不等式选讲+推理证明测试题含答案(写写帮推荐)

时间:2019-05-13 21:42:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《不等式选讲+推理证明测试题含答案(写写帮推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《不等式选讲+推理证明测试题含答案(写写帮推荐)》。

第一篇:不等式选讲+推理证明测试题含答案(写写帮推荐)

不等式选讲及推理证明测试题

一、选择题

1、不等式

2x

3的解集是(2)

3)(0,)

A.(,)B.(

323,0)(0,)C.(,D.(

23,0)

2、设P

Q

RP,Q,R的大小顺序是()A.PQRB.PRQC.QPRD.QRP

3、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”

的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

4、设x0,y0,A

xy1xy,B

x1x

y1y,则A、B的大小关系()

A.ABB.ABC.ABD.不能确定

5、已知不等式(xy)(

x

11y

则实数a的最大值为)a对任意正实数x,y恒成立,()

A.2B.4C.2D.16

6、不等式352x9的解集为()

A.[2,1)[4,7)B.(2,1](4,7] C.(2,1][4,7)D.(2,1][4,7)

7、已知0a,b1,用反证法证明a(1b),b(1a)不能都大于时,反设正确的41是()

A.a(1b),b(1a)都大于

14,B.a(1b),b(1a)都小于

C.a(1b),b(1a)都大于或等于D.a(1b),b(1a)都小于或等于

8、如果a0,且a1,Mloga(a31),Nloga(a21),那么()A.MNB.MNC.MND.M,N的大小无法确定

9、数列an中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列,通过计算S1,S2,S3,猜想当n≥1时,Sn=()

A.2k1B.2(2k1)C.

2k1k

1D.

2k2k111、定义f(M)(m,n,p),其中M是△ABC内一点,m、n、p分别是△MBC、

△MCA、△MAB的面积,已知△ABC中,ABAC1

2,x,y),则

BAC30,f(N)(1x

4y的最小值是()

A.8B.9C.16D.1812、设x0,y0,且x2y24,xy4(xy)10,则的最值情况是()

A.有最大值2,最小值2(22)B.有最大值2,最小值0

C.有最大值10,最小值2(22)D.最值不存在二、填空题

13、不等式|23x|7的解集为________________

14、函数y3x546x的最大值为

15、若不等式mx2mx10对一切xR都成立,则m的取值范围是

16、如图1,若射线OM,ON上分别存在点M1,M2与点N1,N2,则

SOM1N1SOM2N

2=

OMOM

·

ONON

;如图2,若不在同一平面内的射线OP,OQ和OR

上分别存在点P1,P2,点Q1,Q2和点R1,R2,则类似的结论是

三、解答题

17、解不等式 |x3||x5|

418、已知adbc,求证:(a2b2)(c2d2)(acbd)

219、若x,y都是正实数且x+y>2,用反证法证明:一个成立.

20、设函数f(x)|2x3|2(1)解不等式f(x)3x(2)若关于x的不等式

取值范围

21、已知等式122232n(n1)2

n(n1)1

2(anbnc)

1xy

2与

1yx

2中至少有

f(x)1|xm

m

|的解集为R,求实数m 的求是否存在常数a,b,c使上述等式对一切正整数n都成立?证明你的结论

22、已知函数f(x)log2(ax22x3a)

(1)当a1时,求该函数的定义域和值域;

(2)如果f(x)1在区间[2,3]上恒成立,求实数a的取值范围。

实验班答案

13、{x|x3或x14、3VOP1Q1R115、VOP2Q2R

2

OP1OQ1OR1OP2OQ2OR217、|x3||x5|

4x53x5x

3或或等价于

x3x54x3x54x3x54

解不等式的

18、法一:

x

53x5x3或或

x624x

2即{x|x6或x2}

(ab)(cd)(acbd)

22222

=a2c2b2c2b2d2a2d2a2c2b2d22acbd

=b2c2a2d22acbd(bcad)2 因为adbc所以(bcad)20 所以(a2b2)(c2d2)(acbd)2 法二:

由柯西不等式知,构造两组数

ac

bd

acbd

所以(a2b2)(c2d2)(acbd)2当即adbc时等号成立

因为adbc所以取不到等号所以(a2b2)(c2d2)(acbd)219、假设

1xy1y

都不小于2 x

1yx

2即

1xy

2且

由于x,y为正实数

所以1x2y且1y2x把两式相加2xy2y2x 即2yx这与x+y>2矛盾所以假设不成立 所以

20、解:|2x3|23x

2

2x35x2x

3{x|8x 

32x35xx8

1xy

2与

1yx

2中至少有一个成立

等价于|2x3|5x

2关于x的不等式即

f(x)1|xm

m

|的解集为R

|2x3|11|xm

||xm

m|2

|恒成立

||xm52||m

即 |x而|x

m

恒成立即(|x

32xm

m

|)min2

||xmm||xm

m4|

所以|m2m4|2解得(-,-2][-1,2][3,)

abc24a3

21、把n=1,2,3代入得方程组4a2bc44,解得b11,9a3bc70c10

猜想:等式122232n(n1)2立

n(n1)1

2(3n11n10)

对一切nN都成下面用数学归纳法证明:(1)当n=1时,由上面的探求可知等式成立

(2)假设n=k时等式成立,即122232k(k1)2则

1223k(k1)(k1)(k2)

k(k1)1212

(3k5)(k2)(k1)(k2)

[3(k1)11(k1)10]

k(k1)12

(3k11k10)

k(k1)

(k1)(k2)

(3k11k10)(k1)(k2)[k(3k5)12(k2)]

(k1)(k2)

所以当n=k+1时,等式也成立 综合(1)(2),对nN等式都成立

22、(1)当a1时,f(x)log2(x22x3)由x22x30知定义域为{x|1x3}

设f(x)log而

t

tx2x3

tx2x3(x1)44

log2tlog242值域为(,2]

(2)f(x)1在区间[2,3]上恒成立

即log2(ax22x3a)1在区间[2,3]上恒成立即ax22x3a2在区间[2,3]上恒成立 所以a

22x

x3

22x

设g(x)2

x3

在区间[2,3]上恒成立在区间[2,3]上a(2(x1)(x1)

22xx3)max

2

g(x)

22xx3

2(x1)2



(x1)

2x1

所以a

第二篇:不等式、推理证明测试题

高三第五次月考数学(文)试题

命题人:王建设

一、选择题(每题5分)1.不等式

x

10的解集为()2x

A.{x|1x2} B.{x|1x2} C.{x|x1或x2} D.{x|x1或x2}

2、有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b平面,直线a平面,直线b∥平面,则直线b∥直线a”的结论显然是错误的,这是因为()

A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

3、下面几种推理是类比推理的是()A..两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=1800

B.由平面三角形的性质,推测空间四边形的性质

C.某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超过50位团员.D.一切偶数都能被2整除,2100

是偶数,所以2

能被2整除.4、用火柴棒摆“金鱼”,如图所示:

②①

按照上面的规律,第n个“金鱼”图需要火柴棒的根数为()

A.6n2B.8n

2C.6n2D.8n2

5.两个球体积之和为12π,且这两个球大圆周长之和为6π,那么这两球半径之差是()

A.B.1C.2D.

32x2y

4

6.在约束条件xy1下,目标函数z3xy()

x20

A.有最大值

3,最小值3B.有最大值

5,最小值3 C.有最大值5,最小值9D.有最大值3,最小值9 7.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是………………………………………()A.10πB.11πC.12πD.13

238、在十进制中2004410010010210,那么

俯视图 正(主)视图 侧(左)视图

在5进制中数码2004折合成十进制为()A.29B.254C.602D.2004 9.如果a0且a1,Mloga(a31),Nloga(a21),则()

A.MNB.MN C.MND.M,N的大小与a值有关

10.已知正数a,b满足4ab30,则使得()

1取得最小值的有序实数对(a,b)是ab

A.(5,10)B.(6,6)C.(7,2)D.(10,5)

11.如果一个水平放置的图形的斜二测直观图是一个底面为450,腰和上底均为

1的等腰梯形,那么原平面图形的面积是()

A.22B.

122

2C.D.12 22

12.半径为R的半圆卷成一个圆锥,则它的体积为()

R3B.

R3C.

R3D.

R3248248

112,q()x2,其中a2,xR,则p,q的大小关系为()a22

A.

13.已知pa

A.pqB.pqCpq.D.pq 14.若实数x,y满足

1,则x22y2有()22xy

A.最大值322B.最小值322C.最小值6D.最小值615.函数f(x)

x的最大值为()x1

212A.B.C.D.1 522

16.若x1,x2是方程xax80的两相异实根,则有()A.|x1|2,|x2|2B.|x1|3,|x2|

3C.|x1x2|

D.|x1||x2|17.在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为()A

B

.C.

4D

【解析】结合长方体的对角线在三个面的投影来理解计算。如图 设长方体的高宽高分别为m,n,k,由题意得

n1 ab,所以(a21)(b21)6

a2b28,∴(ab)2a22abb282ab8a2b216 12b的等比中项,且ab0,则18.若a是12b与

2|ab|的最大值为()

|a|2|b|

A.25252

B.C.D.15452

二.填空题:本大题共5小题,每小题5分,共25分.19.体积为8的一个正方体,其全面积与球O的表面积相等,则球O20.设某几何体的三视图如下,则该几何体的体积为4

21、一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●„若

将此若干个圈依此规律继续下去,得到一系列的圈,那么在前120个圈中的●的个数是14。

22、设平面内有n条直线(n3),其中有且仅有两条直线互相平行,任意三条直线不过同

一点.若用f(n)表示这n条直线交点的个数,则当n>4时,fn=

(用含n的数学表达式表示)。

23、已知1xy1,1xy3,则3xy的取值范围是1,7 24.直三棱柱ABCA1B1C1的各顶点都在同一球面上,若

ABACAA12,BAC120,则此球的表面积等于4R220

三、解答题:

25、(12分)求证:(1)6+7>22+5;(2)a2b23abab);

(3)若a,b,c均为实数,且ax2x

,by2y

,cz2z

求证:a,b,c中至少有一个大于0。

(8分)如图,在四边形ABCD中,DAB90,ADC135,00

AB

5,CDAD2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积ACAE

27.(14分)在ΔABC中(如图1),若CE是∠ACB的平分线,则 =BCBE

(Ⅰ)把上面结论推广到空间中:在四面体A-BCD中(如图2),平面CDE是二面角A-CD

-B的角平分面,类比三角形中的结论,你得到的相应空间的正确结论是(Ⅱ)证明你所得到的结论.A G

E

B

B HC

1图

2C

A 11

28.设函数f(x)x33bx23cx有两个极值点x1,x2,且x11,0,x21,2.(1)求b,c满足的约束条件,并在坐标平面内画出满足这些条件的点(b,c)的区域;

(2)求证:10f(x2).答案:

25、证明:(2)∵a2b22ab,(1)要证原不等式成立,a23,只需证(+)2>(22+5)2,b23;即证242240。

将此三式相加得∵上式显然成立,2(a2b23)2ab,∴原不等式成立.∴a2b23abab)..(反证法).证明:设a、b、c都不大于0,a≤0,b≤0,c≤0,∴a+b+c≤0,πππ22

2而a+b+c=(x-2y+)+(y-2z+)+(z-2x+

236

222222

=(x-2x)+(y-2y)+(z-2z)+π=(x-1)+(y-1)+(z-1)+π-3,∴a+b+c>0,这与a+b+c≤0矛盾,故a、b、c中至少有一个大于0.26.解:S表面S圆台底面S圆台侧面S圆锥侧面

52(25)

21)

V

1(r12r1r2r22)hr2h

3V圆台V圆锥

31483

27.结论:

SΔACDAESΔACDSΔAECSΔACDSΔAED

= 或= 或=SΔBCDBESΔBCDSΔBECSΔBCDSΔBED

证明:设点E是平面ACD、平面BCD的距离分别为h1,h2,则由平面CDE平分二面角A-CD

-B知h1=h2.SΔACDh1SΔACDVA-CDE

又∵ = =SΔBCDh2SΔBCDVB-CDE

AESΔAEDVC-AEDVA-CDE

= ==BESΔBEDVC-BEDVB-CDE

SΔACDAE∴ SΔBCDBE

A

A GC

B

B HC

1图

228、解:(Ⅰ)f'(x)=3x2+6bx+3c,(2分)

依题意知,方程f'(x)=0有两个根x1、x2,且x1∈[-1,0],x2∈[1,2]

等价于f'(-1)≥0,f'(0)≤0,f'(1)≤0,f'(2)≥0. 由此得b,c满足的约束条件(略)(4分)

满足这些条件的点(b,c)的区域为图中阴影部分.(6分)(Ⅱ)由题设知f'(x2)=3x22+6bx2+3c=0,则2bx2=-x22-c,故 .f(x2)x233bx223cx2-x23cx2(8

由于x2∈[1,2],而由(Ⅰ)知c≤0,故-43cf(x2)c. 又由(Ⅰ)知-2≤c≤0,(10分)所以10f(x2).232

1232

第三篇:不等式选讲测试题

不等式选讲测试题

一、选择题:(本大题共8小题,每小题5分,共40分.)

1.若a,b是任意的实数,且a>b,则()

(A)ab(B)

2.不等式2211b1(C)lg(a-b)>0(D)()a()b 22a23的解集是()x

2222(A)(,)(B)(,)(0,)(C)(,0)(0,)(D)(,0)3333

3.在直径为4的圆内接矩形中,最大的面积是()

(A)4(B)2(C)6(D)8

4.已知3x+y=10,则x2y2的最小值为()

1(B).10(C).1(D).100 10

5.不等式|x-1|+|x+2|5的解集为()(A).

(A).,22,(B).,12,

(C).,23,(D).,32,

6.若n>0,则n+32的最小值为()2n

A.2B.4C.6D. 8

7.若正数a,b满足ab=a+b+3,则ab的最值范围为()

A.6,B.9,C.,9D.8.已知a,b,c是正实数,且a+b+c=1,则111的最小值为()abc

A..3B.6C.9D.12

二.填空题:本大题共6小题;每小题5分,共30分.

9.函数y=5x125x的最大值为;

10.若不等式mxmx10对一切xR都成立,则m的取值范围是11.如果关于x的不等式|x-4|-|x+5|b的解集为空集,则参数b的取值范围2

为.12.建造一个容积为18 m,深为2 m的长方体无盖水池,如果池底和池壁每平方米的造价分别为200元和150元,那么池的最低造价为:__________.13.设a, bR,若ab5,求a2b的最大值为:_______。

14.(1)ba≥2成立当且仅当a,b均为正数。ab223

(2)y2x23,(x0)的最小值是34。x

2273(3)yx(a2x)2,(0xa)的最大值是2a。

(4)|a+1|≥2成立当且仅当a≠0。a

以上命题是真命题的是:

15.(15分)已知数列{an}是正数组成的数列,其前n项和为Sn,对于一切nN均有an与2的等差中项等于Sn与2的等比中项。

(1)计算a1,a2,a3,并由此猜想{an}的通项公式an;

(2)用数学归纳法证明(1)中你的猜想。

16.(15分)解不等式x3x243x2

答案:

DBDBDCBC 9.22910.4m011.b>912.540013.514.(4)(5)

2a2(a2)nn15.解:(1)由可求得a1Sn得Sn282,a26,a310,┈5分

由此猜想{an}的通项公式an4n2(nN)。┈┈┈7分

(2)证明:①当n1时,a12,等式成立;┈┈┈9分②假设当nk时,等式成立,即ak4k2,┈┈┈11分

(ak12)2(ak2)2

ak1Sk1Sk88

(ak1ak)(ak1ak4)0,又ak1ak0

ak1ak40,ak1=ak+44k-2+44(k1)2

当nk1时,等式也成立。┈┈┈13分 由①②可得an4n2(nN)成立。┈┈┈15分 16解:原不等式等价于下列两个不等式组得解集的并集:

43x0x23x202Ⅰ:x3x204分Ⅱ:4分 43x0x23x2(43x)2

4x3464解Ⅰ:1x2x 3分解Ⅱ:x23分 3536x3

52

6∴原不等式的解集为{x|x2} 2分 5

第四篇:选修4-5----不等式选讲测试题

选修4-5不等式选讲测试题

一.选择题:

1.若a,b是任意的实数,且a>b,则()A.a2b2B.2.若

1a1b

0,则下列不等式中

b

1a1b

1C. lg(a-b)>0D.()()

22a

(1)abab

(2)|a|>|b|(3)a

ba

ab

2正确的个数是()

A.1B. 2C. 3D.4 3.不等式|x-1|+|x+2|5的解集为()

A. ,22,B. ,12,C. ,23,D.,32, 4.下列结论不正确的是()A.x,y为正数,则

xyyx

2B.

x2x

122

2C.lgxlogx102D.a0,则(1a)(1

1a)

45.如果a>0,且a1,Mloga(a31),Nloga(a21),那么()

A.M>NB.M0,则n+A.2

32n

2的最小值为()

C.6

D. 8

B.4

7.已知3x+y=10,则x2y2的最小值为()A.

B.10C.1D.100

8.函数y=5x125x的最大值为()

A.108B.63C.10D.279.已知0a,b1,用反证法证明a(1b),b(1a)不能都大于A.a(1b),b(1a)都大于

时,反设正确的是()

14,B.a(1b),b(1a)都小于

C.a(1b),b(1a)都大于或等于D.a(1b),b(1a)都小于或等于

10.已知a,bR,且abA.ab

ab

0,则()

ab

B.ab

aabc

C.ab

ccda

ab

D.ab

ab

11.a,b,cR

,设

S

bbcd



ddab,则下列判断中正确的是()

A. 0S1B. 1S2C. 2S3D. 3S4

1111

312.用数学归纳法证明不等式++…+<(n≥2,n∈N*)的过程中,由n=k递推

n+1n+22n14

到n=k+1时不等式左边()

A.增加了一项B.增加了两项、2k+12k+12k+2

C.增加了B中两项但减少了一项D.以上各种情况均不对

k+1二.填空题:

13.已知2x3y6z12,求x2y2z2的最小值是 14.已知a1=,an+1=

3anan3,则an=____________

15.如果关于x的不等式|x-4|-|x+5|b的解集为空集,则b的取值范围为16.设A

1

2



1,则A与1的大小关系是_____________

三.解答题:

17.(12分)(1)证明:a2b22(2ab)5(2)证明:538

18.(12分)用数学归纳法证明:1

1213

n

n22,nN,n2

19.(12分)已知函数f(x)=|x-2|-|x-5|.(1)证明:-3≤f(x)≤3;(2)求不等式f(x)≥x2-8x+15的解集.

20.(12分)已知对于任意正数a1,a2,a3,有不等式:a1

1a1

1,(a1a2)(1a1

1a2)4,(a1a2a3)(1a1

1a2

1a3)9,…

(1)从上述不等式归纳出一个适合任意正数a1,a2,...,an的不等式.(2)用数学归纳法证明你归纳得到的不等式.21(22分)如图,四边形PCBM是直角梯形,∠PCB=90°,∠MBC=45°,PM∥BC,PM=1,BC=2,又AC=1,∠ACB=120°,AB⊥PC,直线AM与直线PC所成的角为60°.(1)求证:平面PAC⊥平面ABC;

(2)求异面直线PA和BC所成角的余弦值;

(3)求直线AB与平面MAC所成角的正弦值;(4)求二面角MACB的余弦值;(5)求三棱锥PMAC的体积。

第五篇:几何证明选讲测试题

几何证明选讲测试题

班级姓名

一. 选择题

1.如图所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作

圆的切线l,过A作l的垂线AD,垂足为D,则∠DAC=()

A.15B.30C.45D.60

2.一个圆的两弦相交,一条弦被分为12cm和18cm两段,另一

弦被分为3:8,则另一弦的长为()

A.11cmB.33cm C.66cmD.99cm

3.O的割线PAB交O于A,B两点,割线PCD经过圆心, 22已知PA6,PO12,AB,则O的半径为()

3A.4B

.6C

.6D.8

4.如图,AB是半圆O的直径,点C在半圆上,CDAB于点D,且AD3DB,设COD,则tan2=()

211 A.B.C

.4D.3 3

45.在ABC中,D,E分别为AB,AC上的点,且DE//BC,ADE的面积

是2cm2,梯形DBCE的面积为6cm2,则DE:BC的值为()

A

.B.1:2C.1:3D.1:4 第4题图 第1题图

6.矩形ABCD中,折叠矩形一边AD,使点D落在BC边的点F处,已知折

痕AE=5cm,且CE∶CF=3∶4,则矩形ABCD的周长为()

A.36cm B.5cmC.72cmD.5cm 第6题图7.已知如图EB是⊙O的直径,A是BE延长线上一

点,AC切半圆于点D,BC⊥AC,于C,DF⊥EB于点F,若BC=6,AC=8,则DF

等于()

A 2B3C 5.5D7 第7题图 8.如图梯形ABCD中,AD//BC,对角线AC,BD交于点O点M,N分别在两腰上,MN过点O,且MN//AD,OM=ON,则AD,BC与MN

满足的关系是()A .ADBC2MNB.ADBCMN2

B112C.D. MNADBCMN

AD2BC2 21 第8题图

9.如图在平行四边形 ABCD中,点E,F,G四等分B,D,延长AE交BC于H,延长HG交AD于点K,则AD:KD等于()

A19: 2B9:1C 8:1D 7:

110.已知如图△ABC中,AE:EB=1:3,BD:DC=2:1,AD与CE相交于

EFAF

F则的值为()FCFD13

AB1CD2

22第10二.填空题:

11.如图,AB为⊙O的直径,弦AC、BD交于点P,若AB3,CD1,则sinAPD.

12.如图,⊙O'和⊙O相交于A和B,PQ切⊙O于P,交⊙O'于Q和M,交AB的延长线于N,MN=3,NQ=15,则 PN=__________.

OO13.如图,四边形ABCD内接于⊙,BC是直径,MN切⊙于A,N 则D.14.已知⊙O的割线PAB交⊙O于A,B两点,割线PCD经过圆心,若PA=3,AB=4,PO=5,则⊙O的半径为_______________

15.如图,平行四边形ABCD中AE:EB1:2,AEF的面积为6,则ADF的面积为.16.如图,已知PA是⊙O的切线,A是切点,直线PO 交⊙O于B、C两点,D是OC的中点,连结AD并延长 交⊙O于点

E.若PA2,APB30,则AE

P

B

第15题图

A

D

O

C第16题图

几何证明选讲测试题答题卷

班级姓名

一.选择题:

二.填空题:

11.12.13.14.15.16.

三.解答题:

17.如图,△ABC中,AB=AC,AD是中线,P为AD上一点,CF∥AB,BP延长线交AC、CF于E、F,求证: PB2=PE•PF.

第17题图

18.如图,AB是⊙O的一条切线,切点为B,ADE,CFD,CGE都是⊙O的割线,已知

ACAB.(Ⅰ)证明:ADAEAC2;(Ⅱ)证明:FG//AC.A

19.如图,已知AB是⊙O的直径,C,D是⊙O上两点,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.

求证:(Ⅰ)C是B D弧的中点;

(Ⅱ)BF=FG.

B

20.如图所示,AB是⊙O的直径,G为AB延长线上的一点,GCD是⊙O的割线,过点G作AB的垂线,交AC的延长线于点E,交AD的延长线于点F,过G作⊙O的切线,切点为H.求证:(1)C,D,F,E四点共圆;

(2)GH2=GE·GF.21.在Rt△ABC中,∠C=90°,BC=9,CA=12,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,⊙O是△BDE的外接圆,交BC于点F.(1)求证:AC是⊙O的切线;

EF

(2)联结EF,求的值.

AC

22.如图,A是以BC为直径的O上一点,ADBC于点D,过点B作O的切线,与CA的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与

CB的延长线相交于点P.(1)求证:BFEF;(2)求证:PA是O的切线;

(3)若FGBF,且

O的半径长为求BD和FG的长度.6

C

第22题图

下载不等式选讲+推理证明测试题含答案(写写帮推荐)word格式文档
下载不等式选讲+推理证明测试题含答案(写写帮推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    推理证明测试题

    《推理与证明测试题》试卷满分100分,考试时间105分钟一、 选择题:本大题共10小题,每小题3分,共30分.1、 下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到......

    不等式选讲高考题

    不等式选讲高考题 1. (2011年高考山东卷理科4)不等式|x5||x3|10的解集为 (A)[-5.7](B)[-4,6] (C)(,5][7,)(D)(,4][6,) 2. (2011年高考天津卷理科13) 已知集合AxR|x3x49,BxR|x4t,t(0,......

    专题:不等式选讲(精选五篇)

    专题:不等式选讲 1、已知函数f(x)log2(|x1||x5|a). (Ⅰ)当a5时,求函数f(x)的定义域; (Ⅱ)当函数f(x)的定义域为R时,求实数a的取值范围。 2、设a,b,c为不全相等的正数,证明:2(abc)a(bc)......

    不等式选讲心得体会[范文]

    《不等式选讲》心得体会 从开学到实习前,《不等式选讲》这门课我们已经上了一个月了。在这一个月里,我们学习了讲义里的第一、二章和第三章的第一、二讲。下面,我将对我在这一......

    数列不等式推理与证明

    2012年数学一轮复习精品试题第六、七模块 数列、不等式、推理与证明一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等比数......

    2011推理与证明测试题

    2011推理与证明、复数测试题1一、选择题(每题5分,共55分)1.复数534i的共轭复数是 B.34i 55nA.34i nC.34iD.34i 552.设f(n)=ii(n∈N),则集合{f(n)}中元素的个数为A.4B.3C.2D.13.设z∈C,则方......

    推理与证明测试题

    《推理与证明测试题》一、选择题:1、 下列表述正确的是().①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊......

    《推理与证明》测试题

    《推理与证明》测试题一、选择题:(每题5分,共50分)1.下列表述正确的是( D ) ①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类......