还有一部分老师觉得,课题学习是对某一个问题专门研究,很深!老师不知讲到什么程度才合理,学生不知掌握到什么程度。
经过几年的实践与这次培训的认识,我觉得课题学习是“实践与综合应用”在新课课程中的主要呈现形式,是一种区别于传统的、全新的,具有挑战性的学习,课本的编写者安排的主要目的是:
1.希望为学生提供更多的实践与探索的机会。
2.让学生通过对有挑战性和综合性问题的解决,经历数学化的过程。
3.让学生获得研究问题地方法和经验,使学生的思维能力、自主探索与合作交流的意识和能力得到发展。
4.让学生体验数学知识的内在联系,以及解决问题的成功喜悦,增进学生学习数学的信心。
5.使数学学习活动成为生动活泼的、主动的和富有个性的过程。
课题学习首先提出一个主问题(问题是一个载体),然后给出资料,利用资料挖掘知识。在这个过程中,多关注知识的价值,淡化数学术语,让学生充分经历数学化的过程,激发学生参与的热情,使其体会到学习数学的乐趣,始终以学生为主体,明白课题学习是为学习服务的。