第一篇:等差数列的一个特征性质及应用
等差数列第一个特征性质及应用
江西南昌市卫生学校熊秋玲
内容提要:本文证明等差数列的一个重要性质:数列{an}是等差数列的充要条件为:对于任意三个自然数q,p,r,恒有(q-r)ap+(r-p)aq+(p-q)ar=0成立。并举实例说明其实用。
等差数列是中学数学的重要内容之一,有一个特征性质应用极为广泛,即
定理数列{an}是等差数列的充要条件为:对于任意三个自然数p,q,r,恒有(q-r)ap+(r-p)aq+(p-q)ar=0(1)证明必要性,设{an}是一个等差数列,其首项为a1,公差为d,则
ap=a1+(p-1)d,aq=a1+(q-1)d,ar=a1+(r-1)d,于是
(q-r)ap+(r-p)aq+(p-q)ar
=p(ar-aq)+q(ap-ar)+r(aq-ap)
=p(r-d)d+q(p-r)d+r(q-p)d
=0。即(1)式成立。
充分性,若对任意三个自然数p,q,r,恒有(1)式成立。于是对任意的自然数n(n≥2),取p=n-1,q=n,r=n+1,则由
(1)式,有
-an-1+2an-an+1=0,即an-1+an+1=2an(n≥2),这说明数列{an}是一个等差数列。
定理的等式(1)是循环对称,用数列中的任意三项来刻画等差数列的特征。应用它来处理与等差数列有关的一些问题时,显得相当灵活方便,兹举几例说明之。
例1.在等差数列{an}中,已知ap=q=求ap+q qp11解:由(1)式,有
q−(p+q)∗p+q −p ∗+ p−q ap+q=0 即-++(p−q)ap+q=0 qppq11qp
∴(p-q)ap+q=−= p−q(+
故 ap+q=+ pq1q1ppqpq11例2.在等差数列{an}中,已知am+n=A,am-n=B(m>
第二篇:等差数列的性质(定稿)
等差数列的性质
1.数列
为等差数列,则a3=
2.设x,a1,a2,a3,y成等差数列,x,b1,b2,b3,b4,y成等差数列,则的值是
第三篇:等差数列的性质总结
1.等差数列的定义式:anan
12.等差数列通项公式:
ana1(n1)ddna1d(nN*),首项:a1,公差:d,末项:an
aam推广: anam(nm)d.从而dn; nm
3.等差中项
(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:A
(2)等差中项:数列an是等差数列2anan-1an1(n2,nN+)2an1anan
24.等差数列的前n项和公式:
n(a1an)n(n1)d1Snna1dn2(a1d)nAn2Bn 2222
(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)
特别地,当项数为奇数2n1时,an1是项数为2n+1的等差数列的中间项
S2n1ab或2Aab 2等差数列性质总结(n2); d(d为常数)2n1a1a2n122n1an1(项数为奇数的等差数列的各项和等于项数乘以中间项)
5.等差数列的判定方法
(1)定义法:若anan1d或an1and(常数nN) an是等差数列.
(2)等差中项:数列an是等差数列2anan-1an1(n2)2an1anan2.⑶数列an是等差数列anknb(其中k,b是常数)。
(4)数列an是等差数列SnAn2Bn,(其中A、B是常数)。
6.等差数列的证明方法
定义法:若anan1d或an1and(常数nN) an是等差数列 等差中项性质法:2anan-1an1(n2,nN).
7.提醒:
(1)等差数列的通项公式及前n和公式中,涉及到5个元素:a1、d、n、an及Sn,其中a1、d称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)设项技巧:
①一般可设通项ana1(n1)d
②奇数个数成等差,可设为„,a2d,ad,a,ad,a2d„(公差为d); ③偶数个数成等差,可设为„,a3d,ad,ad,a3d,„(注意;公差为2d)
8.等差数列的性质:
(1)当公差d0时,等差数列的通项公式ana1(n1)ddna1d是关于n的一次函数,且斜率为公差d;
n(n1)dddn2(a1)n是关于n的二次函数且常数项为0.前n和Snna122
2(2)若公差d0,则为递增等差数列,若公差d0,则为递减等差数列,若公差d0,则为常数列。
(3)当mnpq时,则有amanapaq,特别地,当mn2p时,则有aman2ap.注:a1ana2an1a3an2,(4)若an、bn为等差数列,则anb,1an2bn都为等差数列
-让梦想起飞,让成绩飞扬!
(5)若{an}是等差数列,则Sn,S2nSn,S3nS2n,„也成等差数列
(6)数列{an}为等差数列,每隔k(kN*)项取出一项(am,amk,am2k,am3k,)仍为等差数列
(7)设数列an是等差数列,d为公差,S奇是奇数项的和,S偶是偶数项项的和,Sn是前n项的和
。当项数为偶数2n时,S奇a1a3a5a2n1na1a2n1nan
2na2a2nS偶a2a4a6a2nnan1 2
S偶S奇nan1nannan1annd
S偶
S奇nan1an1 nanan
。当项数为奇数2n1时,则
S偶nS2n1S奇S偶(2n1)an+1S奇(n1)an+1 S奇S偶an+1S奇n1S偶nan+1
(其中an+1是项数为2n+1的等差数列的中间项).
(8){bn}的前n和分别为An、Bn,且
则Anf(n),nan(2n1)anA2n1f(2n1).nn2n1
(9)等差数列{an}的前n项和Smn,前m项和Snm,则前m+n项和Smnmn anm,amn,则anm0
(10)求Sn的最值
法一:因等差数列前n项是关于n的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性nN*。
法二:(1)“首正”的递减等差数列中,前n项和的最大值是所有非负项之和
a0即当a10,d0,由n可得Sn达到最大值时的n值. an10
(2)“首负”的递增等差数列中,前n项和的最小值是所有非正项之和。
an0即 当a10,d0,由可得Sn达到最小值时的n值. a0n1
或求an中正负分界项
注意:解决等差数列问题时,通常考虑两类方法:
①基本量法:即运用条件转化为关于a1和d的方程;
②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量.
-让梦想起飞,让成绩飞扬!
第四篇:高中数学等差数列性质总结
等差数列的性质总结
(一)等差数列的公式及性质
1.等差数列的定义: anan1d(d为常数)(n2);
2.等差数列通项公式:
ana1(n1)ddna1d(nN*),首项:a1,公差:d,末项:an
推广: anam(nm)d.从而d
3.等差中项
(1)如果a,A,b成等差数列,那么A叫做a与b的等差中项.即:A
(2)等差中项:数列an是等差数列2anan-1an1(n2)2an1anan
24.等差数列的判定方法
(1)定义法:若anan1d或an1and(常数nN) an是等差数列.anam; nmab或2Aab 2
(2)等差中项:数列an是等差数列2anan-1an1(n2)2an1anan2.
⑶数列an是等差数列anknb(其中k,b是常数)。
(4)数列an是等差数列SnAn2Bn,(其中A、B是常数)。
5.等差数列的证明方法
定义法:若anan1d或an1and(常数nN) an是等差数列.
6.提醒:
(1)等差数列的通项公式及前n和公式中,涉及到5个元素:a1、d、n、an及Sn,其中a1、d称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。
(2)设项技巧:
①一般可设通项ana1(n1)d
②奇数个数成等差,可设为„,a2d,ad,a,ad,a2d„(公差为d);
③偶数个数成等差,可设为„,a3d,ad,ad,a3d,„(注意;公差为2d)
8..等差数列的性质:
(1)当公差d0时,等差数列的通项公式ana1(n1)ddna1d是关于n的一次函数,且斜率为公差d;
前n和Snna1n(n1)dddn2(a1)n是关于n的二次函数且常数项为0.22
2(2)若公差d0,则为递增等差数列,若公差d0,则为递减等差数列,若公差d0,则为常数列。
(3)当mnpq时,则有amanapaq,特别地,当mn2p时,则有aman2ap.注:a1ana2an1a3an2,(4)若an、bn为等差数列,则anb,1an2bn都为等差数列
(5)数列{an}为等差数列,每隔k(kN)项取出一项(am,amk,am2k,am3k,)仍为等差数列 *
(二).等差数列的前n项和公式:(1)Snn(a1an)n(n1)d1na1dn2(a1d)nAn2Bn 222
2(其中A、B是常数,所以当d≠0时,Sn是关于n的二次式且常数项为0)
特别地,当项数为奇数2n1时,an1是项数为2n+1的等差数列的中间项
S2n12n1a1a2n122n1an1(项数为奇数的等差数列的各项和等于项数乘以中间项)
(2)若{an}是等差数列,则Sn,S2nSn,S3nS2n,„也成等差数列
(3)设数列an是等差数列,d为公差,S奇是奇数项的和,S偶是偶数项项的和,Sn是前n项的和
1.当项数为偶数2n时,S奇a1a3a5a2n1na1a2n1nan
2na2a2nS偶a2a4a6a2nnan1 2
S偶S奇nan1nannan1an=nd
S奇nanan S偶nan1an
12、当项数为奇数2n1时,则
S奇n1S2n1S奇S偶(2n1)an+1S奇(n1)an+1 S奇S偶an+1S偶nS偶nan+1
(其中an+1是项数为2n+1的等差数列的中间项).
(4)an、{bn}的前n和分别为An、Bn,且
则
(5)等差数列{an}的前n项和Smn,前m项和Snm,则前m+n项和Smnmn
(6)求Sn的最值
法一:因等差数列前n项和是关于n的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性Anf(n),nan(2n1)anA2n1f(2n1).nn2n1nN*。
法二:(1)“首正”的递减等差数列中,前n项和的最大值是所有非负项之和
an0即当a10,d0,由可得Sn达到最大值时的n值. a0n1
(2)“首负”的递增等差数列中,前n项和的最小值是所有非正项之和。
即 当a10,d0,由
或求an中正负分界项 an0可得Sn达到最小值时的n值. an10
法三:直接利用二次函数的对称性:由于等差数列前n项和的图像是过原点的二次函数,故n取离二次函数对称轴最近的整数时,Sn取最大值(或最小值)。若S p = S q则其对称轴为n
注意:解决等差数列问题时,通常考虑两类方法:
①基本量法:即运用条件转化为关于a1和d的方程;
②巧妙运用等差数列的性质,一般地运用性质可以化繁为简,减少运算量.
pq 2
第五篇:等差数列应用举例
第5课时
【教学题目】§6.2.4等差数列应用举例 【教学目标】
1.掌握等差数列的概念; 2.掌握等差数列的通项公式; 3.掌握等差数列的前n项和公式;
4.会应用等差数列的相关知识解答实际问题.【教学内容】
1.等差数列的概念; 2.等差数列的通项公式; 3.等差数列的前n项和公式;
4.应用等差数列的相关知识解答实际问题.【教学重点】
1.等差数列的概念; 2.等差数列的通项公式; 3.等差数列的前n项和公式.【教学难点】
应用等差数列的相关知识解答实际问题.【教学过程】
一、知识点梳理
(一)等差数列的定义
an1and;
(二)等差数列的递推公式
an1and;
(三)等差数列的通项公式
ana1n1d;
(四)等差数列的前n项和公式
二、例题讲解 Snna1an2Snna1nn1d.2例
1、某礼堂共有25排座位,后一排比前一排多两个座位,最后一排有70个座位,问礼堂共有多少个座位?
解法1:由题意可知,各排座位数成等差数列,公差d2,a2570于是
70a12512,解得
a122.所以 S25答:礼堂共有1150个座位.解法2:由题意可知,各排座位数成等差数列,将最后一排看作第1排,则a170,2522701150.2d2,n25,因此
S252570答:礼堂共有1150个座位.2525121150.2例
2、小王参加工作后,采用零存整取方式在农行存款.从元月份开始,每月第1天存入银行1000元,银行一年利率1.71%计息,试问年终结算时本金与利息之和(简称本利和)是多少(精确到0.01元)?
说明:
(1)年利率1.71%,折合月利率为0.1425%.计算公式为月利率=年利率÷12;(2)年终结算时本金为1000*12;
(3)每个月产生的利息是不同的,第一个月到年底时产生的利息为:1000*0.1425%*12,第二个月到年底时产生的利息为:1000*0.1425%*11,以此类推.解:年利率1.71%,折合月利率为0.1425%.第1个月的存款利息为 1000×0.1425%×12(元); 第2个月的存款利息为 1000×0.1425%×11(元); 第3个月的存款利息为 1000×0.1425%×10(元);
…
第12个月的存款利息为 1000×0.1425%×1(元).应得到的利息就是上面各期利息之和:
Sn10000.1425%12312111.15(元).故年终本金与利息之和为:
121000111.1512111.15(元).答:年终结算时本金与利息之和(简称本利和)为12111.15元.三、学生练习
一个堆放钢管的V型架的最下面一层放1根钢管,往上每一层都比它下面一层多放一个,最上面一层放30根钢管,求这个V型架上共放着多少根钢管.分析:由题意知,V型架每一层放的钢管数构成等差数列,且a11,d1,an30.由等差数列的通项公式ana1n1d知:301n11,解得n30,故 S30
四、课堂小结
(一)等差数列的概念;
(二)等差数列的通项公式;
(三)等差数列的前n项和公式;
(四)应用等差数列的相关知识解答实际问题.五、作业布置
(一)课本P11练习6.2.4;
(二)课本P11练习6.2A组第9题、第10题、第7题,第8题.六、教学反思
本节课的重点在于使学生利用等差数列的相关知识解答实际应用问题,是学生能将所学到的只是很好的应用到实际生活中去.这样有利于培养和提高学生学习数学的积极性和兴趣、也有利于使学生逐步学会理论联系实际.通过课堂练习和作业反映的情况来看,学生都能较好地将等差数列的相关知识应用于解答实际问题,但也有些学生表现出基础计算能力较弱,需教师加强指导.na1an30130465.22