第一篇:必修5:等差数列综合测试题(一)
必修5:等差数列综合测试题
(一)1、已知数列an中,anan12(nN*,n2),若a13,则此数列的第10项是
2、等差数列an的前n项和为sn,若a418a5,则s8等于
3、在等差数列中,a1与a11是方程2x2x70的两根,则a6为
4、等差数列an共有2n1项,所有奇数项之和为132,所有偶数项之和为120,则n等于
5、在x和y之间插入n个实数,使它们与x,y组成等差数列,则此数列的公差为
6、首相为-24的等差数列,从第10项起开始为正数,则公差d的取值范围
7、已知等差数列an中,前15项之和为S1590,则a8等于
8、已知数列{an}中,a3=2,a7=1,又数列{
}为等差数列,则an=________ an19、数列an满足:a13,a26,an+2an+1an,a200410、在等差数列an中,amn,anm(m,n∈N+),则amn111、等差数列an中,已知a1,a2a54,an33,则n为3
12.已知在数列{an}中,a1=-10,an+1=an+2,则|a1|+|a2|+|a3|+…+|a10|等于
13、已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是
14、设数列{an}和{bn}都是等差数列,其中a1=24,b1=75,且a2+b2=100,则数列{an+bn}的第100项为
15、设an是公差为正数的等差数列,若a1a2a315,a1a2a380,则a11a12a13 16.在等方程(x22xm)(x22xn)0的四个根组成一个首项为的等差数列,则|m-n|=417、若an为等差数列,a2,a10是方程x23x50的两根,则a5a7____________。
18.等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是第项.
19、若lg2,lg(2x-1),lg(2x+3)成等差数列,则x等于________ 20、三个数成等差数列,和为12,积为48,求这三个数.21.在等差数列{an}中,如果a4+a7+a10=17,a4+a5+a6+…+a14=77,(1)求此数列的通项公式an;(2)若ak=13,求k的值。
22.三个实数a,b,c成等差数列,且a+b+c=81,又14-c,b+1,a+2也成等差数列,求a,b,c的值.23、在等差数列an中,Sn为前n项和:(1)若a1a9a12a2020,求S20;
(2)若S41,S84,求a17a18a19a20的值;
(3)若已知首项a113,且S3S11,问此数列前多少项的和最大?
第二篇:高中数学 等差数列教案 苏教版必修5
等差数列(2)
一、创设情景,揭示课题
1.复习等差数列的定义、通项公式(1)等差数列定义
(2)等差数列的通项公式:ana1(n1)d(anam(nm)d或andnp(p是常数))(3)公差d的求法:① dan-an1 ②d2.等差数列的性质:
(1)在等差数列an中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列an中,相隔等距离的项组成的数列是AP
如:a1,a3,a5,a7,……;a3,a8,a13,a18,……;
ana1aam ③dn n1nmanam(mn);
nm(4)在等差数列an中,若m,n,p,qN且mnpq,则amanapaq(3)在等差数列an中,对任意m,nN,anam(nm)d,d3.问题:(1)已知a1,a2,a3,an,an1,,a2n是公差为d的等差数列。①an,an1,,a2,a1也成等差数列吗?如果是,公差是多少? ②a2,a4,a6,a2n也成等差数列吗?如果是,公差是多少?(2)已知等差数列an的首项为a1,公差为d。
①将数列an中的每一项都乘以常数a,所得的新数列仍是等差数列吗?如果是,公差是多少?
②由数列an中的所有奇数项按原来的顺序组成的新数列cn是等差数列吗?如果是,它的首项和公差分别是多少?
(3)已知数列an是等差数列,当mnpq时,是否一定有amanapaq?(4)如果在a与b中间插入一个数A,使得a,A,b成等差数列,那么A应满足什么条件?
二、研探新知
1.等差中项的概念:
如果a,A,b成等差数列,那么A叫做a与b的等差中项。其中A a,A,b成等差数列A2.一个有用的公式:
(1)已知数列{an}是等差数列
①2a5a3a7是否成立?2a5a1a9呢?为什么? ②2anan1an1(n1)是否成立?据此你能得到什么结论? ③2anankank(nk0)是否成立??你又能得到什么结论? 求证:①amanapaq ②apaq(pq)d 证明:①设首项为a1,则(2)在等差数列an中,d为公差,若m,n,p,qN且mnpq
ab 2ab. 2amana1(m1)da1(n1)d2a1(mn2)dapaqa1(p1)da1(q1)d2a1(pq2)d
∵ mnpq ∴amanapaq
五、归纳整理,整体认识
本节课学习了以下内容:
aba,A,b,成等差数列,等差中项的有关性质意义 22.在等差数列中,mnpqamanapaq(m,n,p,qN)1.A3.等差数列性质的应用;掌握证明等差数列的方法。
六、承上启下,留下悬念
1.在等差数列{an}中, 已知a3+a4+a5+a6+a7=450, 求a2+a8及前9项和S9.解:由等差中项公式:a3+a7=2a5,a4+a6=2a5由条件a3+a4+a5+a6+a7=450, 得5a5=450, a5=90, ∴a2+a8=2a5=180.S9=a1+a2+a3+a4+a5+a6+a7+a8+a9
=(a1+a9)+(a2+a8)+(a3+a7)+(a4+a6)+a5=9a5=810.七、板书设计(略)
八、课后记:
判断一个数列是否成等差数列的常用方法 1.定义法:即证明 anan1d(常数)
例:已知数列an的前n项和Sn3n22n,求证数列an成等差数列,并求其首项、公差、通项公式。解:
n2a1S1321 当时
anSnSn13n22n[3(n1)22(n1)]6n5
n1时 亦满足
∴ an6n5
首项a11
anan16n5[6(n1)5]6(常数)
∴an成AP且公差为6 2.中项法: 即利用中项公式,若2bac 则a,b,c成AP。
111bccaab 例:已知,成AP,求证,也成AP。
abcabc111211 证明: ∵,成AP ∴ 化简得:2acb(ac)
abcbacbcabbcc2a2abb(ac)a2c22aca2c2
acacacac(ac)2(ac)2acbccaab= ∴,也成AP 2b(ac)acbabc2 3.通项公式法:利用等差数列得通项公式是关于n的一次函数这一性质。
例:设数列an其前n项和Snn22n3,问这个数列成AP吗?
解:n1时 a1S12
n2时 anSnSn12n3,a1不满足an2n3
n12 ∴ an
∴ 数列an不成AP 但从第2项起成AP。
n22n3
第三篇:高二数学必修5 等差数列练习题
高二数学必修5 等差数列练习题
一、选择题:
1、设数列的通项公式为an2n7,则a1a2a15()A、153 B、210 C、135 D、120
2、已知方程(x22xm)(x22xn)0的四个根组成一个首项为
1的等差数列,则4mn()
313 C、D、4283、若{an}是等差数列,首项a10,a2003a20040,a2003.a20040,则使前n项和Sn0成 A、1 B、立的最大自然数n是()4007
D、4008
A、4005
B、4006
C、4、设Sn是等差数列{an}的前n项之和,且S6S7,S7S8S9,则下列结论中错误的是()
A、d0 B、a80 C、S10S6 D、S7,S8均为Sn的最大项
5、已知数列{an}满足a10,an1an33an1(nN*),则a20=()2 A、0
B、3 C、3
D、6、△ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c成等差数列,∠B=30°,△ABC的面积为3,那么b= 2D、23
()A、13 B、13 C2、23
27、若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范围是()A、(1,2)
B、(2,+∞)
C、[3,+∞)
D、(3,+∞)
二、填空题:
8、在△ABC中,若三内角成等差数列,则最大内角与最小内角之和为______.9、若在等差数列{an}中,a37,a73,则通项公式an=______________
10、数列{an}的通项公式an1nn1
2,其前n项和时Sn9,则n等于_________
n11、已知数列{an},a1=1,a2=2,an+1-anan+2=(-1),则a3=______,a4=______.12、在等差数列{an}中,a5=-1,a6=1,则a5+a6+…+a15=______.13、已知数列{an}中,a12,an1
三、解答题:
14、(1)求数列1,2an则数列的通项公式an=______________ an1111,,的通项公式an 12123123n(2)求数列{an}的前n项和
15、等差数列{an}中,Sn是{an}的前n项和,S6=7,S15=16,求a11.必修5周周考
(四)一、选择题:ACBC BBB
二、填空题:
8、120°;
9、-n+10;
10、99;11、5、12;
12、99;
13、1n1()
2三、解答题:
14、解(1)an 11
12nn(n1)(2)an 2111111112n2()Sn2[(1)()()]2(1)n(n1)nn1223nn1n1n115、解:S15-S6=a7+a8+…+a15=
a7a15×9=9a11=9,a11=1.2
第四篇:高中数学必修5高中数学必修5《等差数列复习》教案
等差数列复习
知识归纳
1.等差数列这单元学习了哪些内容?
定等差数列通义项前n项和主要性质
2.等差数列的定义、用途及使用时需注意的问题: n≥2,an -an-1=d(常数)3.等差数列的通项公式如何?结构有什么特点? an=a1+(n-1)d
an=An+B(d=A∈R)4.等差数列图象有什么特点?单调性如何确定?
d<0annannd>05.用什么方法推导等差数列前n项和公式的?公式内容? 使用时需注意的问题? 前n 项和公式结构有什么特点? n(a1an)n(n1)d na122SnSn=An2+Bn(A∈R)注意: d=2A!6.你知道等差数列的哪些性质? 等差数列{an}中,(m、n、p、q∈N+): ①an=am+(n-m)d ;
②若 m+n=p+q,则am+an=ap+aq ; ③由项数成等差数列的项组成的数列仍是等差数列;
④ 每n项和Sn , S2n-Sn ,S3n-S2n …组成的数列仍是等差数列.知识运用 1.下列说法:(1)若{an}为等差数列,则{an2}也为等差数列(2)若{an} 为等差数列,则{an+an+1}也为等差数列(3)若an=1-3n,则{an}为等差数列.(4)若{an}的前n和Sn=n2+2n+1, 则{an}为等差数列.其中正确的有((2)(3))2.等差数列{an}前三项分别为a-1,a+2,2a+3, 则an= 3n-2.3.等差数列{an}中, a1+a4+a7=39,a2+a5+a8=33, 则a3+a6+a9=27.4.等差数列{an}中, a5=10, a10=5, a15=0.5.等差数列{an}, a1-a5+a9-a13+a17=10,a3+a15= 20.6.等差数列{an}, S15=90, a8=.7.等差数列{an}, a1= -5, 前11项平均值为5, 从中抽去一项,余下的平均值为4, 则抽取的项为
(A)
A.a11
B.a10
C.a9
D.a8 8.等差数列{an},Sn=3n-2n2, 则(B)A.na1<Sn<nan
B.nan<Sn <na1
C.nan<na1<Sn
D.Sn<nan<na1 能力提高
1.等差数列{an}中, S10=100, S100=10, 求 S110.2.等差数列{an}中, a1>0, S12>0, S13<0, S1、S2、… S12哪一个最大?
课后作业《习案》作业十九.
第五篇:高中数学 等差数列教案 苏教版必修5
等差数列(4)
一、创设情景,揭示课题,研探新知
1.等差数列的定义:(1)等差数列的通项公式;(2)等差数列的求和公式。2.等差数列的性质:
已知数列{an}是等差数列,则
(1)对任意m,nN,anam(nm)d,danam(mn);
nm(2)若m,n,p,qN且mnpq,则amanapaq
n(a1an)n(n1)或Snna1d 22dd注意:①等差数列前n项和公式又可化成式子:Snn2(a1)n,当d0,此
22dd式可看作二次项系数为,一次项系数为a1,常数项为零的二次式;②当d0时,Sn22dd有最小值;当d0时,Sn有最大值;③图象:抛物线yx2(a1)x上的一群独立
22(3)等差数列前n项和公式:Sn点。
(4)利用an与Sn的关系:an(n1)S1
SnSn1(n2)
二、质疑答辩,排难解惑,发展思维
例1 在等差数列an中,S10100,S10010,求S110?
109109a10ad10011012解法一:设该等差数列首项a1,公差d,则,所100a10099d10d1125以,S110110a1110109d110. 2解法二:在等差数列中,S10, S20-S10, S30-S20, ……, S100-S90, S110-S100, 成等差数列,∴ 新数列的前10项和=原数列的前100项和,10S10+
109·D=S100=10, 解得D=-222 ∴ S110-S100=S10+10×D=-120, ∴ S110=-110.拓展练习1:在等差数列中,Spq,Sqp,则Spq(pq).
拓展练习2:已知数列an,是等差数列,若Smn,求Smn Snm,Sn是其前n项和,拓展练习3:已知等差数列前n项和为a,前2n项和为b,求前3n项的和。(介绍依次k项成等差)例2 已知等差数列{an}的项数为奇数,且奇数的和为44,偶数项的和为33,求此数列的中间项及项数。
解:设项数为2k1,奇数项和记为S奇,偶数项和记为S偶,由题意,(a1a2k1)(k1)44 ① 2(aa2k)S偶a2a4a2k2k33 ②
2k144①②得,解得k3,∴ 项数为7项,又S奇11ak144,∴ k33S奇a1a3a2k1ak111,即中间项为11.
说明:设数列{an}是等差数列,且公差为d,(1)若项数为偶数,设共有2n项,则①S奇S偶nd;②
S奇an; S偶an1S奇n. S偶n1(2)若项数为奇数,设共有2n1项,则①S奇S偶ana中;②例3 在等差数列中,a1023,a2522,(1)该数列第几项开始为负?(2)前多少项和最大?
(3)求an前n项和?
解:设等差数列an中,公差为d,由题意得:a25a1015d45a501 d323a1(101)(3)53,所以从第18项开始3为(1)设第n项开始为负,an503(n1)533n0,n为负。(2)(法
一)
设
前
n项和
Sn,则n(n1)31033103231032(3)n2n(n)(),2222626
所以,当n17时,前17项和最大。Sn50n(法二)an0533n05053,则,n,所以n17.
3503n03an10
(3)an533n'533n,0n17,3n53,n17∴Sna1a2a3ana1a2a17(a18a19an),当
3103,S'nn2n2231033103S'n(n2n)2S17n2n884,2222n17时,当
n17时,32103nn(n17)22'所以,Sn.
31033103(n2n)2S17n2n884(n17)2222说明:(1)a10,d0时,Sn有最大值;a10,d0时,Sn有最小值;
(2)Sn最值的求法:①若已知Sn,可用二次函数最值的求法(nN);
an0an0②若已知an,则Sn最值时n的值(nN)可如下确定或.
a0a0n1n1
例4 已知数列an的前n项和为(1)Sn2nn;(2)Snnn1,求数列an22的通项公式。
例5(教材P42例5)某种卷筒卫生纸绕在盘上,空盘时盘芯直径40mm,满盘时直径120mm,已知卫生纸的厚度为0.1mm,问:满盘时卫生纸的总长度大约是多少米(精确到0.1m)? 解:卫生纸的厚度为0.1mm,可以把绕在盘上的卫生纸近似地看作是一组同心圆,然后分别计算各圆的周长,再求总和。
由内向外各圈的半径分别为 20.05,20.15,,59.9
5因此各圈的周长分别为 40.1,40.3,,119.9
∵各圈半径组成首项为20.05,公差为0.1的等差数列,设圈数为n,则 59.9520.05(n1)0.1,∴n400
∴各圈的周长组成一个首项为40.1,公差为0.2,项数为40的等差数列,Sn40040.1400(4001)0.232000(mm)
232000(mm)100(m)
答:满盘时卫生纸的总长度约是100米.说明:各圈的半径为该层纸的中心线至盘芯中心的距离。