第一篇:从名称认识电容在电路中的作用
从名称认识电容在电路中的作用
电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻止低频的特性。广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。
1.滤波电容:它接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑。一 般常采用大容量的电解电容器,也可以在电路中同时并接其他小容量电容以滤除高频交流电。
2.退耦电容:并接于放大电路的电源正、负极间,防止由电源内阻形成的正反馈而引起的寄生振荡。
3.旁路电容:在交、直流信号电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流 信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
4.耦合电容:在交流信号处理电路中,用于信号源和信号处理电路或者作两放大器的级间连接,用以隔断 直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
5.调谐电容:连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6.衬垫电容:与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率变小,并能显著地提高低频 端的振荡频率。适当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。
7.补偿电容:它是与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8.中和电容:并接在三极管放大器的基极和发射极之间,构成负反馈网络,以抑制三极管极间电容造成的 自激振荡。
9.稳频电容:在振荡电路中,起稳定振荡频率的作用。
10.定时电容:在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。
11.加速电容:接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
12.缩短电容:在UHF高频头电路中,为了缩短振荡电感器长度而串接的电容。
13.克拉泼电容:在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳 定性影响的作用。
14.锅拉电容:在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。
15.稳幅电容:在鉴频器中,用于稳定输出信号的幅度。
16.预加重电容:为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提 升网络电容。
17.去加重电容:为恢复原伴音信号,要求对音频信号中经预加重所提升的调频分量和噪声一起衰减,设置 在RC网络中的电容。
18.移相电容:用于改变交流信号相位的电容。
19.反馈电容:跨接于放大器的输入和输出端之间,使输出信号回输到输入端的电容。
20.降压限流电容:串联在交流电回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分 压电路。
21.逆程电容:用于行扫描输出电路,并接在行输出管的集电极与发射极之间,以产生高压行扫描锯齿波逆 程脉冲,其耐压一般在1500V以上。
22.S校正电容:串接在偏转线圈回路中,用于校正显像管边缘的延伸线线性失真。
23.自举升压电容:利用电容器的充放电储能特性提升电路其点的电位,使该点电位达到供电端电压值的2 倍。
24.消亮点电容:设置在视放电路中,用于关机时消除显像管上残余亮点的电容。
25.软启动电容:一般接在开关电源的开关管基极上,防止在开启电源时,过大的浪涌电流或过高的峰值电 压加到开关管基极上,导致开关管损坏。
26.启动电容:串接在单相电动机的副绕组上,为电动机提供启动移相交流电压。在电动机正常运转后与副 绕组断开。
27.运转电容:与单相电动机的副绕组串联,为电动机副绕组提供移相交流电流。在电动机正常运行时,与 副绕组保持串联。
第二篇:从名称认识电容的作用
从名称认识电容的作用
单片机晶振的两个电容的作用这两个电容叫晶振的负载电容,分别接在晶振的两个脚上和对地的电容,一般在几十皮发。它会影响到晶振的谐振频率和输出幅度,一般订购晶振时候供货方会问你负载电容是多少。
晶振的负载电容=[(Cd*Cg)/(Cd+Cg)]+Cic+△C式中Cd,Cg为分别接在晶振的两个脚上和对地的电容,Cic(集成电路内部电容)+△C(PCB上电容)经验值为3至5pf。
各种逻辑芯片的晶振引脚可以等效为电容三点式振荡器。晶振引脚的内部通常是一个反相器, 或者是奇数个反相器串联。在晶振输出引脚 XO 和晶振输入引脚 XI 之间用一个电阻连接, 对于 CMOS 芯片通常是数 M 到数十M 欧之间.很多芯片的引脚内部已经包含了这个电阻, 引脚外部就不用接了。这个电阻是为了使反相器在振荡初始时处与线性状态, 反相器就如同一个有很大增益的放大器, 以便于起振.石英晶体也连接在晶振引脚的输入和输出之间, 等效为一个并联谐振回路, 振荡频率应该是石英晶体的并联谐振频率.晶体旁边的两个电容接地, 实际上就是电容三点式电路的分压电容, 接地点就是分压点.以接地点即分压点为参考点, 振荡引脚的输入和输出是反相的, 但从并联谐振回路即石英晶体两端来看, 形成一个正反馈以保证电路持续振荡.在芯片设计时, 这两个电容就已经形成了, 一般是两个的容量相等, 容量大小依工艺和版图而不同, 但终归是比较小, 不一定适合很宽的频率范围.外接时大约是数 PF 到数十 PF, 依频率和石英晶体的特性而定.需要注意的是: 这两个电容串联的值是并联在谐振回路上的, 会影响振荡频率.当两个电容量相等时, 反馈系数是 0.5, 一般是可以满足振荡条件的, 但如果不易起振或振荡不稳定可以减小输入端对地电容量, 而增加输出端的值以提高反馈量.从名称认识电容在电路中的作用
电容器在电子电路中几乎是不可缺少的储能元件,它具有隔断直流、连通交流、阻止低频的特性。广泛应用在耦合、隔直、旁路、滤波、调谐、能量转换和自动控制等电路中。熟悉电容器在不同电路中的名称意义,有助于我们读懂电子电路图。
1.滤波电容它接在直流电源的正、负极之间,以滤除直流电源中不需要的交流成分,使直流电平滑。一般常采用大容量的电解电容器,也可以在电路中同时并接其他类型的小容量电容以滤除高频交流电。
2.退耦电容并接于放大电路的电源正、负极之间,防止由电源内阻形成的正反馈而引起的寄生振荡。
3.旁路电容在交、直流信号的电路中,将电容并接在电阻两端或由电路的某点跨接到公共电位上,为交流信号或脉冲信号设置一条通路,避免交流信号成分因通过电阻产生压降衰减。
4.耦台电容在交流信号处理电路中,用于连接信号源和信号处理电路或者作两放大器的级间连接,用以隔断直流,让交流信号或脉冲信号通过,使前后级放大电路的直流工作点互不影响。
5.调谐电容连接在谐振电路的振荡线圈两端,起到选择振荡频率的作用。
6.衬垫电容与谐振电路主电容串联的辅助性电容,调整它可使振荡信号频率范围变小,并能显著地提高低频端的振荡频率。适当地选定衬垫电容的容量,可以将低端频率曲线向上提升,接近于理想频率跟踪曲线。
7.补偿电容 它是与谐振电路主电容并联的辅助性电容,调整该电容能使振荡信号频率范围扩大。
8.中和电容并接在三极管放大器的基极与发射极之间,构成负反馈网络,以抑制三极管极间电容造成的自激振荡。
9.稳频电容在振荡电路中,起稳定振荡频率的作用。
10.定时电容在RC时间常数电路中与电阻R串联,共同决定充放电时间长短的电容。
11.加速电容接在振荡器反馈电路中,使正反馈过程加速,提高振荡信号的幅度。
12.缩短电容在UHF高频头电路中,为了缩短振荡电感器长度而串接的电容。
13.克拉泼电容在电容三点式振荡电路中,与电感振荡线圈串联的电容,起到消除晶体管结电容对频率稳定性影响的作用。
14.锡拉电容在电容三点式振荡电路中,与电感振荡线圈两端并联的电容,起到消除晶体管结电容的影响,使振荡器在高频端容易起振。
15.稳幅电容在鉴频器中,用于稳定输出信号的幅度。
16.预加重电容为了避免音频调制信号在处理过程中造成对分频量衰减和丢失,而设置的RC高频分量提升网络电容。
17.去加重电容为恢复原伴音信号,要求对音频信号中经预加重所提升的高频分量和噪声一起衰减掉,设置在RC网络中的电容。
18.移相电容用于改变交流信号相位的电容。
19.反馈电容跨接于放大器的输入与输出端之间,使输出信号回输到输入端的电容。
20.降压限流电容串联在交流电回路中,利用电容对交流电的容抗特性,对交流电进行限流,从而构成分压电路。
21.逆程电容用于行扫描输出电路,并接在行输出管的集电极与发射极之间,以产生高压行扫描锯齿波逆程脉冲,其耐压一般在1500V以上。
22.校正电容串接在偏转线圈回路中,用于校正显像管边缘的延伸线性失真。
23.自举升压电容利用电容器的充、放电储能特性提升电路某点的电位,使该点电位达到供电端电压值的2倍。
24.消亮点电容设置在视放电路中,用于关机时消除显像管上残余亮点的电容。
25.软启动电容一般接在开关电源的开关管基极上,防止在开启电源时,过大的浪涌电流或过高的峰值电压加到开关管基极上,导致开关管损坏。
26.启动电容串接在单相电动机的副绕组上,为电动机提供启动移相交流电压。在电动机正常运转后与副绕组断开。
27.运转电容与单相电动机的副绕组串联,为电动机副绕组提供移相交流电流。在电动机正常运行时,与副绕组保持串接。
如何判断电路中晶振是否被过分驱动?
电阻RS常用来防止晶振被过分驱动。过分驱动晶振会渐渐损耗减少晶振的接触电镀,这将引起频率的上升。可用一台示波器检测OSC输出脚,如果检测一非常清晰的正弦波,且正弦波的上限值和下限值
都符合时钟输入需要,则晶振未被过分驱动;相反,如果正弦波形的波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动。这时就需要用电阻RS来防止晶振被过分驱动。判断电阻RS值大小的最简单的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止。通过此办法就可以找到最接近的电阻RS值。
第三篇:电容及电感在电路中的作用小结
电容的作用:
电源滤波时,采用大小电容相并联的电路,104即0.1uF L、运放的多级交流放大电路如何选用电容耦合?
其实很间单,一般瓷片电容就可搞定。要效果好的话可选用钽电容。按照你输入信号的频率范围高频的可选用103,104容值的电容,对于较低频率的交流信号可选用22uF左右的电解电容。
T、旁路电容和滤波电容,去耦电容分别怎么用?,可以举一些实例说明
答:这三种叫法的电容,其实都是滤波的,只是应用在不同的电路中,叫法和用法不一样。
滤波电容,这是我们通常用在电源整流以后的电容,它是把整流电路交流整流成脉动直流,通过充放电加以平滑的电容,这种电容一般都是电解电容,而且容量较大,在微法级。
旁路电容,是把输入信号中的高频成份加以滤除,主要是用于滤除高频杂波的,通常用瓷质电容、涤纶电容,容量较小,在皮法级。
去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。它的容量根据信号的频率、抑制波纹程度而定。
电容在电路中各种作用汇总
A、电压源正负端接了一个电容(与电路并联),用于整流电路时,具有很好的滤波作用,当电压交变时,由于电容的充电作用,两端的电压不能突变,就保证了电压的平稳。
当用于电池电源时,具有交流通路的作用,这样就等于把电池的交流信号短路,避免了由于电池电压下降,电池内阻变大,电路产生寄生震荡。
B、比如说什么样的电路中 串或者并个电容可以达到耦合的作用,不放电容和放电容有什么区别?
在交流多级放大电路中,因个级增益及功率不同.各级的直流工作偏值就不同!若级间直接藕合则会使各级工作偏值通混无法正常工作!利用电容的通交隔直特性既解决了级间交流的藕合,又隔绝了级间偏值通混,一举两得!C、基本放大电路中的两个耦合电容,电容+极和直流+极相接,起到通交隔直的作用,接反的话会怎么样,会不会也起到通交隔直的作用,为什么要那接呀!
接反的话电解电容会漏电,改变了电路的直流工作点,使放大电路异常或不能工作 D、阻容耦合放大电路中,电容的作用是什么??
隔离直流信号,使得相邻放大电路的静态工作点相互独立,互不影响。
E、模拟电路放大器不用耦合电容行么,照样可以放大啊? 书上放大器在变压器副线圈和三极管之间加个耦合电容,解释是通交流阻直流,将前一级输出变成下一级输入,使前后级不影响,前一级是交流电,后一级也是交流电,怎么会相互影响啊,我实在想不通加个电容不是多此一举啊 你犯了个错误。前一级确实是交流电,但后一级是交流叠加直流。三极管是需要直流偏置的。如果没有电容隔直,则变压器的线圈会把三极管的直流偏置给旁路掉(因为电感是通直流的)F、基本放大电路耦合电容,其中耦合电容可以用无极性的吗
在基本放大电路中,耦合电容要视频率而定,当频率较高时,需用无极电容,特点是比较稳定,耐压可以做得比较高,体积相对小,但容量做不大。其最大的用途是可以通过交流电,隔断直流电,广泛用于高频交流通路、旁路、谐振等电路。(简单理解为高频通路)
当频率较低时,无极电容因为容量较低,容抗相对增大,就要用有极性的电解电容了,由于其内部加有电解液,可以把容量做得很大,让低频交流电通过,隔断直流电。但由于内部两极中间是有机介质的,所以耐压受限,多用于低频交流通路、滤波、退耦、旁路等电路。(简单理解为低频通路)
G、请电路高手告知耦合电容起什么作用
在放大电路中,利用耦合电容通交隔直的作用,使高频交流信号可以顺利通过电路,被一级一级地放大,而直流量被阻断在每一级的内部.H、请问用电池供电的电路中,电容为什么会充放电,起到延时的作用? 电容是聚集电荷的,你可把它想象成个水杯,充放电就是充放水。在充电过程中,电压是慢慢的上升的,放电反之。你只需检测电容两端电压就能实现延时。如充电,开始时,电容两端电压为零,随着充电时间延长,电压逐渐上升到你设定的电压就能控制电路的开关。当然,也可反过来利用放电。延时时间与电容容量、电容漏电,充电电阻,及电压有关,有时还要把负载电阻考虑进去。
I、阻容耦合,是利用电容的通交隔直特性,防止前、后级之间的直流成分引起串扰,造成工作点的不稳定。
J、阻容耦合放大电路只能放大交流信号,不能放大直流信号,对还是错
对.电容是一种隔直流阻交流的电子元件.所以阻容耦合放大电路只能放大交流信号.放大直流信号用直接耦合放大电路.K、放大电路中耦合电容和旁路电容如何判别? 耦合电容负极不接地,而是接下一级的输入端,旁路电容负极接地。L、运放的多级交流放大电路如何选用电容耦合?
其实很间单,一般瓷片电容就可搞定。要效果好的话可选用钽电容。按照你输入信号的频率范围高频的可选用103,104容值的电容,对于较低频率的交流信号可选用22uF左右的电解电容。
M、放大电路采用直接耦合,反馈网络为纯电阻网络,为什么电路只可能产生高频振荡? 振荡来源于闭环的相移达到180度并且此时的环路增益是大于零的。采用纯电阻网络作为反馈网络是一定不会引入相移的,所以呢全部的相移是来自于放大器的开环电路。采用直接耦合的开环放大器在级之间是不会有电容元件引起相移的,那么能够引起相移的便是晶体管或MOS管内部的电容,这些电容都是fF,最大pF级的电容,这些电容与电路等效电阻构成的电路的谐振频率是相当高的。所以放大器采用直接耦合,反馈网络为纯阻网络只可能产生高频振荡。
N、阻容耦合放大电路的频带宽度是指(上限截至频率与下限截至频率之差)阻容耦合放大电路的上限截止频率是指(随着频率升高使放大倍数下降到原来的0.707倍,即-3dB时的频率)阻容耦合放大电路的下限截止频率是指(随着频率降低使放大倍数下降到原来的0.707倍,即-3dB时的频率)。阻容耦合放大电路的上限截止频率主要受(晶体管结电容,电路的分布电容)的影响,阻容耦合放大电路的下限截止频率主要受(隔直电容与旁路)电容的影响 O、运放的多级交流放大电路如何选用电容耦合?
其实很间单,一般瓷片电容就可搞定!要效果好的话可选用钽电容。按照你输入信号的频率范围高频的可选用103,104容值的电容,对于较低频率的交流信号可选用22uF左右的电解电容。
P、在多级放大电路里面电解电容是怎么耦合到下一级的呢 在电容里面的特性不是隔直的吗,它是怎么传送过去的呢。还有为电容要通过三极管的集电极来接呢,发射机为什么不可以呢?电解电容都是在交流放大器里面工作,而交流的电流方向呈周期性变化,三极管能正常导通吗。还有NPN型的三极管的集电极不是从C到B的吗,那它的电流是怎么通过流到下一级的三极管的基极的呢
用电解电容做耦合的放大器,都是交流放大器。电解电容在这里作“通交隔直”用。由三极管的哪个极输出,是电路形式的问题,两者都有。
Q、1.怎样估算第一级放大器的输出电阻和第二级放大器的输入电阻,2当信号源的幅度过大,在两级放大器的输出端分别会出现什么情况 3.用手在放大器的输入端晃动,观察放大器的输出端,看是否出现了什么?原因是什么?
1.第二级放大器的输入电阻就是第一级放大器的输出电阻。2 失真。杂波,人体感应
R、电容可以起到耦合作用?比如说什么样的电路中 串或者并个电容可以达到耦合的作用,不放电容和放电容有什么区别?
在交流多级放大电路中,因个级增益及功率不同.各级的直流工作偏值就不同!若级间直接藕合则会使各级工作偏值通混无法正常工作!利用电容的通交隔直特性既解决了级间交流的藕合,又隔绝了级间偏值通混,一举两得!S、怎么利用电容的充放电,理解滤波,去耦,旁路.....电容就是充放电。那怎么利用电容的充放电,去理解滤波,去耦,旁路.....答:电容隔直流通交流,隔直流好理解,通交流不好理解,只要理解了通交流就理解了滤波、去耦和旁路。
电容就是充放电,不错。但交流电的方向,正反向交替变化。振幅的大小也做周期性变化。整个变化的图像就是一条正弦曲线。
电容器接在交流电路中,由于交流电压的周期性变化,它也在周期性的充放电变化。线路中存在充放电电流,这种充放电电流,除相位比电压超前90度外,形状完全和电压一样,这就相当于交流通过了电容器。
和交流电通过电阻是不同,交流电通过电阻,要在电阻上消耗电能(发热)。而通过电容器只是与电源做能量交换,充电时电源将能量送给电容器,放电时电容器又将电能返还给电源,所以这里的电压乘电流所产生的功率叫无功功率。
需要明确的是,电容器接在交流电路中,流动的电子(电流)并没有真正的冲过绝缘层,却在电路中产生了电流。这是因为在线路中,反向放电和正向充电是同一个方向,而正向放电和反向充电是同一个方向,就象接力赛跑,一个团队跑完交流电的正半周,另一个团队接过接力棒继续跑完交流电的负半周。
理解了电容器通交流,那么,交流成份旁路到地,完成滤波也就可以理解了。T、旁路电容和滤波电容,去耦电容分别怎么用?,可以举一些实例说明
答:这三种叫法的电容,其实都是滤波的,只是应用在不同的电路中,叫法和用法不一样。
滤波电容,这是我们通常用在电源整流以后的电容,它是把整流电路交流整流成脉动直流,通过充放电加以平滑的电容,这种电容一般都是电解电容,而且容量较大,在微法级。
旁路电容,是把输入信号中的高频成份加以滤除,主要是用于滤除高频杂波的,通常用瓷质电容、涤纶电容,容量较小,在皮法级。
去耦电容,是把输出信号的干扰作为滤除对象,去耦电容相当于电池,利用其充放电,使得放大后的信号不会因电流的突变而受干扰。它的容量根据信号的频率、抑制波纹程度而定。
U、什么是耦合电容,去耦电容,有什么特点和作用
耦合电容是传递交流信号的,接在线路中。去耦电容是将无用交流信号去除的,一段接在线路中、一端接地。
V、关于电容有几作用,在什么情况才电容耦合,在什么情况才电容滤波? 答:电容器在电路里的十八般武艺归根到底就是两个!充电荷!放电荷。
其特性就是通交流!隔直流!电容两端加上交变电压后会随电流交变频率而不断的充放电!此时电路里就有同频率的交变电流通过!这就是电容的通交特性!在频率合适的情况下电容对电路可视为通路!前级交流输出经电容就可传至后级电路!
而对直流来说它却是隔绝的!因为两端电压充至与电路电压相等时就不会再有充电电流了。作用于前后级交流信号的传递时就是藕合!作用于滤除波动成份及无用交流成分时就是滤波!W、大家都知道,整流电路的电容滤波是利用其充放电;但是有时候滤波是利用电容对不通频率信号的容抗不同,比如旁路电容。所以分析电容滤波时到底用哪个角度分析啊? 其实不论是哪种说法都是一个道理,利用充放电的理论较笼统一些,利用容抗的的理论则更深入一些,电容的作用就是利用了其充放电的特性,看你想滤除什么成份,滤低频用大电容,滤高频用小电容,在理论上低频整流电路中的滤波和高频中的旁路是相同的都是利用了容抗的不同。
X、电容如何实现充放电、整流、滤波的功能
电容的充电,放电,整流和滤波甚至包括它的移相,电抗等功能,都 是电容的存储功能在起作用。电容之所以能够存储电荷,是利用了正负电荷之间有较强的互相吸引的特性来实现的。在给电容充电时,人们通过电源将正电荷引入正极板,负电荷引入到电容的负极板。但是正负电荷又到不了一起这是因为有一层绝缘模阻隔着它们。隔模越大越薄引力也就越大。存储的电荷也就越多。正负电荷在十个极板间是吸引住了但是如果你给它提供一个外电路它们就会能过这个外电路互相结合,也就是放电。它们毕竟是一高一低麻。形像来说电容就像一个储水池。它可以形像地说明它的整流波波的作用。
Y、滤波电容 充电 满了之后然后对后面回路放电然后在充放循环?稳压二极管是击穿稳压还是不击穿稳压
其实你说的很对,它在电路中就是这么一个工作的过程,但是他跟信号的频率有关系,首先看你要把电容放在电路中用着什么,当用作滤波时,它把一定频率信号滤除到地,如芯片电源前端的电容,有的则是去耦,你说的现象就像稳压关前的滤波电容和开关电源输出的滤波电容,关于稳压管我给你举个例子吧,假如有个5V的稳压管,当电压小与5V,电压就等与它本身的电压,当电压高于5V,稳压管就把电压稳到5V,多余的电压把稳压关击穿通道第上去了
Z、电容的耦合是什么具体意思啊?它和滤波有什么区别吗? 耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。退耦是指 对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。耦合常数是指 耦合电容值与第二级输入阻抗值乘积对应的时间常数。
退耦有三个目的:1.将电源中的高频纹波去除,将多级放大器的高频信号通过电源相互串 扰的通路切断;2.大信号工作时,电路对电源需求加大,引起电源波动,通过退耦降低大 信号时电源波动对输入级/高电压增益级的影响;3.形成悬浮地或是悬浮电源,在复杂的系 统中完成各部分地线或是电源的协调匹
有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
Aa、电容的作用是什么?我只知道滤波,就是滤除交流信号,不只是滤波,全部给你吧:
1.电容器主要用于交流电路及脉冲电路中,在直流电路中电容器一般起隔断直流的作用。2.电容既不产生也不消耗能量,是储能元件。
3.电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。
4.因为在工业上使用的负载主要是电动机感性负载,所以要并电容这容性负载才能使电网平衡.5.在接地线上,为什么有的也要通过电容后再接地咧? 答:在直流电路中是抗干扰,把干扰脉冲通过电容接地(在这次要作用是隔直——电路中的电位关系);交流电路中也有这样通过电容接地的,一般容量较小,也是抗干扰和电位隔离作用.6.电容补尝功率因数是怎么回事? 答:因为在电容上建立电压首先需要有个充电过程,随着充电过程,电容上的电压逐步提高,这样就会先有电流,后建立电压的过程,通常我们叫电流超前电压90 度(电容电流回路中无电阻和电感元件时,叫纯电容电路)。电动机、变压器等有线圈的电感电路,因通过电感的电流不能突变的原因,它与电容正好相反,需要先在线圈两端建立电压,后才有电流(电感电流回路中无电阻和电容时,叫纯电感电路),纯电感电路的电流滞后电压90度。由于功率是电压乘以电流,当电压与电流不同时产生时(如:当电容器上的电压最大时,电已充满,电流为0;电感上先有电压时,电感电流也为0),这样,得到的乘积(功率)也为0!这就是无功。那么,电容的电压与电流之间的关系正好与电感的电压与电流的关系相反,就用电容来补偿电感产生的无功,这就是无功补偿的原理。
Ab、电容器在电路中是如何起到滤波作用的?电容是开路的,交流电通过时是在给电容充电吗?电容是并联还是串联?
电容器的容抗随着两端加的交流电的频率不同而改变,Z=1/2*3.14*FC。根据需要滤除哪个频率的电流,设置不同的容值。这样就可以把不需要的电流引到地,就完成了滤波。而对需要的频率的电流,电容是通路的或阻抗很小。交流电通过时,是反复充电和放电的过程。Ac、退偶电容,滤波电容,旁路电容,三者都有什么作用,它们之间的区别和联系是什么? 例如,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个电容,由于适当容量的电容器对交流信号较小的阻抗(这需要计算)这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。
旁路电容不是理论概念,而是一个经常使用的实用方法,在50--60年代,这个词也就有它特有的含义,现在已不多用。电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件。例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容。后来也有的资料把它引申使用于类似情况。
滤波电容就更好理解了,电容有通交流阻直流的功效,滤波就是我可以通过选择不同的滤波电容,把一定频率的交流信号滤掉,留下想要的频率信号 Ad、请问耦合电容就是去耦电容么
完全不同,耦合电容是信号传递,去耦电容是减少干扰。Ae、电容去耦的原理是什么
直流电路窜入交流信号或交流放大电路的自激回授,都会产生不良后果!为了阻止该交流成份逐级藕合放大,在级间设置电容使之回流入地!该电容就是退藕电容!Af、耦合和去耦有什么区别,耦合电容和去耦电容的作用分别是什么,在电路中如何放置,有什么原则?
藕合电容的做用是将前级的交流信号输送到下一级!藕合电容的位置是跨接在前级的输出和后级的输入两端!退藕电容的做用是将放大器级间窜藕的无益交流信号短路入地!退藕电容的位置是在某输入级的对地间!Ag、如何区分电子电路中的电容是滤波电容还是旁路电容啊?
滤波电容在电源电路中;旁路电容在信号电路中;其实作用是基本一样的,滤波电容:将脉动的电流成份旁路或称滤除掉并起充放电作用。旁路电容:将电路中的高频或低频成份滤除或旁路掉。
Ah、请问有那位高手知道去耦电容和旁路电容的区别啊?谢谢
旁路电容不是理论概念,而是一个经常使用的实用方法,电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件。例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容。
去耦电容在集成电路电源和地之间的有两个作用:一方面是本集成电路的蓄能电容,另一方面旁路掉该器件的高频噪声。数字电路中典型的去耦电容值是0.1μF。这个电容的分布电感的典型值是5μH。0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用钽电容或聚碳酸酯电容。去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF。
一般来说,容量为uf级的电容,象电解电容或钽电容,他的电感较大,谐振频率较小,对低频信号通过较好,而对高频信号,表现出较强的电感性,阻抗较大,同时,大电容还可以起到局部电荷池的作用,可以减少局部的干扰通过电源耦合出去;容量为0.001~0.1uf的电容,一般为陶瓷电容或云母电容,电感小,谐振频率高,对高频信号的阻抗较小,可以为高频干扰信号提供一条旁路,减少外界对该局部的耦合干扰
旁路是把前级或电源携带的高频杂波或信号滤除;去藕是为保正输出端的稳定输出(主要是针对器件的工作)而设的“小水塘”,在其他大电流工作时保证电源的波动范围不会影响该电路的工作;补充一点就是所谓的藕合:是在前后级间传递信号而不互相影响各级静态工作点的元件
有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
从电路来说,总是存在驱动的源和被驱动的负载。如果负载电容比较大,驱动电路要把电容充电、放电,才能完成信号的跳变,在上升沿比较陡峭的时候,电流比较大,这样驱动的电流就会吸收很大的电源电流,由于电路中的电感,电阻(特别是芯片管脚上的电感,会产生反弹),这种电流相对于正常情况来说实际上就是一种噪声,会影响前级的正常工作。这就是耦合。
去耦电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。
旁路电容实际也是去耦合的,只是旁路电容一般是指高频旁路,也就是给高频的开关噪声提高一条低阻抗泄防途径。高频旁路电容一般比较小,根据谐振频率一般是0.1u,0.01u等,而去耦合电容一般比较大,是10u或者更大,依据电路中分布参数,以及驱动电流的变化大小来确定。
Ai、如何区分电子电路中的电容是滤波电容还是旁路电容啊?
滤波电容在电源电路中;旁路电容在信号电路中;其实作用是基本一样的,滤波电容:将脉动的电流成份旁路或称滤除掉并起充放电作用。旁路电容:将电路中的高频或低频成份滤除或旁路掉。
Aj、高手请讲::二极管,三极管,电容.在电路中怎样起作用? 1.二极管起单向导电作用。
2.三极管在模拟电路中起放大作用,在数字电路中起开关作用。
3.电容总体来说起通交流隔直流作用,如滤波电容、耦合电容等等,根本宗旨就是“通交隔直”。
Ak、虑波电容在电路上起什么作用?
低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。
Al、电阻:具有上下拉电压的作用。电容:具有滤波整流与储能作用.二极管:具有稳压与单
电感的作用:
第四篇:如何从自我介绍中认识一个人
如何从自我介绍中认识一个人?
自我介绍是面试中的一项“例牌”活动,时间往往也不长,2分钟到5分钟不等,很多时 候,在实际的招聘过程中仅仅是被当作了正式面试的一个前奏而已,未得到应有到重 视。然而,实际上,如果面试考官能够用心,那么是可以在应聘者的自我介绍中发现更 多的有价值的内容的。至少我们可以从以下几个方面给予考虑:
一.听他说了什么?自我介绍中的内容分析
1.工作vs生活
一个人在介绍自我的时候,所选择的内容不会是无缘无故的,一定是某种心理活动的外 部投射。面试之前的自我介绍往往是一种开放式的问题,选择什么内容来介绍自己应聘 者有很大的自由。有的人会在整个的自我介绍中只进行工作相关的介绍而没有其余;有 的人则会选择工作之外的内容,比如个性特点、生活经历来介绍自己。这有什么不同 么?对于前一种人,或者可以认为他的生活重点只有工作,是个事业型的人;或者也说 明他的生活也许有些单调;也许是急于表现自己的工作成就而忽略了其它。当然,对于 工作相关内容,每个人都会有一些说明,毕竟是来面试找工作的,但在工作之外介绍了 什么,却往往在不经意之间暴露出内心生活的重点。比如,一个不断介绍自己个性特点 的人,可以推知他可能是一个注重内心体验的人;而一个介绍自己如何与人相处经历的 人,往往是一个人际交往比较擅长的人;一个介绍了自己到出身、自己的爱人孩子的 人,往往是一个家庭观念比较强的。在工作之外的自我介绍,实质上是强调了面试者个 人的生活重心。
2.业余爱好
每个面试者或多或少会有一点自己到业余爱好,这是人之常情,但世界上没有无缘无故 的爱,他到兴趣与所爱往往也是他自己人性的展示。比如,一个人介绍自己是一个排球 爱好者,自己曾以排球队长的身份带领球队取得了某种成绩。这能说明什么呢?是表明 他身体健康吗?绝对不仅仅如此。其实在这种爱好背后暗示出他个人的人际关系水平,试想,排球是一个团体项目,没有队员之间的良好沟通和协作是很难取得什么成就的。而在这样到活动中,面试者能成为一个组织者,并取得了成就,至少说明了他在人际交 流与沟通中的高能力。反之,如果一个人爱好的是不是排球是铅球,他个人的组织协调 能力就值得考虑了,毕竟这种运动是一个人的活动,缺乏人际互动。在我们国家,在排 球项目中出现了一些领导官员,但在铅球和举重等运动员中,出领导的可能性就寥寥 了。
不过需要说明的是,爱好本来没有高低贵贱之分,在面试中所展现的个人爱好关键在于 能否和所应聘的工作相匹配。比如说,爱读书、思考,这种爱好应聘一个报社编辑应该 是合适的,但应聘一个人情往来比较多的公务员职位可能就不大适合了。
3.个性特点
通过自我介绍,我们可以了解更多的是一个面试者的个性层面,从他的自我介绍中,可 以从以下几个维度进行内容分析:
现实vs浪漫。有的人在自我介绍中,通篇的东西都很实在,说到观点的时候也愿意摆事
实讲道理,无疑,这会是一个比较现实的人;而有的人,则会采用另外一种方式,比如 讲一个小故事来介绍自己;或者通过一段诗词来介绍自己,那么这些人就属于浪漫型的 人物了,他们往往情感丰富,有人情味,但有时候会沉迷于自己的世界显得与现实脱 轨。
事实vs空洞。在说明一件事情的时候,有的人愿意高屋建瓴,从理论高度去阐述;而有 的人则愿意举实际的例子,让事实来说明。比如说,同样是说自己有团队精神,务实的 人会讲一个现实生活中的例子,谈自己是如何搞好同寝室关系的;而务虚的人则会从理 念出发,说自己坚持了一个什么信念,又采用了几大策略,还奉行了几个坚持等等,说 一些正确无比却又毫无实际操作意义的话。注意后一种人,这种人做一些宣传工作尚 可,但要做实际工作的话有让你头痛的时候。
积极vs消极。一些乐观注意者,在做自我介绍的时候,说哪个方面都会加一个褒义到用
语。比如介绍自己为人父,则会说自己是个“好”父亲;说自己为人子,也会说自己是 个“好”儿子,虽然他不见得真的如此,但天生会透露出一种乐观精神。相反,另外一 些人,会有意无意谈及自己的不足,即使这个不足面试考官并没有发现,他也会谈出 来。比如是,有的人会强调自己到经验有限,外貌不佳,其实并不一定表明这些人不 好,只不过说明他时常会将自己的目光聚焦到自身的缺点上,有的时候也不表明这些人 消极,也有可能这只是一种对自己现状不满的表现。说自己丑的人不见得是真的丑,更 多的是表明其对自己外貌的不满意,仅此而已。
正经vs玩笑。面试是一个比较庄重、严肃的场合,大部分面试者会一本正经的进行自我
介绍,但也会有的人在这时候哪自己或者别人开玩笑。这是什么人呢?有几种可能,一 是他是个生性幽默的人,什么时候都会显露出自己的幽默本性;二是他是一个有创造力 的人,试图在这种场合内出奇制胜,给考官留下一个特别的印象;三是他仅仅是玩世不 恭而已,对什么事情都郑重不起来。但究竟什么原因,还要具体问题具体分析。
4.智力水平
自我介绍中能看出一个人的智力高低吗?能,至少在某些智力维度上能。心理学关于智 力的研究表明,一个智力高的人的重要表现是逻辑能力强、概括能力强,而这两种能力 恰恰可以在一个人的自我介绍中表现出来。比如,逻辑能力强的人,则会在自我介绍 中,分阶段、有层次地表现自己。如,他会这样介绍:“在工作方面,我……;在个性 方面,我……,在业余爱好上,我……”,等等。而概括能力强的人则会精确选择一些 词汇来描述自己,比如说,“可以用三个词来形容我自己,胆大、心细、脸皮厚”,然 后分别介绍自己怎么胆大,又怎么心细,又怎么脸皮厚的,当然这不一定表明他脸皮真 的厚,但这种介绍方式却可以看出其智商的不一般。当然,在面试情景中,有的人智商 也很高,但由于紧张,或者准备不充分,自我介绍的时候东一句、西一句介绍自己,既 无逻辑,也无概括,确实有这种情况。所以从智力水平上这方面,我们只能说,在自我 介绍中,看不出一个人是否智商低,但智商高的话,会有所表现。
5.人际关系
一个人不能离开他人而存在,在自我介绍中,也会有意无意地涉及到别人。那么这个别 人是以什么方式呈现的,在面试者言语中又是怎么表达的很可能会泄漏他的人际关系如 何。例如,当一个人谈及自己所取得的各项成就时,如果能够此时对帮助他的人给予感 谢,就不会是一个得意忘形、不知感恩的人(不过现实中我看到更多的人只顾及谈及自 己到成就,明显表露出自我中心的气势)。而一个在述说自己跳槽经历的人痛斥自己的 先前领导,也往往暗示出他在本单位工作失败后的表现。从某种意义上,可以说,“好 人到眼中只有好人”,在你所谈及别人的时候,在这样一个重要的自我介绍场合,都不 能忘记别人不好的人,他的人际关系是堪忧的。
二、看他做了什么:自我介绍中的非言语分析
从自我介绍的内容来看,当前的面试者往往有所准备了,每个人都会不遗余力地夸自 己,给面试考官的感觉好像是不收哪一个都是单位的损失。尤其是,当前一些面试应对 策略书籍的出版,使得面试时面试者自我介绍或者回答问题有趋同到趋势,这样就增添 了面试甄别的难度。不过,在自我介绍的言语分析之外,面试考官还可以从非言语的层 面,即从自我介绍者的身体语言出发,来探究面试者真实的心灵世界。
1.眼神
2.笑容
3.声音
4.说得好
5.说得不好
第五篇:电容在EMC设计中的应用技巧
电容在EMC设计中的应用技巧
摘 要:电容是EMC设计中应用最广泛的元件之一。实践表明:在EMC设计中,恰当选择与使用电容能解决许多EMI问题。但是,若电容的选择或使用不当,则可能根本达不到预期的目的,甚至会加剧EMI程度。根据EMC设计原理和不同结构电容的特点,结合相关研究的新进展,针对电容在EMC设计中的一些不恰当的认识与做法,讨论了电容在EMC设计中的应用技巧。对EMC设计具有指导作用。
在EMC设计中,电容是应用最广泛的元件之一,主要用于构成各种低通滤波器或用作去耦电容和旁路电容。大量实践表明:在EMC设计中,恰当选择与使用电容,不仅可解决许多EMI问题,而且能充分体现效果良好、价格低廉、使用方便的优点。若电容的选择或使用不当,则可能根本达不到预期的目的,甚至会加剧EMI程度。
本文根据EMC设计原理和不同结构电容的特点,结合相关研究的新进展,针对电容在EMC设计中的一些不恰当的认识与做法,讨论了电容在EMC设计中的应用技巧。对EMC设计具有指导作用。1 滤波器结构的选择
EMC设计中的滤波器通常指由L,C构成的低通滤波器。不同结构的滤波器的主要区别之一,是其中的电容与电感的联接方式不同。滤波器的有效性不仅与其结构有关,而且还与联结的网络的阻抗有关。如单个电容的滤波器在高阻抗电路中效果很好,而在低阻抗电路中效果很差。
传统上,在滤波器两端的端接阻抗为50Ω的条件下描述滤波器的特性(这一点往往未被注意),因为这对测试方便,并且是符合射频标准的。但是,实践中源阻抗ZS和负载阻抗ZL很复杂,并且在要抑制的频率点上可能是未知的。如果滤波器的一端或两端与电抗性元件相联结,则可能会产生谐振,使某些频率点的插入损耗变为插入增益。
可见,正确选择滤波器的结构至关重要。究竟是选择电容、电感还是两者的组合,是由所谓的“最大不匹配原则”决定的。简言之,在任何滤波器中,电容两端存在高阻抗,电感两端存在低阻抗。图1是利用最大不匹配原则得到的滤波器的结构与ZS和ZL的配合关系,每种情形给出了两种结构及相应的衰减斜率(n表示滤波器中电容元件和电感元件的总数)。
但是,如何判定ZS和ZL的值是高或低,一些资料上并未作具体说明[1,2],实践中也往往不清楚。ZS和ZL的所谓的高值或低值的临界选取有一定的随机性,选取50Ω作为边界值是比较合适的。顺便指出,在电子电路中,因信号一般较弱,而RC低通滤波器对信号有一定的衰减,故很少使用。2 自谐振频率与截止频率 2.1 去耦电容的自谐振频率
实际的电容都有寄生电感LS。LS的大小基本上取决于引线的长度,对圆形、导线类型的引线,LS的典型值为10nH/cm[3]。典型的陶瓷电容的引线约有6mm长,会引入约15nH的电感[1]。引线电感也可由下式估算[4]: 其中:l和r分别为引线的长度和半径。
青岛亿迈斯电子科技有限公司是北方地区首家专业从事电磁兼容服务的公司,包含电磁兼容设计,测试,整改,培训和器件供应。供应器件包括,各种规格的滤波器,磁环,拥有专利的共模差模复合电感等 TEL:*** QQ:604371435,客服: Lily wang
寄生电感会与电容产生串联谐振,即自谐振,在自谐振频率f0处,去耦电容呈现的阻抗最小,去耦效果最好。但对频率f高于f0的噪声成份,去耦电容呈电感性,阻抗随频率的升高而变大,使去耦或旁路作用大大下降。实践中,应根据噪声的最高频率fmax来选择去耦电容的自谐振频率f0,最佳取值为f0 = fmax。
但是,一些资料上只是从电容的寄生电感的角度给出了自谐振频率f0的资料。实际上,去耦电容的自谐振频率不仅与电容的寄生电感有关,而且还与过孔的寄生电感[5]、联结去耦电容与芯片电源正负极引脚的印制导线的寄生电感[6,7]等都有关系。如果不注意这一点,查得的资料或自己的估算往往与实际情况相去甚远。
实践中,一般是先确定去耦电容的结构(电容的寄生电感与其结构关系密),再用试验的方法确定容量。2.2 电源滤波器的的自谐振频率
在交流电源进线与电源变压器之间设置电源滤波器是抗EMI的常用措施之一。常用的电源滤波器如图2所示。人们一般对去耦电容的自谐振频率问题比较注意,实际上电源滤波器也有自谐振频率问题,处理不当,同样达不到预期的目的。对图2所示的滤波器,分析可知,当电感的电阻rL很小时,自谐振频率分别为:
设计电源滤波器时,必须使滤波器的自谐振频率远小于噪声频率。处理不当,不仅不能衰减噪声,反而会放大噪声。
例如[8],图2(a)所示的滤波器,如果取L=1 mH、rL=1 Ω、C=0.47μF(这也是许多资料上推荐的参数),可算出f0=5.2 kHz。而EMC测试中的快速脉冲群频率为5.0 kHz(2KV)或2.5 kHz(4 kV),5.0 kHz刚好谐振,2.5 kHz也不会被衰减,如图3所示。这说明滤波器中元件参数选取不当,可能根本起不到提高EMC性能的作用。
青岛亿迈斯电子科技有限公司是北方地区首家专业从事电磁兼容服务的公司,包含电磁兼容设计,测试,整改,培训和器件供应。供应器件包括,各种规格的滤波器,磁环,拥有专利的共模差模复合电感等 TEL:*** QQ:604371435,客服: Lily wang 电容结构的选择
从理论上讲,电容的容量越大,容抗就越小,滤波效果就越好。一些人也有这种习惯认识。但是,容量大的电容一般寄生电感也大,自谐振频率低(如典型的陶瓷电容,0.1μF的f0=5 MHz,0.01μF的f0=15 MHz,0.001μF的f0=50MHz),对高频噪声的去耦效果差,甚至根本起不到去耦作用。分立元件的滤波器在频率超过10 MHz时,将开始失去性能。元件的物理尺寸越大,转折点频率越低。这些问题可以通过选择特殊结构的电容来解决。
贴片电容的寄生电感几乎为零,总的电感也可以减小到元件本身的电感,通常只是传统电容寄生电感的1/3~1/5,自谐振频率可达同样容量的带引线电容的2倍(也有资料说可达10倍),是射频应用的理想选择。
传统上,射频应用一般选择瓷片电容。但在实践中,超小型聚脂或聚苯乙烯薄膜电容也是适用的,因为它们的尺寸与瓷片电容相当。
三端电容能将小瓷片电容频率范围从50 MHz以下拓展到200 MHz以上,这对抑制VHF频段的噪声是很有用的。要在VHF或更高的频段获得更好的滤波效果,特别是保护屏蔽体不被穿透,必须使用馈通电容。4 电容容量的选择
在数字系统中,去耦电容的容量通常按下式估算式中: 为瞬变电流; 为逻辑器件允许的电源电压变化; 为开关时间。
实践中,去耦电容的容量选择并不严格,可按C = 1/f选用,f为电路频率,即10 MHz选0.1Μf,100 MHz选0.01μF;在微机控制系统中,通常在0.1~0.01μF之间任选[9]。
但是,近年的研究表明[10,11],去耦电容的容量选择还必须满足以下条件: ① 芯片与去耦电容两端电压差 必须小于噪声容限。
② 从去耦电容为芯片提供所需的电流的角度考虑,其容量应满足。③ 芯片开关电流 的放电速度必须小于去耦电容电流的最大放电速度。
此外,当电源引线比较长时,瞬变电流会引起较大的压降,此时就要加容纳电容以维持器件要求的电压值。5 去耦电容的安装方式与PCB设计
安装去耦电容时,一般都知道使电容的引线尽可能短。但是,实践中往往受到安装条件的限制,电容的引线不可能取得很短。况且,电容引线的寄生电感只是影响自谐振频率的因素之一,自谐振频率还与过孔的寄生电感、相关印制导线的寄生电感等因素有关。一味地追求引线短,不仅困难,而且可能根本达不到目的。
青岛亿迈斯电子科技有限公司是北方地区首家专业从事电磁兼容服务的公司,包含电磁兼容设计,测试,整改,培训和器件供应。供应器件包括,各种规格的滤波器,磁环,拥有专利的共模差模复合电感等 TEL:*** QQ:604371435,客服: Lily wang 这说明要保证去耦效果,在PCB设计时,就要考虑相关问题。设计印制导线时,应使去耦电容距离芯片电源正负极引脚尽可能近(当然电容引线要尽可能短)。设计过孔时应尽量减小过孔的寄生电感,具体措施可参考文献[5]。6 结 语
EMC设计是一个需要长期面对的重要而复杂的领域,电容在其中一直得到广泛应用。随着相关研究的进展,人们不断纠正或放弃电容在EMC设计中的一些传统认识与做法。电容在EMC设计中的作用大小与多种因素有关,且其中的很多因素一直在不断的研究与变化中。所以,要充分发挥电容在EMC设计中的作用,及时了解相关研究的新进展,及时采用新技术,是非常重要的。
青岛亿迈斯电子科技有限公司是北方地区首家专业从事电磁兼容服务的公司,包含电磁兼容设计,测试,整改,培训和器件供应。供应器件包括,各种规格的滤波器,磁环,拥有专利的共模差模复合电感等 TEL:*** QQ:604371435,客服: Lily wang