新人教版七年级数学下册不等式与不等式组知识点归纳总结

时间:2019-05-13 21:41:40下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《新人教版七年级数学下册不等式与不等式组知识点归纳总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《新人教版七年级数学下册不等式与不等式组知识点归纳总结》。

第一篇:新人教版七年级数学下册不等式与不等式组知识点归纳总结

不等式与不等式组

1不等式及其解集

1、用“<”或“>”号表示大小关系的式子叫做不等式。(有些含有未知数,不含未知数。)

2、不等式的符号统称不等号,有“>”“<”“≠”.其中“≤”“≥”,也是不等号.其中,“≤”表示,不大于、不超过,“≥”表示不小于、不低于。

3、使不等式成立的未知数的值叫做不等式的解。

4、一个含有未知数的不等式的所有的解,组成这个不等式的解集。

5、解与解集的关系:不等式的解集包括不等式全体的解;解集中的任何一个数都是不等式的解。

6、用数轴表示解集:在数轴上标出某一区间,其中的点对应的数值都是不等式的解。①方向线向左表示小于,方向线向右表示大于;

②空心圆圈表示不包括;

③实心圆圈表示包括。

7、用数轴表示解集的步骤:①画数轴;②找点;③定向;④画线。

8、求不等式的解集的过程叫做解不等式。

9、含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。

2不等式的性质

1、不等式的性质1不等式两边同时加(或减)同一个数(或式子),不等号的方向不变。如果a>b,那

么a±c>b±c。

不等式的性质2不等式两边同乘(或除以)同一个正数,不等号的方向不变。如果a>b,c>0,那么

ac>bc(或ac

<>bc)。不等式的性质3不等式两边同乘(或除以)同一个负数,不等号的方向改。如果a>b,c<0,那么ac<bc(或acbc)。

2、解未知数为x的不等式,就是要使不等式逐步化为x>a或x<a的形式。

3、解不等式时也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向。

4、解不等式时要注意未知数系数的正负,以决定是否改变不等号的方向。

5、解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式。

3一元一次不等式组

1、把几个不等式合起来,就组成了一个一元一次不等式组。

2、几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式就是求它的解集。

3、对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。

4、不等式组取公共解集的方法:同大取大;同小取小;大小小大取中间;大大小小取不了。列不等式(组)解应用题

列一元一次不等式(组)解应用题的一般步骤如下:

1、审:审清题意,弄懂已知条件,求什么,以及各个数量之间的关系。

2、设:只能设一个未知数,一般是与所求问题有直接关系的量。

3、找:找出题中所有的不等关系,特别是隐含的数量关系。

4、列:列出不等式(组)。

5、解:解不等式(组),若不等式组求其公共部分,得出结果。

6、答:根据所得结果作出回答。

第二篇:不等式知识点总结

感受生活中存在着大量的不等关系,了解不等式和一元一次不等式的意义,下面是小编帮大家整理的不等式知识点总结,希望大家喜欢。

不等式:①用符号〉,=,〈号连接的式子叫不等式。②不等式的两边都加上或减去同一个整式,不等号的方向不变。③不等式的两边都乘以或者除以一个正数,不等号方向不变。④不等式的两边都乘以或除以同一个负数,不等号方向相反。

不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。②一个含有未知数的不等式的所有解,组成这个不等式的解集。③求不等式解集的过程叫做解不等式。

一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。

一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。③求不等式组解集的过程,叫做解不等式组。

一元一次不等式的符号方向:

在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。

在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C

在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C

在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,A*CB*C(C0)

在不等式中,如果乘以同一个负数,不等号改向;例如:AB,A*C

如果不等式乘以0,那么不等号改为等号

所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。

第三篇:七年级数学第九章不等式与不等式组综合训练

人教版

七年级数学下册

第九章

不等式与不等式组

综合训练

一、选择题

1.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()

A.103块

B.104块

C.105块

D.106块

2.(2019•河北)语句“x的与x的和不超过5”可以表示为

A.+x≤5

B.+x≥5

C.≤5

D.+x=5

3.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:

甲:b-a<0;

乙:a+b>0;

丙:|a|<|b|;

丁:>0.其中正确的是()

A.甲乙

B.丙丁

C.甲丙

D.乙丁

4.某种商品的进价为80元,标价为100元,后来由于该商品积压,商店准备打折销售,要保证利润率不低于12.5%,则该种商品最多可打

()

A.九折

B.八折

C.七折

D.六折

5.已知点M(1-2m,m-1)关于x轴的对称点在第一象限,则m的取值范围在数轴上表示正确的是()

6.如果,那么下列四个式子中:①

④正确的式子的个数共有

()

A.个

B.个

C.个

D.个

7.下表是小洁打算在某通信公司购买一款MAT手机与搭配一个手机号的两种方案.此公司每个月收取通话费与月租费的方式如下:若通话费超过月租费,则只收通话费;若通话费不超过月租费,则只收月租费.小洁每个月的通话费均为x元,x为400到600之间的整数,在不考虑其他费用并使用两年的情况下,若使选择乙方案的总花费比选择甲方案少,则x至少为

()

A.500

B.516

C.517

D.600

8.如果关于的方程的解为不大于2的非负数,那么()

A.

B.等于5,6,7

C.

D.

二、填空题

9.不等式-x+3<0的解集是________.

10.商家花费760

元购进某种水果80

千克,销售中有5%的水果正常损耗.为了避免亏本,售价至少应定为________元/千克.

11.下列说法中,正确的有__________个.

①的解集是;②是的解;③的整数解有无数个;④不等式的负整数解只有5个.

12.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.

13.不等式组的解集是________.

14.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,若销售完这1000套童装要获得不低于20000元的纯利润,则每套童装的售价至少为

元.15.(2019•荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n-0.5≤x

16.已知有理数满足,若的最小值为,最大值为,则___

三、解答题

17.用不等式表示:

⑴的与的差大于;

⑵的与的和小于;

⑶的倍与的的差是非负数;

与的和的不大于.

18.解不等式组,并把它的解集表示在数轴上.

19.福林制衣厂现有24名制作服装工人,每天都制作某种品牌衬衫和裤子,每人每天可制作衬衫3件或裤子5条.

(1)若该厂要求每天制作的衬衫和裤子数量相等,则应安排制作衬衫和裤子各多少人?

(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,若该厂要求每天获得利润不少于2100元,则至少需要安排多少名工人制作衬衫?

20.求不等式的解集.

21.解不等式组

22.;

23.解不等式组

24.解不等式:

人教版

七年级数学下册

第九章

不等式与不等式组

综合训练-答案

一、选择题

1.【答案】C 【解析】设这批电话手表有x块,根据“销售总额超过5.5万元”列不等式得550×60+500(x-60)>55000,解得x>104,所以这批电话手表至少有105块.

2.【答案】A

【解析】“x的与x的和不超过5”用不等式表示为x+x≤5.故选A.

3.【答案】C 【解析】∵由数轴可知b<-3<0

设该种商品打x折出售.依题意,得100×-80≥80×12.5%,解得x≥9,所以最多可打九折.5.【答案】A 解析:由题意得,点M关于x轴对称的点的坐标为(1-2m,1-m).又∵M(1-2m,m-1)关于x轴的对称点在第一象限,∴解得

在数轴上表示为.故选A.6.【答案】B

【解析】⑴

①、③、④正确,所以选择B

7.【答案】C [解析]

因为x为400到600之间的整数,所以甲方案使用两年的总花费为(24x+15000)元;

乙方案使用两年的总花费为24×600+13000=27400(元).当选择乙方案的总花费比选择甲方案少时可列不等式24x+15000>27400.解得x>516,所以x至少为517.故选C.8.【答案】D

【解析】由方程可得,根据题意得:且,即得,选择D.

二、填空题

9.【答案】x>6 【解析】本题考查了一元一次不等式的解法.移项得,-x<-3,系数化为1得,x>6.10.【答案】10 【解析】设水果的定价为x元/千克,由题意得,80(1-5%)x-760≥0,化简得,76x≥760,∴x≥10.11.【答案】3

12.【答案】m>2 解析:由第一象限点的坐标的特点可得解得m>2.13.【答案】-3-3,故不等式组的解集为:-3

设每套童装的售价为x元.依题意,得1000x-10%×1000x-88×1000≥20000,解得x≥120.15.【答案】13≤x<15

【解析】依题意得:6-0.5≤0.5x-1<6+0.5,解得13≤x<15.故答案为:13≤x<15.

16.【答案】5

【解析】解原不等式可得,利用几何意义解答或零点分段讨论均可,,.

三、解答题

17.【答案】

;⑵

;⑶

;⑷

18.【答案】

【解析】.∴原不等式组的解集是.在数轴上表示为:

19.【答案】

(1)应安排15名工人制作衬衫,9名工人制作裤子;(2)至少应安排18名工人制作衬衫.

【解析】(1)设应安排名工人制作衬衫,由题意得:

答:应安排15名工人制作衬衫,9名工人制作裤子.

(2)设应安排名工人制作衬衫,由题意得:

答:至少应安排18名工人制作衬衫.

20.【答案】

【解析】对本例,首先应去分母,化成标准形式求解.

去分母,得

去括号,得

移项,得

合并同类项,得

系数化为1,得

21.【答案】

【解析】方法1:

原不等式组可写成,解这个不等式组,得。

方法2:

在不等式组的左、中、右三项同时乘以2,得。

再在这个不等式组三边同时减去3,得。

三边同时除以,不等号方向改变,得,即。

22.【答案】

【解析】或,解得,且;

23.【答案】

【解析】解不等式①,得,即可取任意实数;解不等式②,得.∴原不等式的解集为。

24.【答案】

【解析】由,得;由,无解集;故原不等式的解集为

第四篇:七年级数学不等式课件

教学目标:

通过对具体实例的学习,使学生能够了解生活中的不等量关系,理解不等式的概念,知道什么是不等式的解,为以后学习不等式的解法奠定基础.知识与能力:

1.通过对具体事例的分析和探索,得到生活中不等量的关系.2.通过理解得到不等式的概念,从而使学生经历实际问题中数量的分析、抽象过程,体会现实中有各种各样错综复杂的数量关系.3.了解不等式的意义,知道不等式是用来刻画生活中的数量关系的.4.知道什么是不等式的解.过程与方法:

1.引导学生分析具体事例,从对具体事例的分析中得到不等量关系.2.引导并帮助学生列出不等式,分析不等式的成立条件.3.通过分析、抽象得到不等式的概念和不等式的解的概念.4.通过习题巩固和加深对概念的理解.情感、态度与价值观:

1.通过学生的分析和抽象过程使他们体会现实中错综复杂的数量关系,然后从而培养其抽象思维能力.2.通过分组讨论学习,体会在解决具体问题的过程中与他人合作的重要性,培养学生的团体协作精神,使学生获得合作交流的学习方式.3.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.4.通过创设问题串,让学生仔细观察、对比、归纳、整理,尝试对有理数进行分类,然后体验教学活动充满着探索性和创造性.教学重、难点及教学突破

重点:不等式的概念和不等式的解的概念.难点:对文字表述的数量关系能列出不等式.教学突破:由于学生在以前已经对数量的大小关系和含数字的不等式有所了解,但还没有接触过含未知数的不等式,在学生分析问题的时候注意引入现实中大量存在的数量间的不等关系,研究它们的变化规律,使学生知道用不等式解决实际问题的方便之处.在本节的教学中能够在组织学生讨论的过程中适当地渗透变量的知识,让学生感受其中的函数思想,并引导学生发现不等式的解与方程的解之间的区别.在处理本节难点时指导学生练习有理数和代数式的知识,准确“译出”不等式.教学过程:

一.研究问题:

世纪公园的票价是:每人5元,一次购票满30张可少收1元.某班有27名少先队员去世公园进行活动.当领队王小华准备好了零钱到售票处买了27张票时,爱动脑的李敏同纪学喊住了王小华,提议买30张票.但有的同学不明白.明明只有27个人,买30张票,岂不浪费吗?

那么,究竟李敏的提议对不对呢?是不是真的浪费呢

二.新课探究:

分析上面的问题:设有x人要进世纪公园,①若x≥30,应该如何买票?②若x<30,则又该如何买票呢?

结论:至少要有多少人进公园时,买30张票才合算?

概括:

1、不等式的定义:表示不等关系的式子,叫做不等式.不等式用符号>,<,≥,≤.2、不等式的解:能使不等式成立的未知数的值,叫做不等式的解.3、不等式的分类:⑴恒不等式:-7<-5,3+4>1+4,a+2>a+1.⑵条件不等式:x+3>6,a+2>3,y-3>-5.三、基础训练.例

1、用不等式表示:⑴a是正数;⑵b不是负数;⑶c是非负数;⑷x的平方是非负数;⑸x的一半小于-1;⑹y与4的和不小于3.注:⑴不等式表示代数式之间的不相等关系,与方程表示相等关系相对应;

⑵研究不等关系列不等式的重点是抓关键词,弄清不等关系.例

2、用不等式表示:⑴a与1的和是正数;⑵x的2倍与y的3倍的差是非负数;⑶x的2倍与1的和大于—1;⑷a的一半与4的差的绝对值不小于a.例

3、当x=2时,不等式x-1<2成立吗?当x=3呢?当x=4呢?

注:⑴检验字母的值能否使不等式成立,只要代入不等式的左右两边,如果符合不等号所表示的关系,就成立,否则就不成立.⑵代入法是检验不等式的解的重要方法.学生练习:课本P42练习1、2、3.四、能力拓展

学校组织学生观看电影,某电影院票价每张12元,50人以上(含50人)的团体票可享受8折优惠,现有45名学生一起到电影院看电影,为享受8折优惠,必须按50人购团体票.⑴请问他们购买团体票是否比不打折而按45人购票便宜;

⑵若学生到该电影院人数不足50人,应至少有多少人买团体票比不打折而按实际人数购票便宜.解:⑴按实际45人购票需付钱_________ 元,然后如果按50人购买团体票则需付钱50×12×80%=480元,所以购买团体票便宜.⑵设有x人到电影院观看电影,当x_____时,按实际人数买票______张,需付款_______元,而按团体票购票需付款________元,如果买团体票合算,那么应有不等式________________,由①得,当x=45时,上式成立,让我们再取一些数据试一试,将结果填入下表:

x12x比较480与12x的大小48<12x成立吗?

由上表可见,至少要__________人时进电影院,购团体票才合算.五、小结:

⑴不等式的定义,不等式的解.⑵对实际问题中探索得到的不等式的解,然后不仅要满足数学式子,而且要注意实际意义.六、作业课本P42习题8.1第1、2、3题.补充题:

1.用不等式表示:

(1)与1的和是正数;(2)的与的的差是非负数;

(3)的2倍与1的和大于3;(4)的一半与4的差的绝对值不小于.(5)的2倍减去1不小于与3的和;(6)与的平方和是非负数;

(7)的2倍加上3的和大于-2且小于4;(8)减去5的差的绝对值不大于

2.小李和小张决定把省下的零用钱存起来.这个月小李存了168元,然后小张存了85元.下个月开始小李每月存16元,小张每月存25元.问几个月后小张的存款数能超过小李?(试根据题意列出不等式,并参照教科书中问题1的探索,找出所列不等式的解)

3.某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆,已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,然后从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元,(1)设从乙仓库调往A县农用车辆,用含的代数式表示总运费W元;(2)请你用尝试的方法,探求总运费不超过900元,共有几种调运方案?你能否求出总运费最低的调运方案.

第五篇:七年级数学下册《一元一次不等式组》说课稿

作为一名为他人授业解惑的教育工作者,常常要根据教学需要编写说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。那么应当如何写说课稿呢?下面是小编精心整理的七年级数学下册《一元一次不等式组》说课稿,欢迎大家分享。

尊敬的各位评委:

上午好!

我说课的课题是《一元一次不等式组》。

我从教材分析、学情分析、教学目标、教学手段、教学过程这五个方面来进行说明。

一、教材分析

《一元一次不等式组》是华东师大版义务教育课程标准实验教科书数学七年级下册第八章第三节,我把本节内容分为两个课时,第一课时是一元一次不等式组的概念及解法,第二课时是不等式组的实践与探索。今天,我说课的内容是第一课时。

《数学课程标准》对本节的要求是:充分感受生活中存在着大量的不等关系,了解不等式组的意义;会解简单的一元一次不等式组,并会用数轴确定解集。

《一元一次不等式》的主要内容是一元一次不等式(不等式组)的解法及其简单应用。是在学习了有理数的大小比较、等式及其性质、一元一次方程的基础上,开始学习简单的数量之间的不等关系,进一步探究现实世界数量关系的重要内容,是继一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后继学习一元二次方程、函数及进一步学习不等式的重要基础,具有承前启后的重要作用。

《一元一次不等式组》是本章的最后一节,是一元一次不等式知识的综合运用和拓展延伸,是进一步刻画现实世界数量关系的数学模型,是下一节利用一元一次不等式组解决实际问题的关键。因此,我把本节课的教学重点确定为一元一次不等式组的解法。

数学课程应当从学生熟悉的现实生活开始,沿着数学发现过程中人类的活动轨迹,从生活中的问题到数学问题,从具体问题到抽象概念,从特殊关系到一般规则,逐步通过学生自己的.发现去学习数学、获取知识。得到抽象化的数学知识之后,再及时地把它们应用到新的现实问题上去。按照这样的途径发展,数学教育才能较好地沟通生活中的数学与课堂上的数学的联系,才能有益于学生理解数学,热爱数学和使数学成为生活中有用的本领。

本节课,既有概念教学又有解题教学,而概念教学,应该从生活、生产实例或学生熟悉的已有知识引入,引导学生通过观察、比较、分析、综合,抽取共性,得到概念的本质属性。在此基础上归纳概括出概念的定义,并引导学生弄清定义中每一个字、词的确切含义。华师版的教科书中,只设计了一个问题情境,我感觉还不够,不能从一个问题抽象出概念的本质。因此,在这里我又增加了一个问题情境,以增加对不等式组概念的理解,加强数学应用意识的培养。

二、学情分析

从学生学习的心理基础和认知特点来说,学生已经学习了一元一次不等式,并能较熟练地解一元一次不等式,能将简单的实际问题抽象为数学模型,有一定的数学化能力。但学生将两个一元一次不等式的解集在同一数轴上表示会产生一定的困惑。这个年龄段的学生,以感性认识为主,并向理性认知过渡,所以,我对本节课的设计是通过两个学生所熟悉的问题情境,让学生独立思考,合作交流,从而引导其自主学习。

基于对学情的分析,我确定了本节课的教学难点是:正确理解不等式组的解集。

三、教学目标

在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下:

1.通过实例体会一元一次不等式组是研究量与量之间关系的重要模型之一。

2.了解一元一次不等式组及解集的概念。

3.会利用数轴解较简单的一元一次不等式组。

4.培养学生分析、解决实际问题的能力。

5.通过实际问题的解决,体会数学知识在生活中的应用,激发学生的学习兴趣。能在解决问题过程中勤于思考、乐于探究,体验解决问题策略的多样性,体验数学的价值。

四、教学手段

本节课采用多媒体教学,利用多媒体教学信息容量大、操作简单、形象生动、反馈及时等优点,直观地展示教学内容,这样不但可以提高学习效率和质量,而且容易激发学生学习的兴趣,调动积极性。

五、教学过程

本节课的教学流程如下:实际问题——一元一次不等式组——解集——解法——应用。

本节课我设计了五个活动。

活动一、实际问题,创设情境

问题1.小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为72千克, 体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,这时爸爸的一端仍然着地.后来,小宝借来一副质量为6千克的哑铃,加在他和妈妈坐的一端,结果爸爸被跷起离地.猜猜小宝的体重约是多少?在这个问题中,如果设小宝的体重为x千克.(1)从跷跷板的状况你可以找出怎样的不等关系?

(2)你认为怎样求x的范围,可以尽可能地接近小宝的体重?

我提出问题(1),学生独立思考,回答问题。

考察学生对应用一元一次不等式解决实际问题的能力,并引出新知。

教师提出问题(2),学生小组合作、探索交流,回答问题。

我预计学生对于这个问题会产生两种不同的看法:一种方法是利用估算的方法将特殊值代入来求出适合不等式组的特殊解;另一种方法是求出两个不等式的解集,并分别将这两个解集在数轴上表示。因此教师应引导学生进一步理解本题的实际意义,能将两个不等式的解集综合分析。

这里是通过对数量关系的分析、抽象,突出数学建模思想的教学,注重对学生进行引导,让学生充分发表意见,并鼓励学生提出不同的解法。

问题2.现有两根木条,一根长为10厘米,另一根长为30厘米,如果再找一根木条,用这三根木条钉一个三角形木框,那么第三根木条的长度有什么要求?

教师提出问题,学生独立思考,回答问题。

教学效果预估与对策:预计学生对三角形三边关系可能有所遗忘,教师应给予提示。

设计意图:这是一个与三角形相关的问题,要求学生能综合运用已有的知识,独立思考、自主探索、尝试解决,促使学生在探索和解决问题的过程中获得体验、得到发展,学会新的东西,发展自己的思维能力。

活动二、总结归纳,得出概念

1.一元一次不等式组

通过上面两个实际问题的探究,归纳概括出一元一次不等式组的概念和一元一次不等式组解集的概念。

即:把两个(或两个以上)一元一次不等式合在一起,就得到了一个一元一次不等式组(linear inequalities of one unknown)。

2.一元一次不等式组的解集

同时满足不等式(1)、(2)的未知数x应是这两个不等式解集的公共部分。在同一数轴上表示出这两个解集,找到公共部分,就是所列不等式组的解集。

不等式组中几个不等式的解集的公共部分,叫做这个不等式组的解集。

师生活动:在活动一的基础上,将学生得出的结论进行归纳总结。教师要注意倾听学生叙述问题的准确性和全面性。

教学效果预估与对策:估计多数学生在经历了上述的探索过程后,能够对这个结论有所认识,【七年级数学下册《一元一次不等式组》说课稿】相关文章:

1.《一元一次不等式组》七年级数学说课稿

2.一元一次不等式组的教学反思

3.一元一次不等式组教学反思

4.《一元一次不等式组》教案设计

5.一元一次不等式组数学教学设计

6.一元一次不等式组相关测试题

7.《一元一次不等式》说课稿

8.一元一次不等式的应用说课稿

9.《一次函数与一元一次不等式》说课稿

下载新人教版七年级数学下册不等式与不等式组知识点归纳总结word格式文档
下载新人教版七年级数学下册不等式与不等式组知识点归纳总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高一数学不等式知识点(5篇范文)

    不 等 式1、 不等式的性质是证明不等式和解不等式的基础。不等式的基本性质有:(1) 对称性:a>bbb,b>c,则a>c;(3) 可加性:a>ba+c>b+c;(4) 可乘性:a>b,当c>0时,ac>bc;当cd,则a+c>b+d;(2) 异向相减:ab,c......

    七年级数学下册 1.1一元一次不等式组教案 湘教版

    1.1 一元一次不等式组 教学目标 1. 能结合实例,了解一元一次不等式组的相关概念。 2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。 3. 提高分析问题的......

    七年级下册不等式性质说课稿

    七年级下册数学《9.1.2不等式的性质》说课稿 9.1.2《不等式的性质》---说课稿 本节课的内容是《不等式的性质》第1课时,课题选自人教版《义务教育课程标准实验教科书数学(七年......

    七年级数学《不等式性质》说课稿

    七年级数学《不等式性质》说课稿 七年级数学《不等式性质》说课稿1 我今天说课的题目是《不等式的基本性质》,主要分四块内容进行说课:教材分析;教学方法的选择;学法指导;教学流......

    不等式与不等式组教案5则范文

    以下是查字典数学网为您推荐的不等式与不等式组教案,希望本篇文章对您学习有所帮助。不等式与不等式组本章知识是在学习了一元一次方程(组)的基础上研究简单的不等关系的.教......

    《不等式与不等式组》复习教案

    《不等式与一次不等式组》 全章复习与巩固(提高)知识讲解 要点一、不等式 1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子要点诠释:(1)不等式的解:能使不等式成立的未知......

    一元一次不等式组教后反思

    一元一次不等式组教后反思 赵双艳 本节课我采用从生活中创设问题情景的方法激发学生学习兴趣,采用类比等式性质创设问题情景的方法,引导学生的自主探究活动,教给学生类比,......

    初中不等式(组)考点总结

    第四章不等式(组) 考点一、不等式的概念(3分) 1、不等式:用不等号表示不等关系的式子,叫做不等式。 2、不等式的解集 对于一个含有未知数的不等式,任何一个适合这个不等式的未知数......