第一篇:华东理工大学2013年硕士研究生招生化工原理考试大纲
2013年“化工原理”(科目代码801)考试大纲
1、流体流动。流体静力学;质量守恒;流动流体的机械能守恒;阻力损失;管路计算;流体流量的测定;非牛顿流体的特性。
2、流体输送机械。离心泵;往复泵;气体输送。
3、液体搅拌。混合机理;搅拌器的性能;搅拌功率;搅拌器的放大。
4、流体通过颗粒层的流动。颗粒床层特性;流体通过固定床的压降,过滤。
5、颗粒的沉降和流态化。颗粒的沉降运动;沉降分离设备;流化床;气力输送。
6、传热。热传导;对流给热;沸腾给热和冷凝给热;热辐射;传热过程计算。
7、蒸发。蒸发操作的经济性和操作方式;单效蒸发的计算;多效蒸发。
8、气体吸收。气液相平衡;扩散和单相传质;相际操作;低浓度气体吸收;吸收的设计型计算和操作型计算;化学吸收。
9、精馏。双组分溶液的气液相平衡;双组分溶液的设计型计算和操作型计算;间歇精馏;恒沸精馏与萃取精馏;多组分精馏流程方案选择。
10、气液传质设备。板式塔;填料塔。
11、液液萃取。液液相平衡;萃取过程的计算;常用萃取设备的工作原理。
12、其它传质分离方法。结晶;吸附分离;膜分离。
13、热质同时传递的和固体干燥。气液直接接触时的传热和传质;干燥静力学;间歇干燥过程计算;连续干燥过程的计算。常用干燥设备。
第二篇:华东理工大学2013年硕士研究生招生高分子化学和物理考试大纲
2013年“高分子化学和物理”(科目代码810)考试大纲
【高分子化学部分】 第一部分 绪论
了解高分子科学及其发展历史,高分子的基本概念和命名方法。了解高分子化合物的合成方法及平均分子量和分子量分布概念。第二部分 逐步聚合
了解缩合聚合反应特征、缩聚反应平衡、反应动力学、缩聚物的分子量及分子量分布的的控制方法和计算。了解体型缩聚、凝胶点及凝胶点方程控制与计算。了解缩聚反应及逐步聚合方法。
第三部分 自由基聚合
了解自由基聚合反应特征、引发剂和引发反应、阻聚及阻聚作用、自由基聚合反应速率方程及聚合反应控制、链转移反应及分子量控制、聚合反应热力学理论及单体结构对聚合反应活性的影响。了解自由基聚合技术的实施方法。第四部分 离子、开环及受控聚合
了解正离子、负离子、络合配位聚合反应特征、机理和动力学,引发剂类型及活性中心的特征,单体结构对聚合反应活性中心的选择。第五部分 共聚合反应
了解共聚合反应类型及重要性,共聚物的组成方程及控制,单体竞聚率的测定及影响,及单体结构,Q、e值对单体聚合反应活性的影响。第六部分 聚合物的化学反应
了解聚合物的化学反应特征及影响因素,聚合物的相似转化反应,聚合物的交联接枝﹑嵌段及扩链反应, 聚合物的降解反应,防止聚合物的降解,以及聚合物老化的技术措施,以及绿色高分子概念。【高分子物理部分】
第一部分 发展简史及人文知识
了解高分子科学领域曾获得过诺贝尔奖的科学家以及获奖的研究成果,了解高分子科学的发展简史,以及高分子物理是如何建立起来的。第二部分 聚合物的结构
高分子的链结构,包括:近程结构(结构单元化学组成,键接结构,支化与交联,构型和共聚物结构),远程结构(构象,均方末端距,均方旋转半径,链柔性及其结构的关系)。高分子的凝聚态结构,包括:高分子间的作用力,结晶形态和结构(单晶,球晶),晶态结构模型和非晶态结构模型,结晶动力学及其影响因素,结晶能力与结构关系,结晶度,结晶热力学,高分子的取向及其对聚合物性能的影响,液晶态结构和非均相多组分聚合物的织态结构及其对聚合物性能的影响。第三部分 聚合物的分子运动
包括高分子的运动单元,高分子热运动和温度与时间的关系和聚合物的力学状态和转变过程。掌握高分子的玻璃化转变,包括:自由体积理论,影响Tg的各种因素。掌握聚合物熔体流动特征、影响Tf的因素、影响聚合物剪切粘度的因素和聚合物流动过程中弹性效应。第四部分 高分子溶液 理解聚合物的溶解过程,包括溶解原理、溶度参数和溶剂选择原则。掌握高分子溶液热力学,包括:Flory-Huggins溶液理论和Flory-Krigbum稀溶液理论。熟悉聚合物分子量及分子量分布的测定方法,包括:端基分析,膜渗透,光散射,粘度和凝胶渗透色谱。掌握高分子浓溶液的特征,包括:聚合物增塑,凝胶和冻胶。第五部分 聚合物的力学性能
掌握应力与应变,模量与柔量等概念,掌握聚合物的高弹性特征及理论、粘弹性及其力学模型、时温等效原理、聚合物的力学强度、拉伸过程及断裂破坏过程等。
第三篇:华东理工大学2013年安全原理考试大纲
安全原理考试大纲
一、考试要求:
掌握工业安全工程相关的基本理论。重点考察安全分析与评价的基本概念、基本方法与基本过程,了解一般的专业术语及其相关规程与法规。
二、考试内容:
1、安全工程学、安全系统工程、安全管理、人机工程中相关的概念与名词解释;
2、安全生产基本法规、事故分析模型、重大危险源辨识、安全评价方法等,重点考察对基本概念、原理和分析方法的掌握。
三、参考书目:
《安全原理》隋鹏程、陈宝智、隋旭编著,化学工业出版社,2005年。《安全工程与科学导论》崔克清,张礼敬,陶刚编,化学工业出版社,2004年。
《事故理论与分析技术》王凯全 邵辉等编,化学工业出版社,2004年。
第四篇:2018年硕士研究生招生考试大纲
2018年硕士研究生招生考试大纲
011 数学科学学院
目 录
初试考试大纲........................................................0 617 数学分析....................................................0 856 高等代数....................................................5 432 统计学......................................................7 复试考试大纲.......................................................11 实变函数.......................................................11 计算方法.......................................................12 常微分方程.....................................................14 概率论与数理统计(统计学).......................................16 概率论与数理统计(应用统计)...................................17
初试考试大纲
617 数学分析
一、考试性质
数学分析是数学相关专业硕士入学初试考试的专业基础课程。
二、考察目标
本考试大纲制定的依据是根据教育部颁发的《数学分析》教学大纲的基本要求,力求反映与数学相关的硕士专业学位的特点,客观、准确、真实地测评考生对数学分析的掌握和运用情况,为国家培养具有良好数学基础素质和应用能力、具有较强分析问题与解决问题能力的高层次、复合型的数学专业人才。
本考试旨在测试考生对一元函数微积分学、多元函数微积分学、级数理论等知识掌握的程度和运用能力。要求考生系统地理解数学分析的基本概念和基本理论;掌握数学分析的基本论证方法和常用结论;具备较熟练的演算技能和较强的逻辑推理能力及初步的应用能力。
三、考试形式
本考试为闭卷考试,满分为150分,考试时间为180分钟。
试卷结构:一元函数微积分学、多元函数微积分学、级数理论及其他(隐函数理论、场论等)考核的比例均约为1/3,分值均约为50分。
四、考试内容
(一)变量与函数
1、实数:实数的概念、性质,区间,邻域;
2、函数:变量,函数的定义,函数的表示法,几何特征(有界函数、单调函数、奇偶函数、周期函数),运算(四则运算、复合函数、反函数),基本初等函数,初等函数。(二)极限与连续
1、数列极限:定义(-N语言),性质(唯一性,有界性,保号性,不等式性、迫敛性),数列极限的运算,数列极限存在的条件(单调有界准则(重要的数列极限lim(1n)e),迫敛性法则,柯西收敛准则);
n1n2、无穷小量与无穷大量:定义,性质,运算,阶的比较;
3、函数极限:概念(在一点的极限,单侧极限,在无限远处的极限,函数值趋于无穷大的情形(-, -X语言));性质(唯一性,局部有界性,局部保号性,不等式性,迫敛性);函数极限存在的条件(迫敛性法则,归结原则(Heine定理),柯西收敛准则);运算;
4、两个常用不等式和两个重要函数极限(limsinx11,lim(1)xe);
x0xxx5、连续函数:概念(在一点连续,单侧连续,在区间连续),不连续点及其分类;连续函数的性质与运算(局部性质及运算,闭区间上连续函数的性质(有界性、最值性、零点存在性,介值性、一致连续性),复合函数的连续性,反函数的连续性);初等函数的连续性。
(三)实数的基本定理及闭区间上连续函数性质的证明
1、概念:子列,上、下确界,区间套,区间覆盖;
2、关于实数的基本定理:六个等价定理(确界存在定理、单调有界定理、区间套定理、致密性定理、柯西收敛原理、有限覆盖定理);
3、闭区间上连续函数性质的证明:有界性定理的证明,最值性定理的证明,零点存在定理的证明,反函数连续性定理的证明;一致连续性定理的证明。
(四)导数与微分
1、导数:来源背景,定义(在一点导数的定义、单侧导数、导函数),导数的几何意义,简单函数的导数(常数、正弦函数、对数函数、幂函数),求导法则(四则运算,反函数的求导法则,复合函数的求导法则,隐函数的求导法则,参数方程所表示函数的求导法则);
2、微分:定义,运算法则,简单应用;
3、高阶导数与高阶微分:定义,运算法则。
(五)微分学基本定理及导数的应用
1、中值定理:费马(Fermat)定理,中值定理(罗尔(Rolle)中值定理、拉格朗日(Lagrange)中值定理、柯西(Cauchy)中值定理);
2、泰勒公式及应用(近似计算,误差估计);
3、导数的应用:函数的单调性、极值和最值,函数凸性与拐点,平面曲线的曲率,七种待定型与洛必达(L’Hospital)法则;
(六)不定积分
1、不定积分:概念,基本公式,运算法则,计算(换元积分法、分部积分法、有理函数积分法,其他类型积分)。
(七)定积分
1、定积分:来源背景,概念,函数可积的必要条件,达布上、下和,定积分存在的充要条件,可积函数类(闭区间上的连续函数,分段连续函数,单调有界函数),定积分的性质,定积分的计算(基本公式、换元公式、分部积分公式);
2、变上限定积分:定义,性质。
(八)定积分的应用
1、定积分在几何上的应用:平面图形的面积,曲线的弧长,截面已知的立体体积,旋转体的体积,旋转曲面的面积;
2、定积分在物理上的应用:功、压力、引力;
3、微元法。
(九)数项级数
1、预备知识:上、下极限;
2、级数的敛散性:无穷级数收敛、发散等概念,柯西收敛原理,收敛级数的基本性质;
3、正项级数:定义,敛散判别(基本定理,比较判别法,柯西判别法,达朗贝尔判别法,柯西积分判别法);
4、任意项级数:绝对收敛级数与条件收敛级数的概念和性质,交错级数与莱布尼兹判别法,阿贝尔(Abel)判别法与狄利克雷(Dirichlet)判别法。
(十)反常积分
1、反常积分:无穷限的反常积分的概念、性质,敛散判别法(柯西收敛原理,比较判别法,狄利克雷判别法、阿贝尔判别法);无界函数的反常积分的概念、性质,敛散判别法。
(十一)函数项级数、幂级数
1、函数项级数的一致收敛性:函数项级数以及函数列的概念,函数项级数以及函数列一致收敛的概念,一致收敛判别法(柯西收敛原理,优级数判别法,狄利克雷判别法与阿贝尔判别法);一致收敛的函数列与函数项级数的性质(连续性,可积性,可微性);
2、幂级数:阿贝尔第一、第二定理,收敛半径与收敛区间,幂级数的一致收敛性,幂级数和函数的分析性质(连续性,可积性,可微性),泰勒(Taylor)级数与几种常见的初等函数的幂级数展开。
(十二)傅里叶级数
1、傅里叶级数:引进,三角函数系的正性, 傅里叶系数与傅里叶级数,以2为周期的函数的傅里叶级数展开,以2L(L0)为周期的函数的傅里叶级数展开,奇偶函数的傅里叶级数展开,傅里叶级数收敛定理的证明。
(十三)多元函数的极限与连续
1、平面点集:邻域,点列的极限,开集,闭集,区域,平面点集的几个基本定理;
2、二元函数:概念,二重极限和二次极限,连续性(连续的概念、连续函数的局部性质及有界闭区域上连续函数的整体性质)。
(十四)偏导数和全微分
1、偏导数和全微分:偏导数的概念,几何意义;全微分的概念;二元函数的连续性、可微性,偏导存在的关系;复合函数微分法(链式法则);由方程组所确定的函数(隐函数)的求导法;
2、偏导数的应用:空间曲线的切线与法平面,曲面的切平面与法线;方向导数与梯度;泰勒公式。
(十五)极值和条件极值
1、极值:概念,判别(必要条件、充分条件),应用,最小二乘法;
2、条件极值:概念,拉格朗日乘数法,应用。(十六)隐函数存在定理
1、隐函数:概念,存在定理;
2、隐函数组:隐函数组存在定理,反函数组与坐标变换,雅可比行列式。(十七)含参变量积分与含参变量广义积分
1、含参变量的正常积分:定义,性质(连续性、可微性、可积性);
2、含参变量的反常积分:定义,一致收敛的定义,一致收敛积分的判别法(柯西收敛原理、魏尔斯特拉斯判别法、阿贝尔判别法、狄立克雷判别法),一致收敛积分的性质(连续性、可微性、可积性);
3、欧拉积分:函数和函数的定义、性质。(十八)重积分的计算及应用
1、二重积分:二重积分的概念,性质,计算(化二重积分为二次积分,换元法(极坐标变换,一般变换);
2、三重积分:计算(化三重积分为三次积分, 换元法(一般变换,柱面坐标变换,球面坐标变换));
3、重积分的应用:立体体积,曲面的面积,物体的质心,矩,引力,转动惯量;
(十九)曲线积分与曲面积分
1、曲线积分:第一型曲线积分及第二型曲线积分的来源背景、概念、性质、应用与计算,两类曲线积分的联系;
2、曲面积分:第一型曲面积分及第二型曲面积分的来源背景、概念、性质、应用与计算,两类曲面积分的联系。(二十)各种积分间的联系和场论初步
1、各种积分间的联系公式:格林(Green)公式,高斯(Gauss)公式,斯托克斯(Stokes)公式;
2、曲线积分与路径无关性:四个等价条件。
3、场论初步:场的概念,梯度,散度和旋度,保守场,哈密顿算子(算子)。
五、是否需使用计算器
否。
856 高等代数
一、考试性质
高等代数是全国数学专业硕士入学初试考试的专业基础课程。
二、考察目标
本考试大纲力求反映数学硕士专业学位的特点,科学、准确、规范地测评考生对高等代数所具有的基本素质和综合能力,具体考察考生对高等代数基础理论的掌握情况,以及运用高等代数的理论与方法分析问题、解决问题的能力。
本考试在三个层次上测试考生对高等代数理论的掌握程度和运用能力。三个层次的基本要求分别为:
1、基本概念和基本理论的理解、掌握;
2、运用基本理论解决基础性问题的分析、计算和推理能力;
3、综合运用高等代数知识分析问题、解决问题的能力。
三、考试形式
(一)试卷满分及考试时间
本试卷满分为150分,考试时间为180分钟。
(二)答题方式
答题方式为闭卷、笔试。
(三)试卷结构(1)试卷分值构成:
多项式理论部分约占分值20分; 矩阵理论部分约占分值60分; 线性空间理论部分约占分值70分。
(2)题型包括:填空题,简答题,计算题,证明题。
四、考试内容
(一)多项式理论
1、一元多项式的一般理论 概念、运算、导数及基本性质;
2、整除理论
整除的概念、最大公因式、互素的概念与性质;
3、因式分解理论
不可约多项式、因式分解、重因式、实系数与复系数多项式的因式分解、有理系数多项式不可约的判定等;
4、根的理论
多项式函数、多项式的根、有理系数多项式的有理根的求法、根与系数的关系等;
5、多元多项式的一般理论 多元多项式概念、对称多项式。
(二)矩阵理论
1、行列式理论与计算
行列式的概念、性质以及计算;Cramer法则,拉普拉斯定理。
2、线性方程组
向量、向量组的线性相关与无关;线性方程组的解的结构。
3、矩阵
矩阵的各种运算及运算规律,矩阵的秩,矩阵的逆,分块矩阵的相应运算及性质。
4.二次型
二次型基本概念,配方法、合同变换法化二次型为标准形,惯性定理,正定、半正定、半负定二次型与矩阵的判定。
(三)线性空间理论
1、线性空间
线性空间的定义与性质;线性相关性及有关结论;秩与极大线性无关组;线性空间的基与维数;基变换与坐标变换公式;线性子空间;子空间的交、和与直和;线性空间的同构。
2、线性变换
线性变换的定义及其基本性质;线性变换的运算;线性变换的矩阵;相似矩阵;矩阵的特征值与特征向量;线性变换的特征值与特征向量;哈密顿-凯莱定理;相似对角化;线性变换的值域与核;不变子空间;不变子空间与线性变换的矩阵的化简;若尔当标准形;最小多项式。
3、矩阵 矩阵的概念;
矩阵的等价;
矩阵在初等变换下的标准形、不变因子矩阵的标准形的方法;矩阵相似的充分与行列式因式;矩阵的初等因子;求必要条件;矩阵若尔当标准形与有理标准形。
4、欧几里得空间
内积和欧几里得空间;长度、夹角与正交;度量矩阵;标准正交基;正交矩阵;欧氏空间的同构;正交变换;正交子空间与正交补;实对称矩阵的标准形;对称变换;向量到子空间的距离;最小二乘法。
五、是否需使用计算器
否。
432 统计学
一、考试性质
统计学是中国海洋大学数学科学学院应用统计学专业专业硕士研究生入学考试初试科目。
二、考察目标
统计学是阐述现代统计基础理论和基本方法的一门学科。实际应用十分广泛。内容包括统计调查、数据整理与展示、概率论基础、参数估计、假设检验、方差分析、回归分析、非参数方法、时间序列、统计指数等方面的内容。
本科目的考试旨在考察考生对统计学的基本原理和基本方法及各种调查研究、数据整理、展示,并结合数据资料进行定性分析和定量分析的掌握与理解能力。统计学考试主要从如下三方面测评考生在统计学方面的基本素质:
1、基本概念和基本理论的理解、掌握;
2、基本解题能力和数据分析与展示能力;
3、综合运用统计理论知识分析问题、解决问题的能力。
三、考试形式
(1)考试形式及考试时间:
本考试为闭卷考试,答题方式为笔试。满分为150分,考试时间为180分钟。(2)试卷分值构成:
基础知识和基本概念理解部分约占分值25%;
运用所学知识经过基本分析解决问题部分约占分值35%;
综合运用基本理论和方法分析问题与解决问题部分约占分值40%。(3)题型包括:选择题,填空题,简答题,计算分析题。
四、考试内容
(一)统计中的几个基本概念
1、统计数据的类型:分类数据,顺序数据,数值型数据。
2、总体和样本:总体,样本,参数和统计量,变量及类型。
(二)数据的搜集
1、数据来源:数据的间接来源,数据的直接来源。
2、调查数据:概率抽样,非概率抽样,搜集数据的基本方法。
3、实验数据。
4、数据的误差:抽样误差,非抽样误差,误差的控制。
(三)数据的图表展示
1、数据的预处理:审核,筛选,排序,数据透视表。
2、品质数据的整理与图示:分类数据和顺序数据的整理与图示。
3、数值型数据的整理与展示:数据分组,数值型数据的图示(直方图,茎叶图,箱线图,线图,散点图,雷达图)。
(四)数据的概括性度量
1、集中趋势的度量:分类数据(众数),顺序数据(中位数和分位数),数值数据(各种平均数,众数,中位数)。
2、离散程度的度量:分类数据(异众比率),顺序数据(四分位差),数值数据(极差,平均差,方差,标准差,离散系数,变异系数)。
3、偏态与峰态的度量:偏态及其计算公式,峰态及其计算公式。
(五)概率与概率分布
1、随机事件及其概率。
2、概率的性质与运算法则:基本性质,条件概率,全概率公式和贝叶斯公式。
3、离散型随机变量及其分布:二项分布,泊松分布,期望,方差。
4、连续型随机变量的概率分布:密度和分布函数,正态分布,指数分布,均匀分布,期望,方差。
(六)统计量及其抽样分布
1、统计量:统计量的概念,常用统计量,次序统计量,充分统计量。
2、关于分布的几个概念:抽样分布,渐进分布。
3、由正态分布导出的几个重要分布:卡方分布,t分布,F分布。
4、样本均值的分布与中心极限定理。
5、样本比例的抽样分布。
6、两个样本平均值之差的分布。
7、关于样本方差的分布。
(七)参数估计
1、参数估计的基本原理。
2、一个总体参数的区间估计。
3、两个总体参数的区间估计。
4、样本量的确定。
(八)假设检验
1、假设检验的基本问题。
2、一个总体参数的检验。
3、两个总体参数的检验。
(九)分类数据分析
1、分类数据与卡方统计量。
2、拟合优度检验。
3、列联分析:独立性检验。
4、列联表中的相关测量。
(十)方差分析
1、方差分析的基本概念:基本思想,基本假定,问题的一般提法。
2、单因素方差分析。
3、双因素方差分析。
(十一)一元线性回归
1、变量间关系的度量。
2、一元线性回归:回归模型,参数的最小二乘估计,回归直线的拟合优度,显著性检验,回归分析结果的评价。
3、利用回归方程进行预测:点估计,区间估计。
4、残差分析。
(十二)多元线性回归
1、多元线性回归模型。
2、回归方程的拟合优度。
3、显著性检验。
4、多重共线性。
5、利用回归方程进行预测。
6、变量选择和逐步回归。
(十三)时间序列分析和预测
1、时间序列及其分解。
2、时间序列的描述性分析。
3、时间序列预测的程度。
4、平稳序列的预测。
5、趋势型序列的预测。
6、季节型序列的预测。
7、复合型序列的分解预测。
(十四)指数
1、指数的概念和分类。
2、总指数编制方法:简单指数,加权指数。
3、指数体系。
4、指数综合评价。
五、是否需使用计算器
允许携带无存储功能的计算器。
复试考试大纲
实变函数
一、考试性质
《实变函数》是中国海洋大学数学相关专业硕士研究生入学考试复试科目。
二、考察目标
实变函数是近代分析数学的基础,是数学分析的延续与拓广。考试以考察基本知识为主,考核对重要定理的理解和应用。旨在测试考生对集合论、可测集、可测函数、可积函数等基本定义概念的理解和掌握。要求考生理解实变函数的基本概念和基本理论;掌握其基本论证方法和常用结论;具备较强的逻辑推理能力及初步的应用能力。
三、考试形式
本考试为闭卷考试,满分为100分,考试时间为120分钟。试卷结构:客观题30%、简答题占30%,证明题占40%。
四、考试内容
(一)集合论
1集合的各种运算,上、下限集的定义 2集合的对等,集合的基数,集合的可列性;
3开集、闭集、完全集、稠密集、稀疏集的概念及其性质;点集的内部、导集、闭包、边界;Cantor三分集的结构和性质;
4点到集合的距离,集合间的距离。
(二)可测集
1.外测度、测度和可测集的概念及其性质,集合可测性的判别方法; 2.开集、闭集的可测性,以及它们与可测集之间的联系。
(三)可测函数
1.可测函数的概念及其性质;
2.函数可测性的判别方法,其与简单函数的联系;
3.可测函数列几种收敛性之间的关系(包括处处收敛、几乎处处收敛、一致收敛、近一致收敛、测度收敛);
4.可测函数和连续函数的联系
5.叶果洛夫(Egoroff)定理、里斯(Riesz)定理、鲁津(Rusin)定理的含义及应用;
(四)Lebesgue积分
1.Lebesgue积分的定义及其性质,函数可积性的判定;
2.积分收敛定理(勒维(Levi)定理,法杜(Fatou)定理和Lebesgue控制收敛定理,Vitali定理)及应用;
3.Riemann积分与Lebesgue积分之间的区别和联系; Fubini定理。
五、是否需使用计算器
否。
计算方法
一、考试性质
计算方法是中国海洋大学计算数学专业硕士研究生入学考试复试笔试科目。
二、考察目标 要求考生理解数值计算的基本方法及基本理论,掌握基本数值方法的理论分析技巧, 具有把数学问题近似求解和编程实现能力。本科目主要考查考生对计算数学基础理论的掌握及考生的基本数值分析能力。从如下三方面测评考生的计算数学基本素质:
1、基本概念和基本理论
2、基本数值方法的构建及分析
3、综合算法分析及应用
三、考试形式
本考试为闭卷考试,满分为100分,考试时间为120分钟。试卷结构:
数值逼近的基本概念和基本理论约为30%,分值约为30分; 代数方程的数值方法及分析约为40%,分值约为40分; 微分方程数值解法及分析约为30%,分值约为30分。
四、考试内容
(一)数值逼近基础
1.误差(误差来源,误差限,有效数字,误差传播,避免误差的注意事项)2.插值法(Lagrange插值,Hermite插值,分段插值,分段Hermite插值, 样条插值,数值微分)
3.数据拟合法(最小二乘原理,多变量拟合,正交多项式拟合)
4.数值积分(梯形、Simpson公式及误差估计,复化公式及误差估计,加速公式与Romberg求积,Gauss型公式等)
(二)代数方程数值方法
1.线性代数方程组的直接法(高斯消去法、主元消去法, 矩阵分解法,误差分析)
2.线性代数方程组的迭代法(几种常用迭代法收敛性及误差估计,判别收敛的条件,收敛速率)
3.矩阵特征值和特征向量的计算(幂法,反幂法,QR算法 Jacobi方法)4.非线性代数方程的解法(对分区间法,迭代法,迭代收敛的加速,Newton法,弦位法抛物线法,最速下降法)
(三)微分方程数值方法
1.常微分方程的数值解法(几种简单的数值解法,R-K方法,线性多步法,预估校正公式,自动选取步长及事后估计)
2.偏微分方程的差分解法(差分格式的建立,收敛性,稳定性,高维问题的交替方向法)
五、是否需使用计算器
否。
常微分方程
一、考试性质
常微分方程是中国海洋大学数学科学学院硕士研究生入学考试复试笔试科目。
二、考察目标
要求考生能正确理解常微分方程的基本概念,掌握一些基本理论和各种类型方程求解的主要方法,具有一定的解题能力。同时,要求考生生具有分析与解决问题的能力。
三、考试形式
本考试为闭卷考试,满分为150分,考试时间为180分钟。试卷结构:选择题30%;计算题20%; 综合题20%;证明题30%
四、考试内容
考试内容:初等积分法;基本定理;一阶线性微分方程组;n 阶线性微分方程;定性理论与稳定性理论简介;一阶偏微分方程初步。
1.初等积分法部分:要求考生能用初等(积分)解法求解常微分方程的可积类型,掌握各种类型的解法,具有判断一个给定方程的类型和正确求解的能力。重点是求解方法,难点是识别方程的类型以及熟练掌握求解方法。2.基本定理部分包括解的存在唯一性定理,解的延展定理,解对初值的连续依赖性定理和解的可微性定理,构成了常微分方程主要理论部分。解的存在唯一性定理表明,若右端函数满足连续和利布希兹条件,则保证方程的解存在性与唯一性。它是常微分方程理论中最基本的定理,有其重大的理论意义。另一方面,由于能求得精确解的方程不多,所以该定理给出的求近似解法就具有重要的实际意义。解的延拓定理及解对初值的连续依赖性与可微性定理揭示了微分方程的重要性质。要求考生必需理解上述定理的条件和结论,掌握证明方法,能运用定理证明有关问题。重点是证明的思路和方法,特别是逐次逼近法,难点是贯穿定理证明过程的利布希兹条件运用和证明过程中不等式技巧的把握。
3.一阶线性微分方程组是常微分方程理论中的重要部分,无论从实用的角度或从理论的角度来说,一阶线性微分方程组所提供的方法和结果都是非常重要的。要求考生:1.掌握线性微分方程组的一般理论,把握解空间的代数结构;2.基解矩阵求法。一般齐次线性微分方程组的基解矩阵是难以通过积分求得,但当系数矩阵是常系数矩阵时,可以通过代数方法(Jordan标准型、矩阵指数)求出基解矩阵。3.重点掌握一阶线性微分方程组的解空间结构和常系数线性微分方程组的解法,难点是证明一阶齐次常微分方程组的解空间是n 维线性空间和一阶常系数齐次或非齐次微分方程组的求解。
4.n 阶线性微分方程是值得重视的方程,这不仅仅因为n阶线性微分方程的一般理论已被研究的十分清楚,而且它是研究非线性微分方程的基础,它在物理、力学和工程技术中也有广泛的应用。要求考生重点掌握n阶线性微分方程的基本理论和常系数n阶线性微分方程的解法,对于高阶方程的降阶问题和二阶线性方程的幂级数解法作简单了解。熟悉Laplace变换是求解n阶常系数线性微分方程初值问题的方法。把握n 阶线性微分方程与一阶线性微分方程组的关系,能够将一阶线性微分方程组的有关结果推广到n 阶线性微分方程,以统一的观点理解这两部分的内容。
5.定性理论与稳定性理论简介主要介绍定性理论和稳定性理论,定性理论产生与发展与生产实践和物理、力学以及工程技术问题紧密联系,它主要研究轨线在相平面或相空间的分布以及极限环或周期轨的稳定性和不稳性等问题。稳定性理论研究平衡态的稳定性问题,主要研究方法是李雅普诺夫第一方法和第二方法。在现代科学技术中,无论是定性理论还是稳定性理论都有着极其广泛的应用。要求学生对定性理论和稳定性理论有所了解,能够用李雅普诺夫第二方法判断平衡点的稳定性问题。
6.一阶偏微分方程部分:只要考生对一阶偏微分方程的理论和方法有所了解,会求解简单的一阶线性齐次偏微分方程和一阶拟线性非齐次偏微分方程问题。
五、是否需使用计算器
否。
概率论与数理统计(统计学)
一、考试性质
概率论与数理统计是数学类专业的重要专业必修课,是中国海洋大学数学科学学院硕士研究生入学考试复试科目。
二、考察目标
要求学生掌握概率论与数理统计的基本理论和基本方法。对相关定理和统计方法有较为深刻的理解,具有分析问题和解决问题的基本技能,为深入学习随机过程和高级数理统计知识做好必要的准备。
本科目旨在考查考生对概率论与数理统计基础理论、基本知识的掌握情况。主要从如下三方面测评考生在概率论与数理统计方面的能力:
1、基本概念和基本理论的理解、掌握;
2、基本解题能力;
3、综合运用理论知识分析问题、解决问题的能力。
三、考试形式
本考试为闭卷考试,满分为100分,考试时间为120分钟。
试卷结构:试卷由试题和答题纸组成,答案必须写在答题纸上。概率论部分与数理统计部分各占分值50%。其中:基础知识和基本概念理解部分约占分值30%;运用所学知识经过基本分析解决问题部分约占分值40%;运用基本理论和基本方法综合分析问题解决问题部分约占分值30%。
四、考试内容
(一)概率论部分
1、概率论的基本概念:样本空间,随机事件,概率,条件概率,独立性。
2、随机变量及其分布函数,密度函数。
3、二元随机变量,分布函数,条件分布,边际分布,协方差,相关系数,独立性。
4、数字特征,重要不等式。
5、特征函数,大数定律,中心极限定理。
(二)数理统计部分
1、数理统计基本概念:总体,个体,样本,统计量,经验分布函数,抽样分布定理,分位数。
2、估计理论:矩法估计,极大似然估计,无偏性,有效性,相合性,一致最小方差无偏估计,区间估计,贝叶斯估计。
3、假设检验:正态总体参数的假设检验,指数分布与二项分布参数的假设检验。非参数假设检验包括:总体分布的假设检验,独立性假设检验。
4、方差分析:单因素方差分析,双因素方差分析。
5、回归分析:线性模型,最小二乘估计,最小二乘估计的性质,线性模型 中回归系数的假设检验。
五、是否需使用计算器
否。
概率论与数理统计(应用统计)
一、考试性质
概率论与数理统计是中国海洋大学数学科学学院应用统计学专业硕士研究生入学复试科目。
二、考察目标
概率论与数理统计是研究自然界和人类社会普遍存在的随机现象统计规律的学科,有着广泛地应用,也是统计学专业的重要基础课程。本科目的考试旨在考查学生掌握概率论与数理统计的基本概念、基本理论和基本方法,综合运用概率统计的思想和方法分析问题、解决问题的能力。测试内容包括如下三个方面:
1、基本概念和基本理论的理解、掌握;
2、基本解题能力;
3、综合运用理论知识分析问题、解决问题的能力。
三、考试形式
(1)考试形式及考试时间:
本考试为闭卷考试,答题方式为笔试。满分为100分,考试时间为120分钟。(2)试卷分值构成:
基础知识和基本概念理解部分约占分值35%;
运用所学知识经过基本分析解决问题部分约占分值35%;
综合运用基本理论和方法分析问题与解决问题部分约占分值30%。注:概率论部分与数理统计部分分别约占整个试卷分值的50%。
四、考试内容
(一)概率论部分
1、样本空间,随机事件,概率,条件概率,独立性,全概率公式,贝叶斯公式。
2、一元离散型和连续型随机变量,分布律,分布函数,密度函数,随机变量函数的分布。
3、二元离散型和连续型随机变量,分布函数,边际分布,条件分布,相互独立,随机变量函数的分布。
4、数学期望,方差,协方差,相关系数,切比雪夫不等式。
5、大数定律,中心极限定理。
(二)数理统计部分
1、数理统计基本概念:总体,个体,样本,统计量,经验分布函数,抽样分布定理,分位数。
2、估计理论:矩估计,极大似然估计,无偏性,有效性,相合性,区间估计。
3、假设检验:正态总体参数的假设,非参数假设检验。
4、方差分析:单因素方差分析,两因素方差分析。
5、回归分析:线性模型,最小二乘估计,线性模型中回归系数的假设检验,预测与控制。
五、是否需使用计算器
否。
第五篇:2018年硕士研究生招生考试大纲
2018年硕士研究生招生考试大纲
015 文新与新闻传播学院
目录
初试考试大纲........................................................1 663 文学综合....................................................1 964 语言学综合..................................................2 965 新闻学基础..................................................3 927 文化产业概论................................................4 354 汉语基础....................................................4 445 汉语国际教育基础............................................6 复试考试大纲........................................................8 文艺学综合知识..................................................8 现代汉语........................................................9 古代汉语基础...................................................10 中国古代文学...................................................11 中国现当代文学.................................................12 儿童文学理论...................................................12 比较文学.......................................................13 新闻学与传播学.................................................14 文化产业管理综合知识...........................................15 中国史.........................................................16 应用语言学.....................................................16
初试考试大纲
663 文学综合
一、考试性质
文学综合是中国语言文学一级学科(包括文艺学、语言学及应用语言学、汉语言文字学、中国古代文学、中国现当代文学、比较文学与世界文学、传媒文化7个二级学科)硕士研究生入学考试的专业基础课程。
二、考察目标
公平、有效地测试考生是否具备攻读中国语言文学一级学科(包括文艺学、语言学及应用语言学、汉语言文字学、中国古代文学、中国现当代文学、比较文学与世界文学、传媒文化7个二级学科)硕士学位所必备的文学学科的基本知识、理论方法、综合能力和专业潜能,通过考试选拔高素质的优秀专业人才。
三、考试形式
本考试为闭卷考试,满分为150分(其中文学概论、中国古代文学、中国现当代文学、外国文学(欧美文学)分别占40分、40分、35分、35分),考试时间为180分钟。
试卷结构:名词解释30分,简答题60分,分析论述题60分。
四、考试内容
文学概论的主要考试内容包括:文学理论的学科属性;文学活动的发生与发展;文学的审美意识形态属性;文学创造活动的特点和过程,包括艺术构思、灵感与形象思维等;文学创造的审美价值追求;文学作品的类型和体裁,文学文本的构成形态;文学典型与意境;文学风格;文学消费与接受;文学批评。
中国古代文学的主要考试内容包括:掌握中国历代文学发展的主要脉络及文学现象的程度 ;熟悉中国历代著名作家及经典作品的程度;对古代文学作品的感受能力以及语言表达的准确度。
中国现当代文学的主要考试内容包括:掌握中国现当代文学的历史演变流脉、基础知识和概念、重要作家作品、主要思潮运动、前沿文学现象和基本研究方法,以及在专业领域中的发现问题和分析问题的能力。
外国文学(欧美文学)的主要考试内容包括:欧美各国文学发展的历史脉络; 欧美文学各个时期出现的重要思潮、流派、作家和作品;欧美文学发展的一般规律和基本特征;中西文学与文化的异同;运用外国文学研究基本理论和方法分析欧美文学问题。
五、是否需要使用计算器
否。
964 语言学综合
一、考试性质
语言学综合是中国语言文学一级学科(包括文艺学、语言学及应用语言学、汉语言文字学、中国古代文学、中国现当代文学、比较文学与世界文学6个二级学科)硕士研究生入学考试的专业基础课程。
二、考察目标
公平、有效地测试考生是否具备攻读中国语言文学一级学科(包括文艺学、语言学及应用语言学、汉语言文字学、中国古代文学、中国现当代文学、比较文学与世界文学6个二级学科)硕士学位所必备的语言学学科的基础知识、理论方法、综合能力和专业潜能,通过考试选拔高素质的优秀专业人才。
三、考试形式
本考试为闭卷考试,满分为150分(其中语言学概论、古代汉语、现代汉语各占50分),考试时间为180分钟。
试卷结构:名词解释30分,简答题60分,分析应用题60分。
四、考试内容
语言学概论的主要考试内容包括:对语言本质和语言不同功能的认知;对语言系统各种构成要素(语音和音系、语法、语义和语用)的分析和描写;对语言和文字关系的正确理解;对语言演变与语言分化、语言接触、语言系统的演变的表现和规律的认识;对实际语言现象的理论解释等。
古代汉语的主要考试内容包括:对古代汉语文字、音韵、训诂、语法现象的准确解释;对古代汉语文献的熟练阅读;对文字、音韵、训诂、句读等传统语言 2 学知识的了解等。重点考查古汉语中文字、音韵、训诂等方面的基础知识。
现代汉语的主要考试内容包括:对现代汉语语音、词汇、语法现象的具体描写分析以及对分析方法的科学运用;对现代汉字的性质、整理与应用情况的了解;对现代汉语修辞学基本知识的一般把握。重点是对现代汉语实际语言事实和现象的科学分析和理论阐释。
五、是否需要使用计算器
否。
965 新闻学基础
一、考试性质
新闻学基础是传媒文化专业硕士研究生入学初试考试的专业基础课程。
二、考察目标
考试目的是为了公平、有效地测试考生是否具备攻读传媒文化专业硕士学位所必备的基本素质、综合能力和专业潜能,以通过考试选拔高素质的优秀新闻传播专业人才,为新闻事业发展和国家文化建设培养人才。
三、考试形式
本考试为闭卷考试,满分为150分,考试时间为180分钟。试卷结构:新闻学理论50分,新闻史40分,新闻实务60分。
四、考试内容
考试要求考生掌握新闻学理论、新闻史、新闻业务的基本知识、基本研究方法和基本专业技能,要求考生具备在新闻传播专业领域中的发现问题、分析问题和理论联系实践的能力。具体说,要求考生:
1、准确理解和恰当地运用新闻传播学科的基本概念和基础知识。
2、掌握新闻传播学科的历史演变。
3、具备新闻采访、写作、编辑、评论能力。
4、密切关注本学科前沿现象,并从新闻学的角度做出分析。
五、是否需使用计算器
否。
927 文化产业概论
一、考试性质
文化产业概论是文化产业管理专业硕士研究生入学初试考试的专业基础课程。
二、考察目标
要求学生具备较为系统全面的文化产业基础知识,掌握有关文化产业的基本理论,为研究生阶段的学习奠定较扎实的理论基础。
三、考试形式
本考试为闭卷考试,满分为150分,考试时间为180分钟。试卷结构:名词解释30分,简答题60分,论述题60分。
四、考试内容
本考试科目主要围绕以下内容命题,考生可按照要求进行复习和准备,不指定具体参考书目,可选用本专业通行的书目。
文化产业的由来(包括:什么是文化产业、文化产业概念的提出、文化产业的范围和门类等);文化产业的兴起和发展;文化产业、内容产业和创意产业;文化事业和文化产业;文化产业经营与管理;文化产业投融资;文化产业政策与法规;文化资源与文化产业;文化资本与文化产业;文化体制改革与文化产业发展;文化产业园区(集聚区)建设;文化产业新业态、新模式。
五、是否需要使用计算器
否。
354 汉语基础
一、考试性质
汉语基础考试是汉语国际教育专业硕士生入学考试科目之一,是由汉语国际教育硕士专业学位教育指导委员会统一制定考试大纲,教育部授权的各汉语国际 4 教育硕士生招生院校自行命题的选拔性考试。本考试大纲的制定,力求反映汉语国际教育硕士专业学位的特点,科学、公平、准确、规范地测评考生的相关知识基础、基本素质和综合能力。汉语基础考试的目的是测试考生的汉语语言学相关基础知识和汉语语言分析及运用能力。
二、考察目标
1.要求考生具有较全面的汉语语言学基础知识。2.要求考生具有较高的汉语应用能力。3.要求考生具有较强的汉语语言分析能力。
三、考试形式
(一)考试时间
考试时间为180分钟。
(二)答题方式
答题方式为闭卷、笔试。
(三)试卷满分及考查内容分数分配
试卷满分为150分。其中汉语语言学基础知识占比60分,汉语应用能力占比30分,汉语语言分析占比60分。
(四)试卷题型比例
汉语语言学基础知识占比60分
题型:填空题、判断题、选择题、简答题 汉语应用能力占比30分
题型:语音能力题(标注拼音题、选择题、判断题、简答题等)、汉字能力题(改正错别字、汉字书写、选择题、判断题、简答题等),语法词汇规范(选择题、判断题、简答题等)
汉语语言分析占比60分
题型:语音分析题(填空题、选择题、判断题,简答题等),词语辨析题,语法分析题(辨别词性,短语、单复句分析)病句修改题,简答题等。
四、考试内容
汉语基础考试由“汉语语言学基础知识”、“汉语应用能力”和“汉语语言分 5 析”三部分组成。
(一)汉语语言学基础知识
汉语语言学基础知识部分测试以下内容:
语言学基础;汉语概况;现代汉语语音;现代汉语词汇;现代汉语语法;汉字
(二)汉语应用能力
汉语应用能力考试测试以下内容:
辨音和标音能力;字形、字义辨别能力及汉字书写规范;词汇、语法规范
(三)汉语语言分析
汉语语言分析考试测试以下内容: 语音分析;词义分析;语法分析
五、是否需要使用计算器
否。
445 汉语国际教育基础
一、考试性质
汉语国际教育基础考试是汉语国际教育专业硕士生入学考试科目之一,是由汉语国际教育硕士专业学位教育指导委员会统一制定考试大纲,教育部授权的各汉语国际教育硕士培养院校自行命题的选拔性考试。本考试大纲的制定,力求反映汉语国际教育硕士专业学位的特点,科学、公平、准确、规范地测评考生的相关知识基础、基本素质和综合能力。汉语国际教育基础考试的目的是测试考生相关的中外文化及语言教学的基础知识、基本素养及书面语表达能力。
二、考察目标
1.要求考生具有与国际汉语教学相关的中外文化基础知识。
2.要求考生具有与国际汉语教学相关的语言教学及教育心理基础知识。3.要求考生具有较强的文字材料理解能力和书面语表达能力。
三、考试形式
(一)考试时间 考试时间为180分钟。
(二)答题方式 答题方式为闭卷、笔试。
(三)试卷满分及考查内容分数分配
试卷满分为150分。其中中外文化基础知识80分,语言教学及教育、心理基础知识30分,材料分析写作40分。
(四)试卷题型比例
中外文化及跨文化交际基础知识80分 题型:填空题,判断题,选择题,简答题等 语言教学及教育、心理基础知识30分 题型:填空题,选择题,简答题等。案例分析写作40分
考试形式为:基于文字材料的自由命题作文
要求考生在准确、全面地理解所给文字材料和题意的基础上,写出思想健康、观点明确、内容充实、结构严谨、条理清楚、语言规范、卷面清洁的文章,鼓励考生结合实际发挥创造性。
四、考试内容
汉语国际教育基础能力考试由“中外文化及跨文化交际基础知识”,“语言教学及教育心理学”,“教案写作”或“案例分析”三部分组成。
(一)中外文化及跨文化交际基础知识
中外文化基础知识部分测试以下内容: 中国文化基础知识;外国文化基础知识
(二)语言教学及教育心理学
语言教学及教育、心理基础知识部分测试以下内容: 语言教学基础;教育学基础;心理学基础
(三)教案写作或案例分析
材料分析写作部分测试以下内容;分析与实践能力;论文写作能力
五、是否需要使用计算器
否。
复试考试大纲
文艺学综合知识
一、适用专业
文艺学
二、考试性质
文艺学综合知识是文艺学专业硕士研究生入学复试的专业基础课程。
三、考察目标
要求学生掌握文学理论的基本知识和基本理论;了解中国文论和西方文论的主要理论及其发展线索;掌握影视艺术的基本知识;具备分析作家作品和文艺现象的基本能力。
四、考试形式
本科目复试分为笔试和面试两部分,复试中的闭卷考试满分为100分,考试时间为120分钟。
试卷结构:论述题:中国文论40%;西方文论40%;影视艺术20%。
五、考试内容
第一部分:中国文论
1.先秦经典的启示及其诗乐观。
2.《毛诗大序》《礼记·乐记》《典论·论文》。3.《文赋》《文心雕龙》《诗品序》的主要观点及意义。
4.陈子昂、王昌龄、皎然、韩愈、白居易、刘禹锡、司空图诗文论的主要观点及意义。
5.欧阳修、苏轼、黄庭坚、严羽、元好问诗文论的主要观点及意义。6.元明清诗文小说戏曲理论和批评。7.近现代文学理论与批评。第二部分:西方文论
1.柏拉图的文艺思想。2.亚里士多德《诗学》。3.贺拉斯《诗艺》。4.朗吉弩斯《论崇高》。5.布瓦洛《诗艺》。6.狄德罗的文艺思想。7.康德的文艺思想。8.黑格尔的文艺思想。9.接受美学。
10.二十世纪西方主要的文艺思潮。第三部分:影视艺术
要求考生掌握电影电视艺术的基础知识和概念、重要电影电视艺术家及作品、主要思潮运动、前沿电影电视艺术现象和基本研究方法,并要求考生具备在专业领域发现问题和分析问题的能力。具体要求考生:
1.准确地理解和恰当地运用本学科的基本概念和基础知识。
2.准确掌握本学科的历史演变,如中外电影史上代表性的人物、作品及重要的流派。
3.密切关注电影电视现象,并从文化研究和影视研究的角度作出分析。4.熟悉和掌握本学科的学术研究方法,并能够准确地应用。
六、是否需要使用计算器
否。
现代汉语
一、适用专业
语言学及应用语言学
二、考试性质
现代汉语是语言学及应用语言学专业硕士研究生入学复试的专业基础课程。
三、考察目标
本课程综合考查考生对现代汉语研究内容和研究方法的熟悉程度,对现代汉语研究文献的了解情况,重在考查考生分析现代汉语语言事实的能力。
四、考试形式
本科目复试分为笔试和面试两部分,复试中的闭卷考试满分为100分,考试时间为120分钟。
试卷结构:简答题50%,应用分析题50%。
五、考试内容
考查内容包括对现代汉语语音、词汇、语义、语法特点和现象的具体描写分析,对重要的现代汉语研究文献的一般了解,对不同的分析方法和重要的理论观点的评析,重点是对现代汉语实际语言事实和现象的科学分析和理论阐释。
六、是否需使用计算器
否。
古代汉语基础
一、适用专业
汉语言文字学
二、考试性质
古代汉语是汉语言文字学专业硕士研究生入学复试笔试的专业基础考察内容。
三、考察目标
全面掌握古代汉语基本知识和主要分析方法,具备分析汉语史事实和现象的实际能力。
四、考试形式
古代汉语基础也是报考汉语言文字学专业考生复试笔试内容。本考试为闭卷考试,满分为100分,考试时间为120分钟。
试卷结构:简答题60%,论述题40%。
五、考试内容
考试内容主要包括对古代汉语文献的熟练阅读,对文字、音韵、训诂、句读 10 等传统语言学知识的了解等。复试中的笔试重点考察对汉语史现象的分析和解释能力。
六、是否需使用计算器
否。
中国古代文学
一、适用专业
中国古代文学
二、考试性质
是中国古代文学专业硕士研究生入学复试考试的综合考试科目。
三、考察目标
旨在公平、有效地测试考生是否具备攻读中国古代文学专业硕士学位所必备的相关学科知识和科研素质,利用复试的机会进一步考察考生的综合知识面和独立思考、分析解决问题的能力。
四、考试形式
本考试分为笔试和面试两部分。笔试为闭卷考试,满分为100分,考试时间为120分钟。
试卷结构:简答题20%,作品赏析题20%,论述题60%。
五、考试内容
1中国历代文学发展的主要脉络及文学现象的熟悉了解程度。2中国古代著名作家及经典作品的熟悉了解程度。
3综合运用专业基础知识,分析问题、解决问题的能力以及语言表达能力。
六、是否需使用计算器
否。
中国现当代文学
一、适用专业
中国现当代文学
二、考试性质
中国现当代文学史中国现当代文学专业硕士研究生入学考试的专业基础课程。
三、考察目标
要求考生能够系统理解中国现当代文学发生、演变的历史流脉,掌握中国现当代文学研究的方法,具备攻读中国现当代文学专业硕士学位所必备的专业知识与专业能力。
四、考试形式
本考试为闭卷考试,满分100分,考试时间为120分钟。试卷结构:基础知识50%,应用能力50%。
五、考试内容
考试除了进一步测试考生是否具备扎实的学科功底,重在测试考生是否能够运用独立地、准确地、灵活地运用学科知识发现问题、分析问题和处理问题。
六、是否需使用计算器
否。
儿童文学理论
一、适用专业
中国现当代文学
二、考试性质
儿童文学理论考试科目是中国现当代文学专业硕士研究生招生复试的专业课考试。
三、考察目标 通过儿童文学理论考试,考核考生的儿童文学的理论基础、专业知识和研究问题的能力。
四、考试形式
本考试为闭卷考试,满分为100分,考试时间为120分钟 试卷结构:简答题20%,论述题40%,评析题40%。
五、考试内容
儿童文学理论考试包括儿童文学的基本原理和儿童文学文体论两大部分。儿童文学的基本原理主要包括儿童文学本质论、儿童文学的发生原理、儿童文学读者论、儿童文学作家论等方面的内容;儿童文学文体论主要包括韵语儿童文学、幻想儿童文学、写实儿童文学、纪实儿童文学、科学文艺、动物文学、图画书等儿童文学大类中的各类文学体裁的研究。
六、是否需使用计算器
否。
比较文学
一、适用专业
比较文学与世界文学
二、考试性质
比较文学是比较文学与世界文学专业硕士研究生入学复试的专业基础考试科目。
三、考察目标
考查考生对比较文学学科性质、特点、发展历史、各流派观点、研究方法等的掌握,考查学生运用比较文学的具体方法,在比较视野中分析中外作家、作品,探索文学在世界范围发展的共同规律的能力。
四、考试形式
本考试为闭卷考试,满分为100分,考试时间为120分钟。试卷结构:共有3个分析题,其分值分别为30%、30%、40%。
五、考试内容
(一)比较文学的定义、功能、历史和现状;
(二)比较文学的基本类型和研究方法:影响研究、平行研究、阐发研究、接受研究等;
(三)文学范围内的比较研究:神话与民间文学的比较;文类学、主题学、形象学、媒介学、比较诗学等;
(四)比较文学的跨学科研究:文学与艺术、宗教、心理学、哲学和科学等;
(五)运用比较文学的具体方法,在比较视野中分析中外作家、作品,探索文学在世界范围发展的共同规律;
(六)对本学科发展的重要前沿问题进行阐述和分析。
六、是否需使用计算器
否。
新闻学与传播学
一、适用专业
传媒文化
二、考试性质
新闻学与传播学是传媒文化专业硕士研究生入学复试的专业基础考试科目。
三、考察目标
考试目的是为了公平、有效地测试考生是否具备攻读传媒文化专业硕士学位所必备的新闻学与传播学基本理论的应用能力和专业潜能,以利用复试的机会考察考生独立思考的思维方式。
四、考试形式
本考试分为笔试和面试两部分。笔试为闭卷考试,满分为100分,考试时间为120分钟。
试卷结构:简答题40%,分析论述题60%。
五、考试内容 考试除了进一步考察考生是否具有扎实的学科功底外,重在测试考生是否能够独立地、准确地、灵活地运用专业基础知识发现问题、分析问题和解决问题。
六、是否需使用计算器
否。
文化产业管理综合知识
一、适用专业
文化产业管理
二、考试性质
文化产业管理综合知识是文化产业管理专业硕士研究生入学考试的专业基础考试科目,属于复试阶段的笔试考试。
三、考察目标
主要考查学生对文化产业基础知识的综合运用能力,掌握更为全面的知识和理论,运用所学知识进行分析和判断。
四、考试形式
本考试为闭卷考试,满分为100分,考试时间为120分钟。试卷结构:简答题40%,论述题60%。
五、考试内容
本考试科目主要围绕以下内容命题,考生可按照要求进行复习和准备,不指定具体参考书目,可选用本专业相关的书目和参考资料。
1、文化产业的发展趋势
2、当代社会文化与经济、科技的融合
3、文化软实力与国家竞争力
4、文化产业发展战略
5、文化产业管理模式的创新
6、文化产业投融资平台建设
7、文化资源开发与保护
8、我国文化体制改革现状与发展进程
9、文化产业商业模式
10、国外文化产业
六、是否需使用计算器
否。
中国史
初试执行全国统考;复试不指定考试大纲。
复试按照历史地理学、专门史、中国古代史、中国近现代史四个二级学科专业,综合笔试历史地理学、中外关系史与中外文化交流史、中国古代史、中国近现代史。
应用语言学
一、适用专业
汉语国际教育
二、考试性质
应用语言学是汉语国国际教育专业硕士入学复试的专业基础考试科目。
三、考察目标
重点考察学生的语言文化综合知识和能力的掌握。
四、考试形式
本考试为闭卷考试,满分为100分,考试时间为120分钟。试卷结构:论述题五题,或六题选五,每题分值各占20%。
五、考试内容
考试将全面考查考生对现代汉语和古代汉语基础理论知识和主要分析方法的掌握情况以及熟练程度,重在考查考生分析汉语事实和现象的实际能力;全面考查学生对中外文化的了解掌握及对各种文化现象的分析批判能力及跨文化交际能力。
六、是否需使用计算器
否。