3.两条直线被一组平行线所截,所得的对应线段成比例

时间:2019-05-14 13:49:42下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《3.两条直线被一组平行线所截,所得的对应线段成比例》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《3.两条直线被一组平行线所截,所得的对应线段成比例》。

第一篇:3.两条直线被一组平行线所截,所得的对应线段成比例

3.两条直线被一组平行线所截,所得的对应线段成比例

(***96744)第1题.(2007湖北襄樊非课改,3分)如图,直线l1∥l2∥l3,另两条直线分别交l1,l2,l3于点A,B,C及点D,E,F,且AB3,DE4,EF2,则()

A

D

l1

EB

l2 l3

A.BC:DE1:2 C.BCDE8答案:D

B.BC:DE2:3 D.BCDE6

第二篇:平行线分线段成比例证明题

例1:已知:△ABC中,DE∥BC,分别交AB、AC于点D、E 求证:

ADAEDE ABACBC

例2:已知:△ABC中,E、G、D、F分别是边AB、CB上的一点,且GF∥ED∥AC,EF∥AD BGBD求证: BEBC.例

3、已知:△ABC中,AD为BC边上的中线,过C任作一直线交AD于E,交AB于F。AE2AF求证: EDFB

例4:如图,已知:D为BC的中点,AG∥BC,求证:

例5:已知:△ABC中,AD平分∠BAC,求证:

例6:△ABC中,AD平分∠BAC,CM⊥AD交AD于E,交AB于M,求证:

EGAF EDFC

ABBD(过C作CE∥AD交BA的延长线于E).ACDCBDAB DCAM

练习:

1、已知:如图,EF⊥FD,AB⊥FD,CD⊥FD,EF=1.5,AB=2.5,FB=2.2 BD=3.6,求CD的长。

2、已知:如图,四边形AEDF为菱形,AB=12,BC=10,AC=8,求:BD、DC及AF的长。

3、已知:如图,B在AC上,D在BE上,且AB:BC=2:1,ED:DB=2:1 求AD:DF

4、已知,如图,E在BC上,F在AC的延长线上,且AF=BE,ACDEBCDF

求证: 方法1:过E作EG∥AF交AB于G 方法2:过E作EF∥AB交AC于F

5、已知:如图,平行四边形 ABCD中,EF∥AD求证:GH∥AB

第三篇:教学设计2:平行线分线段成比例

《平行线分线段成比例》

教学目标

知识与技能:

1.掌握平行线分线段成比例定理的推论.2.用推论进行有关计算和证明.教学思考:

通过探究平行线分线段成比例定理的推论,培养学生数学思维能力.解决问题:

学生经历观察、操作、探究、交流、归纳、总结过程获得结论,体验解决问题的多样性,感悟比例中间量的作用.教学重点

推论及应用.教学难点

推论的应用.教学方法

引导、探究.教学媒体

投影、胶片.教学过程

【活动一】引入新课

问题1

上节我们学习了什么内容?本节将研究什么?

学生共同手工拼图,通过思考探究得出结论.在本次活动中,教师应重点关注:

1.操作过程中学生是否把被截得两直线交点放在相应位置.2.学生是否有探究本节所学内容的兴趣和欲望.设计意图:使学生通过动手操作、观察、直观得出初步结论.【活动二】探究推论

问题2.被截直线的交点若落在第一条或第二条平行线上,平行线分线段成比例定理是否还成立?

问题3.若上述问题成立,可得什么特殊结论?

教师提问,引导学生猜想,并在拼好的图上测量、计算、证明.推论:投影出示.在本次活动中,教师应重点关注:

1.学生是否认真、仔细的测量和计算.2.学生能否用定理证明所得推论.设计意图:培养学生大胆猜测,从实践中得出结论.【活动三】

问题4

看图说比例式

学生结对子,师生结对子说出比例式.在本次活动中,教师应重点关注:

1.学生能否顺利回答对方所提出的比例式.2.学生是否与同伴交流中达到互帮互学.3.学生能否体会由平行得出多个比例式.设计意图:给学生表现机会,让学生体验成功的喜悦,调动学生积极性.【活动四】

问题5

已知:如图:BC∥DE,AB=15,AC=9,BD=4,求:AE

学生独立思考后,分组交流得出多种解题途径,老师引导学生找出最佳方案.在本次活动中,教师应重点关注:

1.学生能否顺利写出解决问题的比例式;

2.在小组交流中学生能否在探究中发现解决问题的多种途径及最佳方案.设计意图:以学生分组讨论方式展开探究活动,培养学生探索、发现、找出多种解决问题的方法的能力.【活动五】

问题6

如图:DE∥BC,AB=15,AC=7,AD=2,求EC.老师引导学生独立思考后,说思路,说方法.在本次活动中,教师应重点关注:

1.学生是否能顺利说出较简便的解题途径.2.学生在语言表达上是否规范.设计意图:培养学生快速解决问题的能力.【活动六】

问题7

如图:⊿APM中,AM∥BN,CM∥DN,求证:PA:PB=PC:PD

分析:师生共同完成.过程:由学生自己写出.在本次活动中,教师应重点关注:

1.学生是否能在复杂图形中找出相应的比例式.2.学生能否体会到比例中间量的作用.设计意图:培养学生识别图形的能力.【活动七】

问题8

如图:P是四边形OACB对角线的任意一点,且PM∥CB,PN∥CA,求证:OA:AN=OB:MB

同桌交流、研讨,由学生分析讲解,写出过程.在本次活动中,教师应重点关注:

1.学生是否快速找到比例的中间量.2.学生书写解题过程是否规范.设计意图:培养学生的语言表达能力.【活动八】

小结:

我们本节课学习了哪些知识,通过探究你有哪些收获?你认为自己的表现如何?

老师重点关注:1.学生归纳总结能力;2.能否发表自己的见解,倾听他人的意见,反思学习过程;3.学生对推论的理解及应用程度.思考题:如果一条直线截三角形的两边(或两边的延长线),所得对应线段成比例,那么这条直线是否平行于第三边?

第四篇:平行线分线段成比例三模块教学设计

§9.2平行线分线段成比例

教学目标:

1.掌握平行线分线段成比例定理的推论.2.用推论进行有关计算和证明.教学重点:掌握平行线分线段成比例定理的推论 教学难点:平行线分线段成比例定理的推论.第一模块:自学设计

自学任务:自学教材P.90—92尝试解答下列问题: 问题1:一组等距离的平行线截得直线m所得的线段相等,那么在直线n上所截得的线段有什么关系呢?

归纳结论:一组等距离的平行线在直线m上所截得的mn线段相等,那么在直线n所截得的线段也相等(平行DAl3线等分线段定理)。

BE l2 FCl1

问题2:已知l1∥l2∥l3∥l4 AB=BC=CD,可知EF=FG=GH,那么擦出其中1条如l3后有何结论? nm l1nAEm l1lAEBF

lBF

l lGCDH lDH

归纳结论:三条平行线截两条直线,所得的对应线段的。平行线分线段成比例定理:两条线段被一组平行线所截,所得的(简称“平行线分线段成比例”)

问题3:推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线

22344段成比例(尝试证明)。如图

自学诊断:如图,在△ABC中,点D,E分别在AB,AC上ED//BC,AD3,则EC的长是()已知AE=6,BD4DAE

BC第二模块:训练设计

一、基础训练:如图:DE∥BC,AB=15,AC=7,AD=2,求EC.二、提升训练: 如图,已知直线a∥b∥c,直线m,n与直线a,b,c分别交与点A,C,E,B,D,F,AC=4,CE=6,BD=3,求BF的长。

达标测试

1、如图l1∥l2∥l3根据图形写出成比例线段

ab

DEBAl1l2BEADCmACnBDabEFc

CFl3

2、已知:如图:B求:AE

BDAC∥DE,AB=15,AC=9,BD=4,CE第三模块:教学设计

一、知识备课: 本节主要知识:

二、教学过程:

(一)、导入新课(情境引入):半分钟

(二)、引导学生根据自学任务开展自学:自学时间10分钟 要求:

独立自学,不会的可以小声问同桌,不得干扰其它人

1、同学们开始自学10分钟

(三)、组织学生进行训练:12分钟

利用10分钟进行训练,完成基础训练,有能力的可以完成变式训练,学生做7分钟进行展示,2分钟点评,本环节共12分钟

(四)课堂总结:1-5分钟

(六)、组织达标测试:8-10分钟

教师要做出达标题答案,学生闭卷做,教师说答案(或出示),交换试卷互批,统计分数及达标率,重点问题矫正

第五篇:比例线段;黄金分割;平行线分三角形两边成比例

比例线段;黄金分割;平行线分三角形两边成比例

【本讲教育信息】

一.教学内容:

第十九章

相似形

第一节 比例线段

第二节 黄金分割

第三节平行线分三角形两边成比例

二.教学目标:

1.了解成比例线段的概念,会判断已知线段是否成比例。

2.了解比例的性质,会运用比例的性质进行简单的比例变形。

3.了解黄金分割。

4.掌握平行线截三角形两边成比例定理。

三.教学重点、难点:

平行线截三角形两边成比例定理

四.教学过程:

(一)知识要点:

1.线段的比:

一般地,用同一长度单位(如米或厘米或毫米)去度量线段a,b所得的量数分别为m,n,那么这两条线段的比为a:b=m:n,或

am,其中a叫比的前项,b叫比的后项。bn 注:①用同一长度单位去度量。

②两条线段的比和所选用的长度单位无关。

③两条线段的比总是正数。

2.成比例线段:

在四条线段中,如果其中两条线段的比等于另外两条线段的比,那么这四条线段叫做成比例线段,简称比例线段。如ac(或a:b=c:d)中,a、b、c、d叫四条线段成比例线段。a、b、c、d叫做bd组成比例的项,线段a、d叫比例外项,线段b、c叫做比例内项,线段d叫做a、b、c的第四比例项。

3.比例的性质:

(1)比例的基本性质:

如果a:b=c:d,那么ad=bc,反之,若ad=bc且bd≠0,那么a:b=c:d。

(2)合比性质:

如果acabcd,那么。bdbdacabcd,那么。bdbd(3)分比性质: 如果

补充:等比性质: 若aceac…ea…,且bd…f0,则。bdfbd…fbACBC,那么称线段AB被点CABACAC15≈AB

24.黄金分割: 若点C把线段AB分成两条线段AC和BC,如果黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫黄金比,0.618。

注:黄金分割重在实际问题中的应用。

5.平行线截三角形两边成比例定理:

平行于三角形一边的直线截其他两边,所得的对应线段成比例。

如图:△ABC中,EF//BC ∴AEAFAEAF,,… BEFCABAC A E B F C

【典型例题】

例1.已知:A、B两地的实际距离AB=5000m,而画在地图上A、B两点距离A'B'=5cm,求该地图的比例尺(即图上距离与实际距离的比)。

解:A B5000mc500000mA'B'5cm

A'B'51 AB500000100000∴该地图的比例尺为1:100000

例2.已知:a,求a。:23:5

例3.若解:∵a:2=3:5 ∴5a=6(比例的基本性质)∴a6 5ab,且a4cm,c3cm,求b。bc

解:∵ab ,且a4cm,c3cmbcb212 4bb3b23∵b>0 ∴b23 cm

例4.证明分比性质。

证明:∵ac bdac11 bdabcd bd

例5.证明等比性质。

证明:设ace …kbdf abk,cdk,…,efk ac…ebkdk…fk(bd…f)k kbd…fbd…fbd…fac…ea bd…fb

例6.已知:

例7.已知:

aab5,求。

bb7ab5解:∵

b7abb57 b7a12 b7acabcd(其中abc,)d,求证:。bdabcdac证法一:∵

bdabcdabcd,

bdbd

ab0,cd0ababcdcd

bbddabcd即 abcdac证法二:设k

bd∴a=bk,c=dk ∵a≠b,c≠d ∴k≠1 abbkbb(k1)k1 abbkbb(k1)k1cddkdd(k1)k1 cddkdd(k1)k1abcd abcdace。求:ace。5,且bdf7bdface解:5

bdface 5bdface5 bdf bdf7ace5 ace5735

例8.已知:

例9.已知:

xyzxyz ,求?234xxyz解:∵

234xyzx 2342xyz9

x2ADBF。DBFC

例10.已知:如图,△ABC中,DE//BC,EF//AB,求证:

证明:在△ABC中,∵DE//BC ∵EF//AB ∴

ADAE DBACAEBF∴ ECFC∴ADBF DBFC 小结:本周研究了成比例线段、黄金分割、平行线截三角形两边成比例定理,这些内容都是很好地研究后续课的基础。

【模拟试题】(答题时间:30分钟)

1.求下列各式中的x:

(1)x:6=2:5

(3)3:5=x:4

2.已知:

(2)1:x=2:7(4)2:5=3:x a5abab(2)(3),则(1)_________,_________,b3bbab_________。abace

3.已知:2,且ac,则bdf_________。e5bdf

4.已知:

5.已知:ace2ac3e,则_________。bdf3bd3fabca2bc_________。,则123b

6.已知:如图,△ABC中,DE//BC,AD=4,DB=3,AC=10。求AE、EC。

A D E

7.已知:如图,△ABC中,DE//AC,DF//AB,AE=2,BE=3,FC=3。求AF。

B C

A E F B D C

【试题答案】

12712

1.(1)x(2)x

(3)x

52582

2.(1)(2)(3)4 335

3.22

4.3

5.1

6.AE(4)x15 24030,EC(提示:利用平行线截三角形两边成比例定理,有比例式77ADAE,设AE=x)DBEC9

7.AF

下载3.两条直线被一组平行线所截,所得的对应线段成比例word格式文档
下载3.两条直线被一组平行线所截,所得的对应线段成比例.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐