第一篇:两条直线的位置关系(第二课时)导学案
两条直线的位置关系(第二课时)导学案
学习目标:
1、认识生活中的垂直现象,理解垂直定义,并能用符号表示。
2、理解点与直线之间的所有连线中线段最短的原理,并能运用这一原理解决一些简单的问题。
3、理解垂线的性质以及点到直线的距离。学习重点: 根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题。
一、课前预习。(背过并理解定义)
1、精读课本。
2、垂线的定义:直线AB,CD互相垂直,记作:,读作:。直线l与直线m垂直,记作:,读作:。画出图形:用折纸法折出互相垂直的直线,试试看。
3、垂线的性质: 性质1:过A点作直线l的垂线
性质2:画出图形,课本68页。叫做点到直线的距离。
二、课堂检测(一)、选择题:1.如图1所示,下列说法不正确的是()A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段AC C.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段
(1)A(2)
A
D
B
D
C
B
C
2.如图1所示,能表示点到直线(线段)的距离的线段有()
A.2条B.3条C.4条D.5条
3.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是()A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm4.到直线L的距离等于2cm的点有()A.0个B.1个;C.无数个D.无法确定5.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到 直线m的距离为()
A.4cmB.2cm;C.小于2cmD.不大于2cm(二)、填空题:1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AOD=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.(3)
A3.画一条线段或射线的垂线,就是画它们________的垂线.CD4.直线外一点到这条直线的_________,叫做点到直线的距离.三、能力达标: B1、如图所示,村庄A要从河流L引水入庄,需修筑一水渠,请你画出修筑水渠的路线图.A2、如图6所示,O为直线AB上一点,∠AOC=1l3
∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数;(2)判断OD与AB的位置关系,并说明理由.C
AB
3、如图7所示,一辆汽车在直线形的公路AB上由A向B行驶,M,N•分别是 位于公路AB两侧的村庄,设汽车行驶到P点位置时,离村庄M最近,行驶到Q点位置时,•离村庄N最近,请你在AB上分别画出P,Q两点的位置.AB
总结:
N
第二篇:6.4如果两直线平行导学案
学习目标:
1、会说出平行线的判定定理与性质定理在条件和结论上的区别。
2、会用“两直线平行,同位角相等”证明“两直线平行,内错角相等”和 “两直线平行,同旁内角互补”。
重点难点:学习目标1、2学法指导:自主学习,合作探究
知识链接:命题的条件和结论、平行线的判定公理和定理
学习过程:
一、温故
1、证明一道文字命题的一般步骤是:
(1)根据题意。
(2)根据命题的题设和结论,并结合图形,写出、。
(3)写出。
2、平行线的判定:
公理:,两直线平行。
定理1:,两直线平行。
定理2:,两直线平行。
上述三个命题的条件和结论分别是什么?
3、如果两直线平行,你会得到哪些结论呢?(这就是本节要探讨的问题)
二、知新
1、思考:如果两直线平行,会得到哪些结论呢?
如果两直线平行,同位角会有什么关系?内错角呢?同旁内角呢?
板书:两直线平行,同位角相等。(平行线的性质公理)
两直线平行,内错角相等。(性质定理1)
两直线平行,同旁内角互补。(性质定理2)
上述三个命题的条件和结论分别是什么?对比平行线的判定公理和判定定理,它们在条件和结论上有什么区别?(同桌讨论,代表回答)
板书:平行线的判定定理和性质定理是互逆的定理。
2、证明性质定理1:两直线平行,内错角相等。
(首先弄清楚这个命题的条件是什么,结论是什么?)
请按照证明文字命题的一般步骤,画出图形,写出已知、求证和证明过程,注意要写清楚每一步的依据。
3、证明性质定理2:两直线平行,同旁内角互补。
(首先弄清楚这个命题的条件是什么,结论是什么?)
请按照证明文字命题的一般步骤,画出图形,写出已知、求证和证明过程,注意要写清楚每一步的依据。
三、课堂小结:
1、文字命题的证明步骤:
2、平行线的判定:
3、平行线的性质:
4、平行线的判定定理与性质定理在条件和结论上有何区别?
四、课堂检测:
1、根据下列命题,画出图形,并结合图形写出已知、求证(不写证明过程):
1)垂直于同一直线的两直线平行;
2)一个角的平分线上的点到这个角的两边的距离相等;
3)两条平行线的一对内错角的平分线互相平行.提示:首先要弄清楚命题的条件是什么,结论是什么。
2、求证:线段的中垂线上的点到线段两端点的距离相等。
3、求证:等腰三角形的底边上的高也是底边上的中线。
五、作业设计:
1、求证等腰三角形顶角的角平分线也是底边上的高。
2、求证:两直线平行,同旁内角互补。
六、教后反思:
第三篇:直线和圆的位置关系复习学案
港 中 数 学 网
直线和圆的位置关系
知识点:
直线和圆的位置关系、切线的判定和性质、三角形的内切圆、切线长定理、弦切角的定理、相交弦、切割线定理
课标要求:
1.掌握直线和圆的位置关系的性质和判定;
2.掌握判定直线和圆相切的三种方法并能应用它们解决有关问题:(1)直线和圆有唯一公共点;(2)d=R;(3)切线的判定定理(应用判定定理是满足一是过半径外端,二是与这半径垂直的二个条件才可判定是圆的切线)
3.掌握圆的切线性质并能综合运用切线判定定理和性质定理解决有关问题:(1)切线与圆只有一个公共点;(2)圆心到切线距离等于半径;(3)圆的切线垂直于过切点的半径;(4)经过圆心且垂直于切线的直线必过切点;(5)经过切点且垂直于切线的直线必过圆心;(6)切线长定理;(7)弦切角定理及其推论。
4,掌握三角形外切圆及圆外切四边形的性质及应用;
5.注意:(1)当已知圆的切线时,切点的位置一般是确定的,在写条件时应说明直线和圆相切于哪一点,辅助线是作出过确定的半径;当证明直线是圆的切线时,如果已知直线过圆上某一点则可作出这一点的半径证明直线垂直于该半径;即为“连半径证垂直得切线”;若已知条件中未明确给出直线和圆有公共点时,则应过圆心作直线的垂线,证明圆心到直线的距离等于半径,即为:“作垂直证半径得切线”。(2)见到切线要想到它垂直于过切点的半径;若过切点有垂线则必过圆心;过切点有弦,则想到弦切角定理,想到圆心角、圆周角性质,可再联想同圆或等圆弧弦弦心距等的性质应用。(3)任意三角形有且只有一个内切圆,圆心为这个三角形内角平分线的交点。
考查重点与常用题型:
1.判断基求概念,基本定理等的证误。在中考题中常以选择填空的形式考查形式对基本概念基求定理的正确理解,如:已知命题:(1)三点确定一个圆;(2)垂直于半径的直线是圆的切线;(3)对角线垂直且相等的四边形是正万形;(4)正多边形都是中心对称图形;(5)对角线相等的梯形是等腰梯形,其中错误的命题有()
(A)2个(B)3个(C)4个(D)5个
2.证明直线是圆的切线。证明直线是圆的切线在各省市中考题中多见,重点考查切线的判断定理及其它圆的一些知识。证明直线是圆的切线可通过两种途径证明。
3.论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。此种结论的证明重点考查了金等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识。
考点训练:
1.如图⊙O切AC于B,AB=OB=3,BC=3,则∠AOC的度数为()
(A)90 °(B)105°(C)75°(D)60°
2.O是⊿ABC的内心,∠BOC为130°,则∠A的度数为()
(A)130°(B)60°(C)70°(D)80°
3.下列图形中一定有内切圆的四边形是()
(A)梯形(B)菱形(C)矩形(D)平行四边形
4.PA、PB分别切⊙O于A、B,∠APB=60°,PA=10,则⊙O半径长为()
10(A 3(B)5(C)10 3(D)335.圆外切等腰梯形的腰长为a,则梯形的中位线长为
6.如图⊿ABC中,∠C=90°,⊙O分别切AB、BC、AC于D、E、F,AD=5cm,BD=3cm,则⊿ABC的面积为
7.如图,MF切⊙O于D,弦AB∥CD,弦AD∥BF,BF交⊙O于E,CDAB80,则∠ADM 40,mm
=°,∠AGB=°,∠BAE=°。
8.PA、PB分别切⊙O于A、B,AB=12,PA=313,则四边形OAPB的面积为
29.如图,AB是⊙O直径,EF切⊙O于C,AD⊥EF于D,求证:AC=AD·AB。
10.如图,AB是⊙O的弦,AB=12,PA切⊙O于A,PO⊥AB于C,PO=13,求PA的长。
解题指导:
1. 如图⊿ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线。
2. 如图,AB是⊙O直径,DE切⊙O于C,AD⊥DE,BE⊥DE,求证:以C为圆心,CD为半径的圆C和AB相切。
3. 如图,梯形ABCD中,AD∥BC,AB=CD,⊙O分另与AB、BC、CD、AD相切于E、F、G、H,求证:⊙O直径是AD,BC的比例中项。
4. 已知:AB是⊙O的直径,AC和BD都是⊙O切线,CD切⊙O于E,EF⊥AB,分别交AB,AD
于E、G,求证:EG=FG。
独立训练:
1. 已知点M到直线L的距离是3cm,若⊙M与L相切。则⊙M的直径是;若⊙
M的半径是3.5cm,则⊙M与L的位置关系是;若⊙M的直径是5cm,则⊙M与L的位置是。
2. RtΔABC中,∠C=90°,AC=6,BC=8,则斜边上的高线等于;若以C为圆心作
与AB相切的圆,则该圆的半径为r=;若以C为圆心,以5为半径作圆,则该圆与AB的位置关系是。
3. 设⊙O的半径为r,点⊙O到直线L的距离是d,若⊙O与L至少有一个公共点,则r与d
之间关系是。
4. 已知⊙O的直径是15 cm,若直线L与圆心的距离分别是①15 cm;②③7.5 cm;③5 cm
那么直线与圆的位置关系分别是;。
5. 已知:等腰梯形ABCD外切于为⊙O,AD∥BC,若AD=4,BC=6,AB=5,则⊙O的半径的长为。
6. 已知:PA、PB切⊙O于A、B,C是弧AB上一点,过点C的切线DE交PA于D,交PB于E,ΔPDE 周长为。
7. 已知:PB是⊙O的切线,B为切点,OP交⊙O于点A,BC⊥OP,垂足为C,OA=6 cm,OP
=8 cm,则AC的长为cm。
28. 已知:ΔABC内接于⊙O,P、B、C在一直线上,且PA=PB•PC,求证:PA是⊙O的切线。
9. 已知:PC切⊙O于C,割线PAB过圆心O,且∠P =40°,求∠ ACP度数。已知:过⊙O一点P,作⊙O切线PC,切点C,PO交⊙O于B,PO延长线交⊙O于A,CD⊥
AB,垂足为D,求证:(1)∠DCB=∠PCB(2)CD:BD=PA:CP
第四篇:高中两直线位置关系教学设计
篇一:两条直线的位置关系教学设计
两条直线的位置关系教学设计
新课改下教师的教学策略要实现新转变,由重知识传播向学生发展转变,由重教师教学内容选择向重学生学习方法指导转变,由统一规格教育向差异性教育转变。教师在教学方法上要有新的突破,在课堂教学的设计上要多下功夫。本着这个理念,我在两条直线的位置关系教学设计中做了以下工作:
一、教学背景分析
1、教材结构分析。“两直线的位置关系”安排在《全日制普通高级中学教科书(必修)数学》第二册(上)第七章第3节第一课时。主要内容是两直线平行与垂直条件的推导和公式的应用。从初中平面解析几何中平行和垂直的定性过渡到高中解析几何的定量计算。它是学生在研究了直线倾斜角、斜率、直线方程的基础上学习的又一平面解析几何的基础知识。本节的研究,将直接影响以后的曲线方程、导数、微分等的进一步学习,贯穿于高中教学的始终,具有承上启下的作用。
2、学情分析。两条直线位置关系的探究是学生在已经掌握了三角函数、平面向量的基础上进行的。说明学生已具备了一定的利用代数方法研究几何问题的能力。但由于学生接触平面解析几何的时间还不长学习程度较浅,特别是处理抽象问题的能力还有待提高,在学习过程中可能会出现困难。因此,教师要在今后的教学滚动中逐步深化,使之和学生的知识结构同步发展完善。
3、教学目标。(1)知识和技能目标。①理解两条直线平行与垂直充要条件的推导、公式及应用。②能够根据直线的方程判断两条直线的位置关系。(2)过程与方法目标。①通过探索两条直线平行或垂直的充要条件和推导过程,培养学生“会观察”、“敢归纳”、“善建构”的逻辑思维能力,渗透算法的思想。②通过灵活运用公式的过程,提高学生类比化归、数形结合的能力。(3)情感态度和价值目标。培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣即成为本节的情感目标。
4、教学重点与难点.根据学生现状、教学目标及教材内容分析,确立本节课的教学重点为两条直线垂直和平行的条件。
教学难点为两直线平行与垂直问题转化为与两直线斜率的关系问题。突破难点采用了从特殊到一般、从具体到抽象的教学策略,利用了类比归纳的思想,由浅入深,让学生自主探究,分析发现两直线平行、垂直的规律。
二、教法学法分析
1、教法分析。基于本节通过引导学生了解数形结合数学方法,我采用合作探究式教学法及类比发现式教学模式,对数学知识结构进行创造性的“教形结合”,将 篇二:高中精编教学设计两条直线的位置关系
高中精编教学设计
两条直线的位置关系教学设计
教学目标
1.熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断两条直线的位置关系. 2.理解一条直线到另一条直线的角的概念,掌握两条直线的夹角. 教学重点:两条直线的平行与垂直的判断;两条直线的夹角.
教学难点:两条直线垂直条件的推导;一条直线到另一条直线的角的概念和公式的推导.
教学过程
一、复习引入
1.两条直线的位置关系:重合、平行、相交(特例:垂直).2.引入两直线所成的角相关的概念:
两条直线l1和l2相交构成四个角,它们是两对对顶角.我们把直线l1依逆时针方向旋转到与l2重合时所转的角,叫做l1到l2的角.不大于直角的角叫做两条直线所成的角,简称夹角.3.平面向量中与平行、垂直、夹角相关的几个结论
设a=(x1,y1),b=(x2,y2),a与b的夹角为q()则 a∥ba=λb(b≠0)x1y2-x2y1 =
a⊥ba·b=ox1x2+y1y2= cosq=
二、讲授新课
(一)斜率存在时两直线的平行、垂直与夹角
设直线l1和l2的斜率为k1和k2,它们的方程分别是 l1: y=k1x+b1; l2: y=k2x+b2.则 1.l1|| l2?k1=k2,且b1≠b2;2.l1⊥l2?k1?k2=-1;3.有关角的公式:当1+k1k2=0时,l1到l2的角,l1和l2的夹角均为90o;当1+k1k2≠0时
(1)若q为l1到l2的角,则,(2)若q为l1和l2的夹角则,(二)斜率不全存在时两直线的平行、垂直与夹角
当两条直线中有一条直线没有斜率时:
1.当另一条直线的斜率也不存在且横截距不相等时,两直线平行; 2.当另一条直线的斜率为0时,两直线互相垂直. 3.若另一条直线的斜率k≠0,q为l1和l2的夹角,则
三、例题
例1 已知两条直线
l1: 2x-4y+7=0,l: x.-2y+5=02 求证:l1∥l2.
例2求过点 a(1,-4),且与直线2x+3y+5=0平行的直线方程.
例3 已知两条直线
l1: 2x-4y+7=0,l: 2x+y-5=0.2 求证:l1⊥l2.
例4 求过点a(2,1),且与直线2x+y-10=0垂直的直线方程.
例5 求直线l1:y=-2x+3;l2: y=x-2 的夹角.例6等腰三角形一腰所在的直线l1的方程是x-2y-2=0,底边所在的直线l2的方程是x+y-1=0,点(-2,0)在另一腰上,求这腰所在直线l3的方程.
四、作业 同步练习
篇三:1.2.2空间两直线的位置关系(二)教学设计
一、课题名称: 异面直线
二、设计思路
空间中的两条直线的位置关系,是在平面中两条直线位置关系及平面的基本性质基础上来研究的,学生对此已有一定的感性认识,但学生空间想象能力还较薄弱。故本节课要利用好模型展示,多给学生思考的时间和空间,以有助于空间想象能力的形成。坚持以学生为中心,以问题为载体,采用启发、引导、探索相结合的教学方法。设置“问题”情境,激发学生解决问题的欲望;提供“观察、探索、交流”的机会,引导学生独立思考,有效地调动学生思维,使学生在开放的活动中获取知识。
三、教学目标
知识与能力目标:掌握异面直线的判定,理解异面直线所成的角的概念,会用反证法证明两条直线是异面直线。
过程与方法目标:通过模型的展示,使学生了解、感受异面直线所成角的概念;探究异面直线所成角的求法,提高分析与解决问题的能力,体会空间问题平面化的基本数学思想方法。
情感态度与价值观目标:通过异面直线的学习,使学生逐步养成在空间考虑问题的习惯,培养学生的空间想象能力。鼓励学生大胆尝试、勇于探索,从中获得成功的体验,感受思维的奇异美、数学的严谨美。
四、教学重点
异面直线的判定、异面直线所成角的定义及计算。
五、教学难点
异面直线所成角的方法的探究。
六、教学准备
正方体、三棱锥等教具,小木棍及阅读、寻找生活中的一些关于异面直线问题。
七、教学过程
1温故知新,引入课题
我有针对性设置下面两个问题: ①回答图中两直线的位置关系:
②思考图中表示两条直线a、b异面的方法正确吗?为什么?
【设计意图】通过学生观察两组图形语言,很好的起到复习与引入的效果,激发了学生的兴趣,引发学生的思考,培养学生的观察能力。2 知识探究,形成概念
引导学生回答问题2中,三种表示方法共同特点:就是用平面来衬托,离开
平面的衬托,不同在任何一个平面的特征则难以体现.数学讲究严谨,如何说明两直线异面呢?显然,利用定义证明有难度,下面我们介绍一种立几中常用的方法:反证法.问题:若l??,a??,b??,b?l,证明:直线ab与l是异面直线。
证明:假设ab与l共面,由于经过点b和
直线l的平面只能有一个,所以直线ab与l 都应在平面?内,于是点a在平面?内,这
与点a在平面?外矛盾。因此,直线ab与l是异面直线。
异面直线的判定定理:过平面内一点与平面外一点的直线,和这个平面内不经过该点的直线是异面直线。a 学生练习:
如图,试找出三棱锥a?bcd中, 那些棱所在的直线互为异面直线? db(结论:三棱锥中对棱互为异面直线。)学生总结: c1上述反证法证题的步骤:反设;归谬;结论;
2判断两直线异面的方法:定义法;判定定理;反证法。小组讨论:
我们知道两条相交直线所成的角刻画了一条直线相对于另一条直线的倾斜程度,那么用什么量来刻画两条异面直线中一条直线相对于另一条直线的倾斜程度呢?然后给出如下的流程图,引导学生考虑:
异面直线所成的角:a、b是两条异面直线,经过空间任意一点o,作直线a∥a,b∥b,我们把直线a和b所成的锐角(或直角)叫做异面直线a、b所成的角。
小组讨论:
1由于点o是任意的,大家说这样作出的角有多少个?这无数个锐角(或直角)的大小有什么关系?
2解题时,把点o选在何处较好?
3请同学们举出日常生活中见到过的两条异面直线所成角的实例。学生练习: c d1 1 已知abcd?a1b1c1d1是棱长为a的正方体,则异面直线aa1与bc所成的角为 异面直线bc1与ac所成的角为。学生总结: a1 d c b1 a b 1异面直线所成角?的范围:0, ? ?? ?2? ;
2找异面直线所成角的关键:要作平行移动(作平行线),把两条异面直线所成的角转化为两条相交直线所成的角。
【设计意图】数学教学的核心是学生的再创造。让学生自主探究,小组讨论,体验数学知识的发生、发展的过程,从而使学生更好地理解数学概念和方法,突出了重点,化解了难点。3 学以致用,提炼方法
例1在空间四边形abcd中,已知ab?cd?2 , e、f分别是bc、ad 的中点,且ef? a 求ab和cd所成的角。
解析:取ac的中点g,连结ge、gf,?e、f分别是bc、ad的中点,?eg∥ab?eg f ,gf∥cd,eg? 12 ab?1,gf? 1 2b cd1。g d 和gf所成的角?fge,即为异面直线abd e 又ef??fge?90?。
方法探究:引导学生考虑其他解法,如:选取bd的中点;过点bc作cd的平行线;过点d作ab的平行线等,可让学生课后尝试求解。
学生练习(变式演练):
例1中,若ef?其余条件不变,则ab和cd所成的角为。(提示:本题要注意:异面直线所成角???0, ?? ?? ?2?。)d1 c 例2 如图,有一块长方体的木料,p为木料表面a1c1 内的一点,其中点p不在对角线b1d1上,过点p a1 c1 在平面a1c1内作一直线l,使l与直线bd成?这样的直线有几条,应该如何作图? a 思路探究:本题直接求解,极易出错,可先将?具体化,如:?? 2 ;?? 3 等,给学生以思路的启发。从而再对参数?的讨论,能做到不重不漏。
解:在平面a1c1内,作m∥l,使m与b1d1相交成?角。?b1d1∥bd, ?m与bd 也成?角,m即为所求作的直线。? 2 若m与bd是异面直线:当??时,这样的直线m有且只有一条; 当?? ? 2 时,这样的直线m有两条;
若m与bd共面,这样的直线m只有一条。学生总结:
1求异面直线所成角步骤:①作;②证;③计算;亦即“作平行线,构造三角形”; b所成角是直角,b互相垂直,2当异面直线a、则称异面直线a、记作a?b。
其与平面上两直线垂直有什么区别呢?
小组讨论(可用小木棍摆一摆): 下列命题是否正确,并说明理由: 1若a∥b,c?a,则c?b; 2若a?c,b?c,则a∥b。
【设计意图】通过例题的讲解板演,注重培养学生的能力,及时的归纳总结,使学生的知识得到深化。通过变式训练,有利于培养学生思维的发散性。4 归纳总结,升华提高
为使学生对所学的知识有一个完整而深刻的印象,请学生从以下几方面自己小结:
①通过学习你对异面直线所成角有那些认识? ②求异面直线所成角时,应注意那些问题? ③本节课你还有哪些问题?
作业:课本第27页 第7题、第8题。
【设计意图】及时的归纳,有利于学生养成良好习惯,并将所学知识纳入已有的认知结构,同时也能培养学生数学交流和表达的能力。
八、教学反思
我在整节课的处理上,采取了知识、方法来源于课本,挖掘其深度、广度,符合现代教学要求。注重发展学生的合情推理能力,降低几何证明的难度。同时,加强空间观念的培养,注重知识产生的过程性,具体体现在以下几个方面:
1异面直线的判定定理没有直接给出,而是让学生在对图形语言观察感知基础上,进行思考并给出证明,这样就避免了学生死记硬背,有利于理解数学的本质。
2异面直线所成角的引入,则让学生联想初中“刻画两条平行直线位置通常用距离,两条相交直线通常用角度”,“那么,如何刻画两条异面直线的相对位置呢?”引起学生思考,讨论交流,并给出流程图供参考。使学生更好的参与教学活动,展开思维,体验探索的乐趣,增强学习数学的兴趣。
3对于异面直线所成角的求解,本节给出了两种最常见的载体:长(正)方体、三棱锥,及其在实际问题中的应用。并注重一题多解、一题多变,解题步骤、思想方法的及时总结,很好的强调了异面直线所成角的范围问题。同时,在教学中,始终注重训练学生准确地进行三种语言(文字语言、图形语言和符号语言)的转换,培养运用图形语言进行交流的能力。4 以问题讨论的方式进行小结,培养学生反思的习惯,鼓励学生对问题多质疑、多概括。
第五篇:新北师大版_七年级下册数学_2.1___两条直线的位置关系(第二课时)_导学案
党岘中学年级班姓名:学科:数学主备人:审核:授课人:授课时间:学案编号:72SX017
2.1两条直线的位置关系(第二课时)
学习目标:
1、认识生活中的垂直现象,理解垂直定义,并能用符号表示。
2、理解点与直线之间的所有连线中线段最短的原理,并能运用这一原理解决一些简单的问题。
3、理解垂线的性质以及点到直线的距离。
学习重点: 根据点与线之间垂直的线段最短的原理,解决生活中的一些简单问题。
一、课前预习。
1、精读课本。
2、垂线的定义:直线AB,CD互相垂直,记作:,读作:。
3、垂线的性质:
性质1:性质2:
二、课堂检测(一)、选择题:
1.如图1所示,下列说法不正确的是()
A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段AC
C.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段
A
A
AD
C
B
D
C
D
B
C
B
(1)(2)(3)2.如图1所示,能表示点到直线(线段)的距离的线段有()A.2条B.3条C.4条D.5条3.下列说法正确的有()
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线.A.1个B.2个C.3个D.4个
4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是()A.大于acmB.小于bcm
C.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有()
A.0个B.1个;C.无数个D.无法确定
6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到 直线m的距离为()A.4cmB.2cm;C.小于2cmD.不大于2cm(二)、填空题:
1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠
_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、能力达标:
1、如图所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数
E
D
AB
C
GF2、如图所示,村庄A要从河流L引水入庄, A
需修筑一水渠,请你画出修筑水渠的路线图.l3、如图6所示,O为直线AB上一点,∠AOC=
∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数;(2)判断OD与AB的位置关系,并说明理由.D
CA
B4、如图7所示,一辆汽车在直线形的公路AB上由A向B行驶,M,N•分别是 位于公路AB两侧的村庄,设汽车行驶到P点位置时,离村庄M最近,行驶到Q点位置时,•离村庄N最近,请你在AB上分别画出P,Q两点的位置.A
B
N