第一篇:数列等比证明二项式定理错项求和2011四川
数列二项式定理错项求和2011四川
011年高考四川卷理科20)(本小题共12分)
设d为非零实数,an = 1122n-1 n-1nn* [Cn d+2Cnd+…+(n—1)Cnd+nCnd](n∈N).n
(I)写出a1,a2,a3并判断{an}是否为等比数列.若是,给出证明;若不是,说明理由;(II)设bn=ndan(n∈N),求数列{bn}的前n项和Sn.
解析:(1)*
a1d
a2d(d1)
a3d(d1)2
01223n1nanCndCndCndCndd(1d)n1
an1d(1d)n
an1d1an
因为d为常数,所以{an}是以d为首项,d1为公比的等比数列。
bnnd2(1d)n1
(2)Snd2(1d)02d2(1d)13d2(1d)2nd2(1d)n1
d2[(1d)02(1d)13(1d)2n(1d)n1](1)(1d)Snd2[(1d)12(1d)23(1d)3n(1d)n](2)
1(1(1d)n)d2n(1d)nd(d2nd)(1d)n(2)(1)dSnd[1(1d)2
Sn1(dn1)(1d)n
第二篇:数列—等差、等比的证明
等差、等比数列的证明
1.数列{a327
n}的前n项和为Sn2n2
n(nN).
(Ⅰ)证明:数列{an}是等差数列;(Ⅱ)若数列{bn}满足:anlog2bn,证明:数列{bn}是等比数列.
2.已知数列{a
n}的前n项和为Sn4an3(nN),证明:数列{an}是等比数列.
3.已知数列{an}的前n项和为Sn,且满足:a11,Sn14an2(nN).
(Ⅰ)证明:数列an
2n
为等差数列;(Ⅱ)证明:数列{an12an}为等比数列.
4.已知数列{an}的前n项和为Sn,且满足:
Sn2a2nn4n(nN),证明:数列{an2n1}为等比数列.
5.(2008北京文20)数列an满足:a11,a)a
n1(n2nn,(nN)是常数.(Ⅰ)当a21时,求及a3的值;
(Ⅱ)数列an是否可能为等差数列? 若可能,求出它的通项公式;若不可能,说明理由;
6.设函数fxx2m,mR,定义数列{an}如下:
a10,an1f(an)(nN).(Ⅰ)当m1时,求a2,a3,a4的值;
(Ⅱ)是否存在实数m,使a2,a3,a4构成公差不为0的等差数列? 若存在,求出m的值;若不存在,说明理由.
6.(2008湖北21)已知数列{an}和{bn}满足:a1,a2
n1
ann4,bnn(1)(an3n21),其中为实数,nN.
(Ⅰ)证明:数列{an}不是等比数列;
(Ⅱ)试判断数列{bn}是否为等比数列,证明你的结论.
7.(2010安徽20)设数列{an}中的每一项都不为0. 证明:数列{an}为等差数列的充分必要条件是: 对任何nN,都有
111n
aa
a. 1a22a3anan11an1
8.(2011北京文、理20)
若数列An:a1,a2,,an(n2)满足
ak1ak1(k1,2,,n1),则称An为E数列.
(Ⅰ)写出一个E数列A5满足a1a30;(Ⅱ)若a112,n2000,证明:
E数列An是递增数列的充要条件是an2011.
第三篇:数列求和公式证明
1)1^2+2^2+3^2+......+n^2=n(n+1)(2n+1)/6从左边推到右边
数学归纳法可以证
也可以如下做 比较有技巧性
n^2=n(n+1)-n
1^2+2^2+3^2+......+n^
2=1*2-1+2*3-2+....+n(n+1)-n
=1*2+2*3+...+n(n+1)-(1+2+...+n)
由于n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)]/
3所以1*2+2*3+...+n(n+1)
=[1*2*3-0+2*3*4-1*2*3+....+n(n+1)(n+2)-(n-1)n(n+1)]/3
[前后消项]
=[n(n+1)(n+2)]/3
所以1^2+2^2+3^2+......+n^2
=[n(n+1)(n+2)]/3-[n(n+1)]/2
=n(n+1)[(n+2)/3-1/2]
=n(n+1)[(2n+1)/6]
=n(n+1)(2n+1)/6
2)1×2+2×3+3×4+...+n×(n+1)=?
设n为奇数,1*2+2*3+3*4+...+n(n+1)=
=(1*2+2*3)+(3*4+4*5)+...+n(n+1)
=2(2^2+4^2+6^2+...(n-1)^2)+n(n+1)
=8(1^2+2^2+3^2+...+[(n-1)/2]^2)+n(n+1)
=8*[(n-1)/2][(n+1)/2]n/6+n(n+1)
=n(n+1)(n+2)/3
设n为偶数,请你自己证明一下!
所以,1*2+2*3+3*4+...+n(n+1)=n(n+1)(n+2)/3
设an=n×(n+1)=n^2+n
Sn=1×2+2×3+3×4+...+n×(n+1)
=(1^2+2^2+3^2+……+n^2)+(1+2+3+……+n)=n(n+1)(2n+1)/6+n(n+1)/2
=n(n+1)(n+2)/3
数列求和的几种方法
1.公式法:
等差数列求和公式:
Sn=n(a1+an)/2=na1+n(n-1)d/2
等比数列求和公式:
Sn=na1(q=1)Sn=a1(1-q^n)/(1-q)=(a1-an×q)/(1-q)(q≠1)
2.错位相减法
适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式{ an }、{ bn }分别是等差数列和等比数列.Sn=a1b1+a2b2+a3b3+...+anbn
例如:an=a1+(n-1)dbn=a1·q^(n-1)Cn=anbn
Tn=a1b1+a2b2+a3b3+a4b4....+anbn
qTn= a1b2+a2b3+a3b4+...+a(n-1)bn+anb(n+1)
Tn-qTn= a1b1+b2(a2-a1)+b3(a3-a2)+...bn[an-a(n-1)]-anb(n+1)
Tn(1-q)=a1b1-anb(n+1)+d(b2+b3+b4+...bn)
=a1b1-an·b1·q^n+d·b2[1-q^(n-1)]/(1-q)Tn=上述式子/(1-q)
3.倒序相加法
这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)
Sn =a1+ a2+ a3+......+anSn =an+ a(n-1)+a(n-3)......+a1上下相加 得到2Sn 即 Sn=(a1+an)n/
24.分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例如:an=2^n+n-1
5.裂项法
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。常用公式:
(1)1/n(n+1)=1/n-1/(n+1)
(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)]
(3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]
(4)1/(√a+√b)=[1/(a-b)](√a-√b)
(5)n·n!=(n+1)!-n!
[例] 求数列an=1/n(n+1)的前n项和.解:an=1/n(n+1)=1/n-1/(n+1)(裂项)
则Sn =1-1/2+1/2-1/3+1/4…+1/n-1/(n+1)(裂项求和)= 1-1/(n+1)= n/(n+1)
小结:此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。注意: 余下的项具有如下的特点1余下的项前后的位置前后是对称的。2余下的项前后的正负性是相反的。
6.数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤:
(1)证明当n取第一个值时命题成立;
(2)假设当n=k(k≥n的第一个值,k为自然数)时命题成立,证明当n=k+1时命题也成立。
例:求证:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + n(n+1)(n+2)(n+3)=
[n(n+1)(n+2)(n+3)(n+4)]/5证明: 当n=1时,有:1×2×3×4 + 2×3×4×5 = 2×3×4×5×(1/5 +1)= 2×3×4×5×6/5假设命题在n=k时成立,于是:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3)=
[k(k+1)(k+2)(k+3)(k+4)]/5则当n=k+1时有:1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… +(k+1)(k+2)(k+3)(k+4)= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)(k+4)=
[k(k+1)(k+2)(k+3)(k+4)]/5 +(k+1)(k+2)(k+3)(k+4)=
(k+1)(k+2)(k+3)(k+4)*(k/5 +1)= [(k+1)(k+2)(k+3)(k+4)(k+5)]/5即n=k+1时原等式仍然成立,归纳得证
7.通项化归
先将通项公式进行化简,再进行求和。如:求数列1,1+2,1+2+3,1+2+3+4,……的前n项和。此时先将an求出,再利用分组等方法求和。
8.并项求和:
例:1-2+3-4+5-6+……+(2n-1)-2n(并项)
求出奇数项和偶数项的和,再相减。
第四篇:等差数列、等比数列的证明及数列求和
等差数列、等比数列的证明
1.已知数列an满足a11,an3an12n3n2,(Ⅰ)求证:数列ann是等比数列;
(Ⅱ)求数列an的通项公式。
2.已知数列an满足a15,an12an3nnN*,(Ⅰ)求证:数列an3n是等比数列;
(Ⅱ)求数列an的通项公式。
3.已知数列an满足a11,an2an12(Ⅰ)求证:数列an是等差数列; n2nn2,(Ⅱ)求数列an的通项公式。
4.已知数列an满足a12,an1
an12an,1
(Ⅰ)求证:数列是等差数列;
an
(Ⅱ)求数列an的通项公式。
5.已知数列an,Sn是它的前n项和,且Sn14an2nN,a1
1*
(Ⅰ)设bnan12annN*,求证:数列bn是等比数列;(Ⅱ)设cn
an
2n,求证:数列cn是等差数列;
(Ⅲ)求数列an的通项公式。
数列求和的方法介绍
一、公式法
利用下列常用求和公式求和是数列求和的最基本最重要的方法。
1、等差数列求和公式:Sn
n(a1an)
na1
n(n1)
2d2、等比数列求和公式:Sn
na1n
aanqa1(1q)
11q1q
(q1)(q1)
二、错位相减法
这种方法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列anbn的前n项和,其中an、bn分别是等差数列和等比数列
三、裂项相消法
裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的通项分解,其中裂项是手段,相消是目的。常见的裂项法有:
(1)an
1n(n1)
1n(n2)
1n
1n
1(2)an
1n(n1)
1n1
1n
n2
(3)an
111
2nn2
1anan1
(4)若an等差,公差为d0,则
11
【裂项原理】 an1an
(5)
2n12n1
例
1、已知数列an是等差数列,设其前n项和为Sn,若a59,S525(Ⅰ)求数列an的通项公式an;
(Ⅱ)设bn3,求数列bn的前n项和Tn
an
例
2、已知数列an的通项公式为an2n13,求前n项和Sn
n
例
3、已知数列an是等差数列,设其前n项和为Sn,若S535,S10120(Ⅰ)求数列an的通项公式an和Sn;(Ⅱ)设bn
1Sn,求数列bn的前n项和。
第五篇:学案31 数列的通项与求和
4数列的通项与求和
导学目标: 1.能利用等差、等比数列前n项和公式及其性质求一些特殊数列的和.2.能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.
自主梳理
1.求数列的通项S1,n=1,(1)数列前n项和Sn与通项an的关系:an= Sn-Sn-1,n≥2.(2)当已知数列{an}中,满足an+1-an=f(n),且f(1)+f(2)+„+f(n)可求,则可用________求数列的通项an,常利用恒等式an=a1+(a2-a1)+(a3-a2)+„+(an-an-1).
an+1(3)当已知数列{an}中,满足a=f(n),且f(1)·f(2)·„·f(n)可求,则可用__________求数列的通项an,n
aaa常利用恒等式an=a1„a1a2an-1.(4)作新数列法:对由递推公式给出的数列,经过变形后化归成等差数列或等比数列来求通项.
(5)归纳、猜想、数学归纳法证明.
2.求数列的前n项的和
(1)公式法
①等差数列前n项和Sn=____________=________________,推导方法:____________;
,q=1,②等比数列前n项和Sn==,q≠1.
推导方法:乘公比,错位相减法.
③常见数列的前n项和:
a.1+2+3+„+n=__________;b.2+4+6+„+2n=__________;
c.1+3+5+„+(2n-1)=______; d.12+22+32+„+n2=__________;
e.13+23+33+„+n3=__________________.(2)分组求和:把一个数列分成几个可以直接求和的数列.
(3)裂项(相消)法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.常见的裂项公式有:
11111111①n22n-12n+1; ③n+1n.nn+1n+12n-12n+1n+n+
1(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.
(5)倒序相加:例如,等差数列前n项和公式的推导.
自我检测
1.(原创题)已知数列{an}的前n项的乘积为Tn=3n2(n∈N*),则数列{an}的前n项的()
3939A.2n-1)B.2(3n-1)C.8n-1)D.8n-1)
2.(2011·邯郸月考)设{an}是公比为q的等比数列,Sn是其前n项和,若{Sn}是等差数列,则q为()
A.-1B.1C.±1D.0
3.已知等比数列{an}的公比为4,且a1+a2=20,设bn=log2an,则b2+b4+b6+„+b2n等于()
A.n2+nB.2(n2+n)C.2n2+nD.4(n2+n)
n+14.(2010·天津高三十校联考)已知数列{an}的通项公式an=log2(n∈N*),设{an}的前n项的和为Sn,n+
2则使Sn<-5成立的自然数n()
A.有最大值63B.有最小值63C.有最大值31D.有最小值31
5.(2011·北京海淀区期末)设关于x的不等式x2-x<2nx(n∈N*)的解集中整数的个数为an,数列{an}的前n项和为Sn,则S100的值为________.
探究点一 求通项公式
2n+1·an
例1 已知数列{an}满足an+1=a=2,求数列{an}的通项公式.
an+2+1
变式迁移1 设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2.(1)设bn=an+1-2an,证明数列{bn}是等比数列;(2)求数列{an}的通项公式.
探究点二 裂项相消法求和
例2 已知数列{an},Sn是其前n项和,且an=7Sn-1+2(n≥2),a1=2.(1)求数列{an}的通项公式;
1m
(2)设bn=Tn是数列{bn}的前n项和,求使得Tn20对所有n∈N*都成立的最小正整
log2an·log2an+1
数m.111
变式迁移2 求数列1,n项和.
1+21+2+31+2+3+„+n
探究点三 错位相减法求和 例3(2011·荆门月考)已知数列{an}是首项、公比都为q(q>0且q≠1)的等比数列,bn=anlog4an(n∈N*).
(1)当q=5时,求数列{bn}的前n项和Sn;
4(2)当q=15时,若bn 123n 变式迁移3 求和Sn=a+a+a+„+a.分类讨论思想的应用 例(5分)二次函数f(x)=x2+x,当x∈[n,n+1](n∈N*)时,f(x)的函数值中所有整数值的个数为g(n),2n3+3n2an=(n∈N*),则Sn=a1-a2+a3-a4+„+(-1)n-1an=() gn nn+1nn+1n-1nn+1nnn+1A.(-1)B.(-1)C.2 D.- 222 【答题模板】答案 A 解析 本题考查二次函数的性质以及并项转化法求和. 当x∈[n,n+1](n∈N*)时,函数f(x)=x2+x的值随x的增大而增大,则f(x)的值域为[n2+n,n2+3n 322n+3n +2](n∈N*),∴g(n)=2n+3(n∈N*),于是an==n2.gn 方法一 当n为偶数时,Sn=a1-a2+a3-a4+„+an-1-an=(12-22)+(32-42)+„+[(n-1)2-n2] 3+2n-1nnn+1 =-[3+7+…+(2n-1)]=-=- 222; nn-1nn+12 当n为奇数时,Sn=(a1-a2)+(a3-a4)+„+(an-2-an-1)+an=Sn-1+an=-2n=2nn+1 ∴Sn=(-1)n-12 方法二 a1=1,a2=4,S1=a1=1,S2=a1-a2=-3,检验选择项,可确定A正确. 【突破思维障碍】 在利用并项转化求和时,由于数列的各项是正负交替的,所以一般需要对项数n进行分类讨论,但最终的结果却往往可以用一个公式来表示. 1.求数列的通项:(1)公式法:例如等差数列、等比数列的通项;(2)观察法:例如由数列的前几项来求通项;(3)可化归为使用累加法、累积法; (4)可化归为等差数列或等比数列,然后利用公式法;(5)求出数列的前几项,然后归纳、猜想、证明. 2.数列求和的方法: 一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和. 3.求和时应注意的问题: (1)直接用公式求和时,注意公式的应用范围和公式的推导过程. (2)注意观察数列的特点和规律,在分析数列通项的基础上或分解为基本数列求和,或转化为基本数列求和. (满分:75分) 一、选择题(每小题5分,共25分)1.(2010·广东)已知数列{an}为等比数列,Sn是它的前n项和,若a2·a3=2a1且a4与2a7的等差中项 5为4,则S5等于() A.35 B.3 3C.3 1D.29 S7n+2a2.(2011·黄冈调研)有两个等差数列{an},{bn},其前n项和分别为Sn,Tn,若T则b() n+3n5 6537729A.12B.8C.13D.4an-1-anan-an+1 3.如果数列{an}满足a1=2,a2=1且=(n≥2),则此数列的第10项() anan-1anan+1 1111A.2B.2C.10D.51 4.数列{an}的前n项和为Sn,若anS5等于() nn+1 511 A.1B.6C.6D.305.数列1,1+2,1+2+4,„,1+2+22+„+2n-1,„的前n项和Sn>1 020,那么n的最小值是()A.7B.8C.9D.10 二、填空题(每小题4分,共12分)6.(2010·东北师大附中高三月考)数列{an}的前n项和为Sn且a1=1,an+1=3Sn(n=1,2,3,„),则log4S10=__________.7.(原创题)已知数列{an}满足a1=1,a2=-2,an+2=-a,则该数列前26项的和为________. n 8.对于数列{an},定义数列{an+1-an}为数列{an}的“差数列”,若a1=2,{an}的“差数列”的 通项为2n,则数列{an}的前n项和Sn=____________.三、解答题(共38分)9.(12分)(2011·河源月考)已知函数f(x)=x2-2(n+1)x+n2+5n-7(n∈N*). (1)若函数f(x)的图象的顶点的横坐标构成数列{an},试证明数列{an}是等差数列;(2)设函数f(x)的图象的顶点到x轴的距离构成数列{bn},试求数列{bn}的前n项和Sn.10.(12分)(2011·三门峡月考)设等差数列{an}的前n项和为Sn,且Sn=2n+an-c(c是常数,n∈N*),a2=6.(1)求c的值及数列{an}的通项公式; 1(2)证明aaaa8anan+1122 311.(14分)(2010·北京宣武高三期中)已知数列{an}的前n项和为Sn=3n,数列{bn}满足b1=-1,bn * +1=bn+(2n-1)(n∈N). (1)求数列{an}的通项公式an;(2)求数列{bn}的通项公式bn; a·b(3)若cn=n,求数列{cn}的前n项和Tn.答案自主梳理 n(a1+an)n(n-1)a1(1-qn) 1.(2)累加法(3)累积法 2.(1)① na1+2d 倒序相加法 ②na1 21-q a1-anqn(n+1)n(n+1)(2n+1)n(n+1) 2 ③2 n2+n n261-q2 自我检测 1.C 2.B 3.B 4.B5.10 100课堂活动区 例1 解题导引 已知递推关系求通项公式这类问题要求不高,主要掌握由a1和递推关系先求出前几项,再归纳、猜想an的方法,以及累加:an=(an-an-1)+(an-1-an-2)+„+(a2-a1)+a1;累乘:an aan-1a=·„·a等方法. an-1an-2a11 *** 解 已知递推可化为a+∴aa2,a-a=2,a-a=2,„,a-=2.an+1n2213243nan-1 11 1-2 1111111212n 将以上(n-1)个式子相加得aa=2+2+2+„+2,∴a= 1=1-2.∴an=2-1n1n 1-2 变式迁移1(1)证明 由已知有a1+a2=4a1+2,解得a2=3a1+2=5,故b1=a2-2a1=3.又an+2=Sn+2-Sn+1=4an+1+2-(4an+2)=4an+1-4an;于是an+2-2an+1=2(an+1-2an),即bn+1=2bn.因此数列{bn}是首项为3,公比为2的等比数列. an+1an3 (2)解 由(1)知等比数列{bn}中,b1=3,公比q=2,所以an+1-2an=3×2n-1,于是+2=4,a13an1331 因此数列2是首项为2422(n-1)×44-4an=(3n-1)·2n-2. 例2 解题导引 1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也 有可能前面剩两项,后面也剩两项.再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等. 11111111.2.一般情况如下,若{an}是等差数列,则,anan+1danan+1anan+22danan+2 此外根式在分母上时可考虑利用有理化因式相消求和. 解(1)∵n≥2时,an=7Sn-1+2,∴an+1=7Sn+2,两式相减,得an+1-an=7an,∴an+1=8an(n≥2). 又a1=2,∴a2=7a1+2=16=8a1,∴an+1=8an(n∈N*). ∴{an}是一个以2为首项,8为公比的等比数列,∴an=2·8n-1=23n-2.11111 (2)∵bn==3,log2an·log2an+1(3n-2)(3n+1)3n-23n+1111111111m1∴Tn=3-4+4-7+„+=3(1-3∴20≥3,∴最小正整数m=7.3n-23n+13n+1 121-变式迁移2 解 an=2nn+1,n(n+1) 111112n11-1-∴Sn=2·[2+23+„+nn+1]=2·n+1=n+1. 例3 解题导引 1.一般地,如果数列{an}是等差数列,{bn}是等比数列,求数列{an·bn}的前n项和时,可采用错位相减法. 2.用乘公比错位相减法求和时,应注意: (1)要善于识别题目类型,特别是等比数列公比为负数的情形; (2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“Sn-qSn”的表达式. 解(1)由题意得an=qn,∴bn=an·log4an=qn·log4qn=n·5n·log45,∴Sn=(1×5+2×52+„+n×5n)log45,设Tn=1×5+2×52+„+n×5n,①则5Tn=1×52+2×53+„+(n-1)×5n+n×5n+1,② n 23nn+15(5-1)① -②得-4Tn=5+5+5+„+5-n×5=4-n×5n+1,55 ∴Tn=16n×5n-5n+1),Sn=16(4n×5n-5n+1)log45.141414141414 (2)∵bn=anlog4an=n15nlog415,∴bn+1-bn=(n+1)15n+1log415-n15nlog415 141414n14n14n14n =1515-15log415>0,∵15>0,log415,∴1515,∴n>14,即n≥15时,bn 变式迁移3解当a=1时,Sn=1+2+3+„+n=2a≠1时,Sn=aaa+„+a,① 11123n1111n ∴an=a+a+a+„++,②①-②,得1-a·Sn=aaa„+a+ aa 11111-a1-1-aaaa1nnn 1-aSn=--+=+,∴Sn=-1aa-1a(a-1)(a-1)·a1-a ∴S=1 a1an,a≠1.(a-1)(a-1)·a n n(n+1) 2,a=1,课后练习区1.C 2.A 3.D 4.B 5.D 6.9解析 ∵an+1=3Sn,∴an=3Sn-1(n≥2). an+1 两式相减得an+1-an=3(Sn-Sn-1)=3an,∴an+1=4an,即a=4.∴{an}为以a2为首项,公比为4的n n-2 等比数列.当n=1时,a2=3S1=3,∴n≥2时,an=3·4,S10=a1+a2+„+a10=1+3+3×4+3×42 49-1 +„+3×4=1+3×(1+4+„+4)=1+3×1+49-1=49.∴log4S10=log449=9.4-1 7.-10解析 依题意得,a1=1,a2=-2,a3=-1,a4=2,a5=1,a6=-2,a7=-1,a8=21 所以数列周期为4,S26=6×(1-2-1+2)+1-2=-10.8.2n+1-2解析 依题意,有a2-a1=2,a3-a2=22,a4-a3=23,„,an-an-1=2n-1,所有的代数式相加得an-a1=2n-2,即an=2n,所以Sn=2n+1-2.9.解 f(x)=x2-2(n+1)x+n2+5n-7=[x-(n+1)]2+3n-8.……(3分)(1)由题意,an=n+1,故an+1-an=(n+1)+1-(n+1)=1,故数列{an}是以1为公差,2为首项的等差数列.…………(5分) (2)由题意,bn=|3n-8|……(7分)当1≤n≤2时,bn=-3n+8,数列{bn}为等差数列,b1=5,n(5-3n+8)-3n2+13n∴Sn=;…(9分)当n≥3时,bn=3n-8,数列{bn}是等差数列,b3=1.22 -3n2+13n 22,1≤n≤2,(n-2)(1+3n-8)3n-13n+28 ∴Sn=S2+分)∴Sn=2 223n-13n+28 n≥3.2 (12分) 10.(1)解 因为Sn=2nan+an-c,所以当n=1时,S1=2a1+a1-c,解得a1=2c,(2分)当n=2时,S2=a2+a2-c,即a1+a2=2a2-c,解得a2=3c,……(3分)所以3c=6,解得c=2;……(4分) 则a1=4,数列{an}的公差d=a2-a1=2,所以an=a1+(n-1)d=2n+2.……(6分) 111111 (2)证明 因为aaaa„+„+anan+14×66×8(2n+2)(2n+4)1223 ***1=24-6)+268+„+2(=246+(68+„+(……(8分) 2n+22n+42n+22n+4 111111111=24-)=8……(10分)因为n∈N*,所以aa+aa+„+<8.…(12分) 2n+44(n+2)anan+11223 -- 11.解(1)∵Sn=3n,∴Sn-1=3n1(n≥2).∴an=Sn-Sn-1=3n-3n1=2×3n-1(n≥2).…(3分) 3,n=1,1-1 当n=1时,2×3=2≠S1=a1=3,…(4分)∴an=n-1*…(5分) 2×3,n≥2,n∈N (2)∵bn+1=bn+(2n-1),∴b2-b1=1,b3-b2=3,b4-b3=5,„,bn-bn-1=2n-3.(n-1)(1+2n-3)2 以上各式相加得bn-b1=1+3+5+„+(2n-3)==(n-1).∵b1=-1,∴bn=n2-2n.……(7分) -3,n=1,(3)由题意得cn=n-1*………(9分) 2(n-2)×3,n≥2,n∈N.当n≥2时,Tn=-3+2×0×31+2×1×32+2×2×33+„+2(n-2)×3n-1,∴3Tn=-9+2×0×32+2×1×33+2×2×34+„+2(n-2)×3n,相减得-2Tn=6+2×32+2×33+„+2×3n-1-2(n-2)×3n.3n-3(2n-5)3n+3n23n-1n ∴Tn=(n-2)×3-(3+3+3+„+3)=(n-2)×3-2……(13分) (2n-5)3n+3* T1=-3也适合. ∴Tn=(n∈N).……(14分)