必修5:等差数列综合测试题(一)

时间:2019-05-14 18:37:05下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《必修5:等差数列综合测试题(一)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《必修5:等差数列综合测试题(一)》。

第一篇:必修5:等差数列综合测试题(一)

必修5:等差数列综合测试题

(一)1、已知数列an中,anan12(nN*,n2),若a13,则此数列的第10项是

2、等差数列an的前n项和为sn,若a418a5,则s8等于

3、在等差数列中,a1与a11是方程2x2x70的两根,则a6为

4、等差数列an共有2n1项,所有奇数项之和为132,所有偶数项之和为120,则n等于

5、在x和y之间插入n个实数,使它们与x,y组成等差数列,则此数列的公差为

6、首相为-24的等差数列,从第10项起开始为正数,则公差d的取值范围

7、已知等差数列an中,前15项之和为S1590,则a8等于

8、已知数列{an}中,a3=2,a7=1,又数列{

}为等差数列,则an=________ an19、数列an满足:a13,a26,an+2an+1an,a200410、在等差数列an中,amn,anm(m,n∈N+),则amn111、等差数列an中,已知a1,a2a54,an33,则n为3

12.已知在数列{an}中,a1=-10,an+1=an+2,则|a1|+|a2|+|a3|+…+|a10|等于

13、已知等差数列共有10项,其中奇数项之和15,偶数项之和为30,则其公差是

14、设数列{an}和{bn}都是等差数列,其中a1=24,b1=75,且a2+b2=100,则数列{an+bn}的第100项为

15、设an是公差为正数的等差数列,若a1a2a315,a1a2a380,则a11a12a13 16.在等方程(x22xm)(x22xn)0的四个根组成一个首项为的等差数列,则|m-n|=417、若an为等差数列,a2,a10是方程x23x50的两根,则a5a7____________。

18.等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值是4,则抽取的是第项.

19、若lg2,lg(2x-1),lg(2x+3)成等差数列,则x等于________ 20、三个数成等差数列,和为12,积为48,求这三个数.21.在等差数列{an}中,如果a4+a7+a10=17,a4+a5+a6+…+a14=77,(1)求此数列的通项公式an;(2)若ak=13,求k的值。

22.三个实数a,b,c成等差数列,且a+b+c=81,又14-c,b+1,a+2也成等差数列,求a,b,c的值.23、在等差数列an中,Sn为前n项和:(1)若a1a9a12a2020,求S20;

(2)若S41,S84,求a17a18a19a20的值;

(3)若已知首项a113,且S3S11,问此数列前多少项的和最大?

第二篇:高中数学 等差数列教案 苏教版必修5

等差数列(2)

一、创设情景,揭示课题

1.复习等差数列的定义、通项公式(1)等差数列定义

(2)等差数列的通项公式:ana1(n1)d(anam(nm)d或andnp(p是常数))(3)公差d的求法:① dan-an1 ②d2.等差数列的性质:

(1)在等差数列an中,从第2项起,每一项是它相邻二项的等差中项;(2)在等差数列an中,相隔等距离的项组成的数列是AP

如:a1,a3,a5,a7,……;a3,a8,a13,a18,……;

ana1aam ③dn n1nmanam(mn);

nm(4)在等差数列an中,若m,n,p,qN且mnpq,则amanapaq(3)在等差数列an中,对任意m,nN,anam(nm)d,d3.问题:(1)已知a1,a2,a3,an,an1,,a2n是公差为d的等差数列。①an,an1,,a2,a1也成等差数列吗?如果是,公差是多少? ②a2,a4,a6,a2n也成等差数列吗?如果是,公差是多少?(2)已知等差数列an的首项为a1,公差为d。

①将数列an中的每一项都乘以常数a,所得的新数列仍是等差数列吗?如果是,公差是多少?

②由数列an中的所有奇数项按原来的顺序组成的新数列cn是等差数列吗?如果是,它的首项和公差分别是多少?

(3)已知数列an是等差数列,当mnpq时,是否一定有amanapaq?(4)如果在a与b中间插入一个数A,使得a,A,b成等差数列,那么A应满足什么条件?

二、研探新知

1.等差中项的概念:

如果a,A,b成等差数列,那么A叫做a与b的等差中项。其中A a,A,b成等差数列A2.一个有用的公式:

(1)已知数列{an}是等差数列

①2a5a3a7是否成立?2a5a1a9呢?为什么? ②2anan1an1(n1)是否成立?据此你能得到什么结论? ③2anankank(nk0)是否成立??你又能得到什么结论? 求证:①amanapaq ②apaq(pq)d 证明:①设首项为a1,则(2)在等差数列an中,d为公差,若m,n,p,qN且mnpq

ab 2ab. 2amana1(m1)da1(n1)d2a1(mn2)dapaqa1(p1)da1(q1)d2a1(pq2)d

∵ mnpq ∴amanapaq

五、归纳整理,整体认识

本节课学习了以下内容:

aba,A,b,成等差数列,等差中项的有关性质意义 22.在等差数列中,mnpqamanapaq(m,n,p,qN)1.A3.等差数列性质的应用;掌握证明等差数列的方法。

六、承上启下,留下悬念

1.在等差数列{an}中, 已知a3+a4+a5+a6+a7=450, 求a2+a8及前9项和S9.解:由等差中项公式:a3+a7=2a5,a4+a6=2a5由条件a3+a4+a5+a6+a7=450, 得5a5=450, a5=90, ∴a2+a8=2a5=180.S9=a1+a2+a3+a4+a5+a6+a7+a8+a9

=(a1+a9)+(a2+a8)+(a3+a7)+(a4+a6)+a5=9a5=810.七、板书设计(略)

八、课后记:

判断一个数列是否成等差数列的常用方法 1.定义法:即证明 anan1d(常数)

例:已知数列an的前n项和Sn3n22n,求证数列an成等差数列,并求其首项、公差、通项公式。解:

n2a1S1321 当时

anSnSn13n22n[3(n1)22(n1)]6n5

n1时 亦满足

∴ an6n5

首项a11

anan16n5[6(n1)5]6(常数)

∴an成AP且公差为6 2.中项法: 即利用中项公式,若2bac 则a,b,c成AP。

111bccaab 例:已知,成AP,求证,也成AP。

abcabc111211 证明: ∵,成AP ∴ 化简得:2acb(ac)

abcbacbcabbcc2a2abb(ac)a2c22aca2c2

acacacac(ac)2(ac)2acbccaab= ∴,也成AP 2b(ac)acbabc2 3.通项公式法:利用等差数列得通项公式是关于n的一次函数这一性质。

例:设数列an其前n项和Snn22n3,问这个数列成AP吗?

解:n1时 a1S12

n2时 anSnSn12n3,a1不满足an2n3

n12 ∴ an

∴ 数列an不成AP 但从第2项起成AP。

n22n3

第三篇:高二数学必修5 等差数列练习题

高二数学必修5 等差数列练习题

一、选择题:

1、设数列的通项公式为an2n7,则a1a2a15()A、153 B、210 C、135 D、120

2、已知方程(x22xm)(x22xn)0的四个根组成一个首项为

1的等差数列,则4mn()

313 C、D、4283、若{an}是等差数列,首项a10,a2003a20040,a2003.a20040,则使前n项和Sn0成 A、1 B、立的最大自然数n是()4007

D、4008

A、4005

B、4006

C、4、设Sn是等差数列{an}的前n项之和,且S6S7,S7S8S9,则下列结论中错误的是()

A、d0 B、a80 C、S10S6 D、S7,S8均为Sn的最大项

5、已知数列{an}满足a10,an1an33an1(nN*),则a20=()2 A、0

B、3 C、3

D、6、△ABC中,a、b、c分别为∠A、∠B、∠C的对边.如果a、b、c成等差数列,∠B=30°,△ABC的面积为3,那么b= 2D、23

()A、13 B、13 C2、23

27、若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范围是()A、(1,2)

B、(2,+∞)

C、[3,+∞)

D、(3,+∞)

二、填空题:

8、在△ABC中,若三内角成等差数列,则最大内角与最小内角之和为______.9、若在等差数列{an}中,a37,a73,则通项公式an=______________

10、数列{an}的通项公式an1nn1

2,其前n项和时Sn9,则n等于_________

n11、已知数列{an},a1=1,a2=2,an+1-anan+2=(-1),则a3=______,a4=______.12、在等差数列{an}中,a5=-1,a6=1,则a5+a6+…+a15=______.13、已知数列{an}中,a12,an1

三、解答题:

14、(1)求数列1,2an则数列的通项公式an=______________ an1111,,的通项公式an 12123123n(2)求数列{an}的前n项和

15、等差数列{an}中,Sn是{an}的前n项和,S6=7,S15=16,求a11.必修5周周考

(四)一、选择题:ACBC BBB

二、填空题:

8、120°;

9、-n+10;

10、99;11、5、12;

12、99;

13、1n1()

2三、解答题:

14、解(1)an 11

12nn(n1)(2)an 2111111112n2()Sn2[(1)()()]2(1)n(n1)nn1223nn1n1n115、解:S15-S6=a7+a8+…+a15=

a7a15×9=9a11=9,a11=1.2

第四篇:高中数学必修5高中数学必修5《等差数列复习》教案

等差数列复习

知识归纳

1.等差数列这单元学习了哪些内容?

定等差数列通义项前n项和主要性质

2.等差数列的定义、用途及使用时需注意的问题: n≥2,an -an-1=d(常数)3.等差数列的通项公式如何?结构有什么特点? an=a1+(n-1)d

an=An+B(d=A∈R)4.等差数列图象有什么特点?单调性如何确定?

d<0annannd>05.用什么方法推导等差数列前n项和公式的?公式内容? 使用时需注意的问题? 前n 项和公式结构有什么特点? n(a1an)n(n1)d na122SnSn=An2+Bn(A∈R)注意: d=2A!6.你知道等差数列的哪些性质? 等差数列{an}中,(m、n、p、q∈N+): ①an=am+(n-m)d ;

②若 m+n=p+q,则am+an=ap+aq ; ③由项数成等差数列的项组成的数列仍是等差数列;

④ 每n项和Sn , S2n-Sn ,S3n-S2n …组成的数列仍是等差数列.知识运用 1.下列说法:(1)若{an}为等差数列,则{an2}也为等差数列(2)若{an} 为等差数列,则{an+an+1}也为等差数列(3)若an=1-3n,则{an}为等差数列.(4)若{an}的前n和Sn=n2+2n+1, 则{an}为等差数列.其中正确的有((2)(3))2.等差数列{an}前三项分别为a-1,a+2,2a+3, 则an= 3n-2.3.等差数列{an}中, a1+a4+a7=39,a2+a5+a8=33, 则a3+a6+a9=27.4.等差数列{an}中, a5=10, a10=5, a15=0.5.等差数列{an}, a1-a5+a9-a13+a17=10,a3+a15= 20.6.等差数列{an}, S15=90, a8=.7.等差数列{an}, a1= -5, 前11项平均值为5, 从中抽去一项,余下的平均值为4, 则抽取的项为

(A)

A.a11

B.a10

C.a9

D.a8 8.等差数列{an},Sn=3n-2n2, 则(B)A.na1<Sn<nan

B.nan<Sn <na1

C.nan<na1<Sn

D.Sn<nan<na1 能力提高

1.等差数列{an}中, S10=100, S100=10, 求 S110.2.等差数列{an}中, a1>0, S12>0, S13<0, S1、S2、… S12哪一个最大?

课后作业《习案》作业十九.

第五篇:高中数学 等差数列教案 苏教版必修5

等差数列(4)

一、创设情景,揭示课题,研探新知

1.等差数列的定义:(1)等差数列的通项公式;(2)等差数列的求和公式。2.等差数列的性质:

已知数列{an}是等差数列,则

(1)对任意m,nN,anam(nm)d,danam(mn);

nm(2)若m,n,p,qN且mnpq,则amanapaq

n(a1an)n(n1)或Snna1d 22dd注意:①等差数列前n项和公式又可化成式子:Snn2(a1)n,当d0,此

22dd式可看作二次项系数为,一次项系数为a1,常数项为零的二次式;②当d0时,Sn22dd有最小值;当d0时,Sn有最大值;③图象:抛物线yx2(a1)x上的一群独立

22(3)等差数列前n项和公式:Sn点。

(4)利用an与Sn的关系:an(n1)S1

SnSn1(n2)

二、质疑答辩,排难解惑,发展思维

例1 在等差数列an中,S10100,S10010,求S110?

109109a10ad10011012解法一:设该等差数列首项a1,公差d,则,所100a10099d10d1125以,S110110a1110109d110. 2解法二:在等差数列中,S10, S20-S10, S30-S20, ……, S100-S90, S110-S100, 成等差数列,∴ 新数列的前10项和=原数列的前100项和,10S10+

109·D=S100=10, 解得D=-222 ∴ S110-S100=S10+10×D=-120, ∴ S110=-110.拓展练习1:在等差数列中,Spq,Sqp,则Spq(pq).

拓展练习2:已知数列an,是等差数列,若Smn,求Smn Snm,Sn是其前n项和,拓展练习3:已知等差数列前n项和为a,前2n项和为b,求前3n项的和。(介绍依次k项成等差)例2 已知等差数列{an}的项数为奇数,且奇数的和为44,偶数项的和为33,求此数列的中间项及项数。

解:设项数为2k1,奇数项和记为S奇,偶数项和记为S偶,由题意,(a1a2k1)(k1)44 ① 2(aa2k)S偶a2a4a2k2k33 ②

2k144①②得,解得k3,∴ 项数为7项,又S奇11ak144,∴ k33S奇a1a3a2k1ak111,即中间项为11.

说明:设数列{an}是等差数列,且公差为d,(1)若项数为偶数,设共有2n项,则①S奇S偶nd;②

S奇an; S偶an1S奇n. S偶n1(2)若项数为奇数,设共有2n1项,则①S奇S偶ana中;②例3 在等差数列中,a1023,a2522,(1)该数列第几项开始为负?(2)前多少项和最大?

(3)求an前n项和?

解:设等差数列an中,公差为d,由题意得:a25a1015d45a501 d323a1(101)(3)53,所以从第18项开始3为(1)设第n项开始为负,an503(n1)533n0,n为负。(2)(法

一)

n项和

Sn,则n(n1)31033103231032(3)n2n(n)(),2222626

所以,当n17时,前17项和最大。Sn50n(法二)an0533n05053,则,n,所以n17.

3503n03an10

(3)an533n'533n,0n17,3n53,n17∴Sna1a2a3ana1a2a17(a18a19an),当

3103,S'nn2n2231033103S'n(n2n)2S17n2n884,2222n17时,当

n17时,32103nn(n17)22'所以,Sn.

31033103(n2n)2S17n2n884(n17)2222说明:(1)a10,d0时,Sn有最大值;a10,d0时,Sn有最小值;

(2)Sn最值的求法:①若已知Sn,可用二次函数最值的求法(nN);

an0an0②若已知an,则Sn最值时n的值(nN)可如下确定或.

a0a0n1n1

例4 已知数列an的前n项和为(1)Sn2nn;(2)Snnn1,求数列an22的通项公式。

例5(教材P42例5)某种卷筒卫生纸绕在盘上,空盘时盘芯直径40mm,满盘时直径120mm,已知卫生纸的厚度为0.1mm,问:满盘时卫生纸的总长度大约是多少米(精确到0.1m)? 解:卫生纸的厚度为0.1mm,可以把绕在盘上的卫生纸近似地看作是一组同心圆,然后分别计算各圆的周长,再求总和。

由内向外各圈的半径分别为 20.05,20.15,,59.9

5因此各圈的周长分别为 40.1,40.3,,119.9

∵各圈半径组成首项为20.05,公差为0.1的等差数列,设圈数为n,则 59.9520.05(n1)0.1,∴n400

∴各圈的周长组成一个首项为40.1,公差为0.2,项数为40的等差数列,Sn40040.1400(4001)0.232000(mm)

232000(mm)100(m)

答:满盘时卫生纸的总长度约是100米.说明:各圈的半径为该层纸的中心线至盘芯中心的距离。

下载必修5:等差数列综合测试题(一)word格式文档
下载必修5:等差数列综合测试题(一).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    等差数列测试题(基础)

    等差数列练习题(一) 1.已知为等差数列, A. -1B. 1C. 3D.7 ,则等 于 2.设Sn是等差数列an的前n项和,已知a23,a611,则S7等于 A.13B.35C.49D. 633.等差数列{an}的前n项和为Sn,且S3 =6,a1=4,......

    高中数学《等差数列》教案2 苏教版必修5

    第 4 课时:§2.2等差数列(2)【三维目标】:一、知识与技能1.进一步熟练掌握等差数列的通项公式及推导公式,掌握等差数列的特殊性质及应用;掌握证明等差数列的方法;2.明确等差中项的......

    高中数学必修5高中数学必修5《2.2等差数列(二)》教案

    2.2等差数列(二) 一、教学目标 1、掌握"判断数列是否为等差数列"常用的方法; 2、进一步熟练掌握等差数列的通项公式、性质及应用. 3、进一步熟练掌握等差数列的通项公式、性质及应......

    高中地理必修一第四章测试题

    高一地理必修Ⅰ第四单元测试试卷 一、选择题,每道题2分,共52分) 1. 岩石圈是指 ( ) A.地面以下、莫霍界面以上很薄的一层岩石外壳 B.地面以下、古登堡界面以上由岩石组成的固体外壳......

    人民版高中历史必修一综合测试题及答案

    人民版高中历史必修一综合测试题 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共三大题(30小题),满分100分,考试时间为90分钟. 第Ⅰ卷(选择题 61分) 一、单项选择题(本题共40分,每小题2分。下面各......

    综合测试题(一)答案

    综合测试题 一、单选题 新《保险法》 1.《保险法》所称保险,是指投保人根据合同约定,向保险人支付保险费,保险人对于合同约定的可能发生的事故因其发生所造成的财产损失承担赔偿......

    等差数列测试题(5篇模版)

    等差数列测试题 一、选择题 1.已知{an}是等差数列,且公差d0,它们前n项和SnMnPnt,则M,P,T满足的关系是 A.M0,T0.B. MT0.C. T0.D.M,P,T0 2.若等差数列的各项依次递减,且a2a4a6=45,a2+a4+a6=......

    等差数列练习题(一)

    等差数列练习题(一) 35241.已知为等差数列,1 A. -1B. 1C. 3D.7 aaa105,aaa699,则a20等于 2.设Sn是等差数列an的前n项和,已知a23,a611,则S7等于 A.13B.35C.49D. 63 3.等差数列{an}的前......