第一篇:立杆稳定验算
浙江欣捷建设集团金港.世纪天城A1#~A3#, B1#~B9#楼工程
立杆的稳定性计算公式
σ = N/(φA)≤[f]
1.梁两侧立杆稳定性验
其中 N--立杆的轴心压力设计值,它包括:
横向支撑钢管的最大支座反力: N1 =3.586kN ;
脚手架钢管的自重: N2 = 1.2×0.125×2.8=0.419kN;
楼板混凝土、模板及钢筋的自重:
N3=1.2×[(0.95/2+(0.65-0.25)/4)×0.75×0.30+(0.95/2+(0.65-0.25)/4)×0.75×0.120×(1.50+24.00)]=1.739kN;
施工荷载与振捣混凝土时产生的荷载设计值:
N4=1.4×(3.000+2.000)×[0.950/2+(0.650-0.250)/4]×0.750=3.019kN;
N =N1+N2+N3+N4=3.586+0.419+1.739+3.019=8.763kN;
φ--轴心受压立杆的稳定系数,由长细比lo/i 查表得到;
i--计算立杆的截面回转半径(cm):i = 1.58;
A--立杆净截面面积(cm2): A = 4.89;
W--立杆净截面抵抗矩(cm3):W = 5.08;
σ--钢管立杆轴心受压应力计算值(N/mm2);
[f]--钢管立杆抗压强度设计值:[f] =205N/mm2;
lo--计算长度(m);
根据《扣件式规范》,立杆计算长度lo有两个计算公式lo=kμh和lo=h+2a,为安全计,取二者间的大值,即:
lo = Max[1.155×1.7×1.6,1.6+2×0.1]= 3.142m;
k--计算长度附加系数,取值为:1.155;
μ--计算长度系数,参照《扣件式规范》表5.3.3,μ=1.7;
a--立杆上端伸出顶层横杆中心线至模板支撑点的长度;a=0.1m;得到计算结果: 立杆的计算长度
lo/i = 3141.6 / 15.8 = 199;
由长细比 lo/i的结果查表得到轴心受压立杆的稳定系数φ= 0.182;
钢管立杆受压应力计算值;σ=8762.878/(0.182×489)= 98.5N/mm2;
钢管立杆稳定性计算 σ = 98.5N/mm2 小于 钢管立杆抗压强度的设计值 [f] = 金港.世纪天城项目部1模板专项方案
浙江欣捷建设集团金港.世纪天城A1#~A3#, B1#~B9#楼工程 205N/mm2,满足要求!
青深秋水,黛遠春山,顧曲至今,綠綺紅蘭。
附浣溪沙一阕赠兔兔
入不言兮出不辞,巴山夜月去多时。曾经沧海是相思。
旧雨最思锦瑟句,深秋多似采水湄。无端弦绪今为谁。
金港.世纪天城项目部2模板专项方案
第二篇:抗滑稳定和抗倾覆稳定验算
抗滑稳定和抗倾覆稳定验算
抗滑稳定验算公式:
Ks=抗滑力/滑动力=(W+Pay)μ/Pax≥1.3
Ks---抗滑稳定安全系数
Pax---主动土压力的水平分力,KN/m;
Pay---主动土压力的竖向分力,KN/m;
μ---基地摩擦系数,有试验测定或参考下表
土的类别摩擦系数μ
可塑0.25~0.30
粘性土硬塑0.30~0.35
坚塑0.35~0.45
粉土Sr≤0.50.30~0.40
中砂、粗砂、砾砂0.40~0.50
碎石土0.40~0.60
软质岩石0.40~0.60
表面粗糙的硬质岩石0.65~0.75
对于易风化的软质岩石,Ip>22的粘性土,μ值应通过试验确定。
抗倾覆稳定验算公式
Kt=抗倾覆力矩/倾覆力矩=(W*a+Pay*b)/Pax*h≥1.5
Kt---抗倾覆稳定安全系数;
a、b、h---分别为W、Pax、Pay对O点的力臂,单位m.简单土坡稳定计算
1、无粘性土简单土坡
稳定安全系数
K=抗滑力/滑动力=tgф/tgθ
ф—为内摩擦角;θ—土坡坡角。说明无粘性土简单土坡稳定安全系数K,只与内摩擦角ф和土坡坡角θ有关,与坡高H无关。同一种土,坡高H大时,坡度允许值要小,即坡度平缓,坡度允许值中已包含安全系数在内。
2、粘性土简单土坡
粘性土简单土坡较复杂,其稳定坡角θ,是粘性土的性质指标c、γ、ф与土坡高度H的函数,通常根据计算结果制成图表,便于应用。
通常以土坡坡角θ为横坐标,以稳定数N=c/(γ*H)为纵坐标,并以常用内摩擦角ф值系列曲线,组合成粘性土简单土坡计算图。
第三篇:监控立杆详细介绍
监控立杆详细介绍
监控杆
英语:Control rod
监控杆作用
监控杆是用于室外监控摄像机安装的柱状支架,典型案例为北京易昊昆生产的监控立杆,其标准如下 道路监控杆通常使用高度6米横臂1米来进行制作。没有特殊情况所有监控杆预埋件混凝土为C监控杆25砼,所配监控杆钢筋符合国标及受风要求。其中水泥为425号普通硅酸盐水泥。混凝土的配比和最小水泥用量应符合GBJ204-83的规定。
监控杆厂家
北京熔达制造厂有限公司专业生产各类钢杆监控杆及监控安防类配套设施。供应道路灯, 监控立杆,摄像机立监监控杆控杆杆,交通信号杆各类钢杆类产品:监控杆是用于室外监控摄像机安装的柱状支架,典型案例为北京熔达制造厂生产的监控立杆,其标准如下
监控杆规格
1、监控杆是用于室外监控摄像机安装的柱状支架道路监控通常使用高度6米横臂1米来进行制作。没有特殊情监控杆况所有监控立杆预埋件混凝土为C25砼,所配钢筋符合国标及受风要求。其中水泥为425号普通硅酸盐水泥。混凝土的配比和最小水泥用量应符合GBJ204-83的规定;
2、监控杆必须有良好接地最好加引线导入地下(建议导电不走杆体),其接地电阻小于4欧;
3、预埋件地脚螺栓法兰盘以上的螺纹包扎良好以防损坏螺纹。监控杆根据预埋件安装图正确放置监控立杆预埋件,保证支臂杆的伸出方向与行车道垂直(或按工程师要求)地脚螺栓作为主筋;
4、监控杆基础的混凝监控杆土浇注面平整度小于5mm/m尽量保持立杆预埋件水平。预埋件法兰盘低出周围地面20~30 mm,再用C25细石砼把加强肋盖住,以防止积水;
5、监控杆杆旁、控制箱旁、电缆拐弯处、电缆管直监控杆线长度超过50米时或两端电缆管不在同一平面相距100 mm监控杆以上时,必须设置手孔井。手孔井的内围尺寸要求为500(长)×500(宽)×600(深)MM,用砾石铺层作为渗水用;手孔井四壁必须抹水泥沙浆。
6、控制箱由设备厂家根据所需容量配备,监控杆外壳采用优质冷轧钢板壁厚不小于1.2mm外表喷室外塑粉并做好防水监控杆防盗及散热。
7、结构用钢监控杆不得影响材料和机械性能的裂纹、分层、重皮、夹渣等缺陷麻点或划痕的深度不得大于钢材厚度负公差的1/2,且不应大于0.5mm。
第四篇:监控立杆制作规范
监控立杆制作规范:
(1)材质:监控立杆钢材材质为国际保准低硅低碳高强度q235,壁厚度》4mm,底法兰厚度》14mm。
(2)设计:监控立杆结构及基础结构尺寸计算,依招客户确定的外观形状及厂家的构造参数按抗震5级、抗风力8级设防.(3)焊接工艺:应采用电焊接,整个杆体无任何一处漏焊,焊缝平整,无任何焊接缺陷。
(4)喷塑工艺:镀锌后钝化处理,喷塑附着力好,厚度≥80μm。喷塑采用进口优质塑粉。符合astm d3359-83标准。
(5)杆体观感:造型及尺寸符合用户要求,造型流畅和谐,美观大方,色泽均匀,钢管直径选用合理。监控立杆为圆柱形结构,圆型杆体任一截面没
有失圆。杆体圆度标准≤。杆体表面光滑一致,无横向焊缝。刀片划痕测试
(25×25mm方格)喷塑层粘贴力强不轻易剥落。密封立杆并包顶端以防水气进入,防水内漏措施可靠。
(6)垂直度检验:监控立杆直立后,使用经纬仪对杆的两向垂直度作检验,垂直度偏差《0.5%。
监控立杆及室外箱体设计注意事项:
在制定方案之前应对保护的对象进行雷击风险评估,并确定防风等级。
关于室外摄像机立杆 室外监控立杆的防雷接地道路摄像机立杆 立杆要求摄像机离地面高度一般应为4~6米,挑臂长度可依据实际应用环境进行计算。但其长度应在0.8米~3米之
间,特殊场合超出5米的,应在挑臂和立柱之间加装支撑件,支撑件建议采用三角铁。立杆下端管径应在220 mm±10mm、上端管径应在120 mm±5mm,管壁厚度应≥6mm,表面必须 做防锈处理、防腐处理、抗台风。立杆基础深度不低于1.5米,基础直径大于1米,采用混凝土灌筑,以确保立杆的牢固度。
室外机箱结构为露天防雨箱设计。机箱高 度为应依据箱体内实际安装设备进行测算。保证箱体内设备可平整的安放进机柜,箱体内应具有走线槽便于箱体内设备布线。室外箱应 具有散热、防冻的特点。因此在进行室外箱体的设计时应加装加热器和通风扇并具有通风孔,加热器建议采用水泥电阻,加热功率依据箱体内部空间大小及电器设备散热量测算。通常建议加热器加热功率为50w。风扇建议采用两台风扇进行(进、出风)循环。建议采用DC12V,0.36A。在加装通风孔时应同时考虑室外箱防雨的特性,因此在通风孔出应加装 60~100目的网格进行隔离。箱体选材建议采用冷钢板(条件许可时采用不锈钢板),厚度建议1.5mm~2mm。采用冷钢板时应考虑表明防锈、防腐蚀的处理。采用不锈钢板时可不 做表面处理,或仅做表面拉丝。
箱体防护等级应达到IP54防护等级。需要有机箱基础整体美观,表面喷涂明显的警示标志,机箱离地面高度不小于30厘米。
道路摄像机立杆 立杆要求摄像机离地面高度一般不低于5米,挑臂长度3~5米,立杆下端管径应在220 mm±10mm、上端管径应在120 mm±5mm,管壁厚度应≥6mm,表面防腐、抗台风。立杆基础深度不低于1.5米,基础直径大于1米,采用混凝土灌筑,以确保立杆的牢固度。
11.室外机箱结构为露天防雨箱设计。机箱高度为0.8米,宽度为0.6米,厚度为0.45米。箱体防护等级达到IP54防护等级。需要有机箱基础,整体美观,表面喷涂明显的警示标志,机箱离地面高度不小于30厘米)。
12.室外机箱内需安装光端机和监控电源;其中光端机采用1V+1D(一路视频+一路反向数据)的单路光端机,具有FC/ST接口,传输距离:0—30KM;光学波长为1310/1550nm,频率响应5Hz~8MHz,视频格式兼容PAL、NTSC、SECAM,信噪比≥70dB,电压1Vp-p 75Ω,视频接口BNC,采用8位线性数字PCM编码;数据RS-232、RS-
422、RS-485可选,误码率小于10-9 ;预留语音接口,具有网管功能。并将机箱和立杆进行统一防雷接地。
13.前端设备防雷与接地
众所周知,雷电具有极大的破坏性,其电压高达数百万伏,瞬间电流可高达数十万安培。雷击所造成的破坏性后果体现于下列三种层次:①设备损坏,人员伤亡;②设备或元器件寿命降低;③传输或储存的信号、数据(模拟或数字)受到干扰或丢失,甚至使电子设备产生误动作而暂时瘫痪或整个系统停顿。
对于监控点来说遭到直接雷击破坏的可能性很小。随着现代电子技术的不断发展,大量精密电子设备的使用和联网,破坏大量电子设备的罪魁祸首主要是感应雷击过电压、操作过电压以及雷电波入侵过电压,每年各种通讯控制系统或网络因雷击而受破坏的事例屡见不鲜,其中安防监控系统因受到雷击引起设备损坏,自动化监控失灵的事件也常有发生。前端摄像机设计均为室外安装方式,对于雷雨多发地区必须设计安装防雷电系统。
前端摄像机主要分为两类:
摄像机立杆的防雷
前端摄像机主要分为两类:
◆带云台摄像机和球机:在带云台摄像机和球机的视频线、控制线与电源线处加装TIT三合一监控专用防雷器TPSS12D12,此款防雷器集视频线防雷,控制线防雷,电源线防雷与一体。安装方便,易维护。
◆普通枪机:普通枪机的防雷我们只要考虑视频线和电源线的防雷保护,在进入摄像机的视频线处串接视频信号防雷器TS12L/BFM,如电源使用直流,并联安装TP20D12直流电源防雷器,如使用交流电,则安装TA10C24交流24V电源防雷器。
注:防雷器安装在离被保护设备距离越近越好。
1、前端设备直击雷的防护
◆每个摄像机均安装在比较高的立杆之上,所以设备的直击雷防护必不可少。具体措施:
在每根立杆顶端加装避雷针一根,根据滚球法计算,避雷针的有效保护范围在三十度夹角类,所以避雷针的高度,必须按照设备的安装位置计算。
2、前端设备的接地
◆防雷器的接地非常重要,如果接地没有做好,防雷器起不了自己的作用,所以一个良好的接地是相当重要的.本司要求接地地阻应做到小于4欧姆以下.根据描述现场情况。前端设备接地
具体措施:
摄像机均安装在立杆上,如现场土壤情况较好(石沙等不导电物质较少)的情况下,可以利用立杆直接接地,把摄像机与防雷器的地线直接焊接在立杆上即可.反之,如现场土壤情况情况恶劣(石沙等不导电物质较多).刚要借用导电设备.利用扁钢与角钢等.具体措施:用40*3的扁钢沿立杆拉下,防雷器和摄像机的地线与扁钢妥善焊接,用角钢打入地底2-3米,与扁钢焊接好.地阻测试根据国标小于4欧姆即可.龙门架及井架物料提升机安全技术规范(JGJ88—1992)
日期:2007-05-30 作者:团委 阅读:618
5龙门架、井架作为垂直运输设备,各地现场施工普遍使用,但是由于制作无设计、使用无标准,一些单位往往粗制滥造任意使用,致使事故连连发生。为此建设部对龙门架、井架的设计、制作、使用、管理进行了规定。《规范》就是按照设计、制造、安装、拆除、使用与管理的程序进行编制的。
一、《规范》主要特点
(I)标题明确规定了“物料提升机”,属于起重机类别,不属于大型工具,它像外用电梯、塔式起重机一样,是由标准节或标准件组成架体,由滑轮组及钢丝绳组成传动机构,再配上卷扬机作动力,使装载物料的吊篮在架体内升降,完成起重机的全部工作。从升降机的使用分类,大体上分为:载人电梯、人货两用梯和物料升降机,这种提升机基本上是属于第三类的,在上下运行中严禁载人,但吊篮升到位置后,需要上人进入吊篮中推车卸料,所以要另外再加一套安全保险装置,以解决卸料时人员的安全问题。
目前全国各地提升机种类较多,但受力形式和工作条件有的差异很大,所以在总则中进一步说明此规范规定的提升机,主要是“以地面卷扬机为动力,沿导轨做垂直运行的”提升机,不包括用井字架身,顶部上塔臂做回转的提升机。
(2)按照实际使用条件,把提升机按架体的高度分为高架提升机和低架提升机,低架提升机是指高度在30m以下的,高架是指30m以上。以30m分界是考虑:第一从使用上,大量的建筑在七层以下,一般为六层一七层住宅楼,24m高的提升机基本上可以满足使用,所以规定了30m,对一般低建筑都可满足使用;第二是从使用条件和受力条件出发,在高层和超高建筑施工
中,为配合装修工程也采用了提升机,出现了架体高达lOOm到150m,或者更高,这些提升机的使用条件及受力情况有了变化,它不像30m以下低架提升机那样普遍,在各方面要求严一些也是符合实际情况的。
(3)关于最大起重量问题。《规范》初稿定为1000kg,后来改为1500kg,最后按一些地区意见改为2000kg。不过从现场调查看,一般1000kg的起重量基本上是可以满足要求的,如果只为满足特殊情况,而设计过大的起重量势必造成浪费,因为额定起重量加大后,整机材料都要增加,应该按常规设计的越轻巧越好。
二、关于钢管扣件井架问题
目前在许多城市建设中,用钢管和扣件按照搭设脚手架的要求搭成井字架,就地取材,不经设计或未经严密的计算。尤其高度在30m以下的井架,主要凭经验搭设,穿绕钢丝绳,配上卷扬机做提升机用。《规范》初稿专门列了一章,主要对30m以下钢管扣件井架做了一些规定,但后来在讨论中认为,虽然目前一些地区在使用,但架体结构计算不好建立数学模型,没有统一的计算方法,作为规范一经规定,便认为要合理发展,所以取消了这一章。这些井架初看起来也能满足使用要求,但仔细检查就会发现,由于扣件的紧固力不好掌握,各节点受力不一,有的井架虽已用到80m以上高度,检测发现架体变形较大,远远超过提升机架体规定的偏差要求。不过一些地区作为过渡的办法,除架体设计、制造章节外,仍可参照规范其他章节内容。
三、《规范》主要内容
1.关于设计与制造
(1)这里主要对架体结构的设计进行了规定,制造提升机不能凭经验随意制作,必须经设计、绘图、批准、按图施工的程序。由于提升机的作用工况与起重机基本一致,但制作和使用条件又低于一般起重机,所以在结构设计上对荷载的组合进行了简化,一些计算指标采用了《钢结构设计规范》和《起重机设计规范》相结合的方案,按照提升机的特点进行规定的。
(2)有些数据为便于检查使用,经计算后给出,架体上部的自由高度不大于6m,架体顶部的横梁截面选用,在考虑了指定及强度后,提出最好选用两根槽钢背对背焊接,截面不小于两根14号槽钢等。有些数据是采用了一些地区的经验,经核算后进行的规定,比如对提升机的起重臂杆断面的规定。
(3)对结构制造提出了原则要求。提出应有设计图纸、编写加工工艺,对加工精度、材质要符合有关标准规定等。
2.提升机构
对于起重机来讲,是按照不同工作机构有不同要求。提升机的提升机构主要由钢丝绳、滑轮组及卷扬机组成。
(1)卷扬机。一般使用的有两种,一种是提升依靠动力,下降依靠重力自由落体,用刹车控制下降速度的,叫摩擦式卷扬机;另外一种是提升和下降都依靠动力的,叫可逆式卷扬机。作为机械设备使用可逆式合理,摩擦式不合理,因为带重物自由降落是不安全的,像汽车下坡时靠动力驱动,不允许空挡滑行一样,因为下坡仍然需要控制。所以提升机应推荐使用可逆式卷扬机,逐渐淘汰摩擦式卷扬机,对高架提升机直接规定了不得使用摩擦式卷扬机。
(2)关于滑轮直径的选择,钢丝绳与轮直径之比不能过小,否则会由于钢丝绳弯曲过大早期疲
劳破坏,滑轮直径越小转速高、磨损大,特别对高架提升机,上部的滑轮适当加大直径,有利于保养维修工作。
四、关于安全防护装置问题.
对于提升机的安全防护装置如何设置,这一问题的规定主要来源于总结全国各地的事故教训和实践经验后进行规定的,主要包括:安全停靠装置、断绳保护装置、楼层口停靠栏杆(门)、吊篮安全门、上料口防护棚、上极限限位器、紧急断电开关、信号装置。对高架提升机还应再增加:下极限限位器、缓冲器、超载限制器、通信装置。调查中发现南方地区多采用断绳保护装置,北方地区多采用安全停靠装置,此两种装置作用方式虽不同,但都对吊篮上人卸料时起到安全保障作用,所以规定认为只要有一种装置,便认定是合格的。
五、关于基础、附墙杆架、缆风绳及地锚
(1)基础。一般基础应经设计确定,对低架提升机的基础提出了一般作法供参考。
(2)附墙杆架。提升机的稳定方法有两种:一种是采用缆风绳地锚固定;另一种就是用杆件与建筑结构相连固定,叫附墙杆架。对附墙架间距要求不大于9m,选用的材料应该和架体材质相一致,不能用木杆去固定金属架体采用8号铅丝绑扎,实际上达不到受力要求,不能共同工作。也不能将附墙杆件连接在脚手架上,因为脚手架不是刚性结构,架体的稳定不能保证。
(3)缆风绳。规定必须采用钢丝绳,直径不小于9.3mm。采用其他材料都不能满足使用要求。由于钢丝绳具有受弯受拉耐疲劳等特点,而且破坏前有征兆,有先断丝后破坏等优点。一些地区采用钢筋作缆风绳,钢筋直径较细时达不到受拉要求,太粗时无法使用,特别在端部锚固弯曲使受力减弱;8号铅丝更达不到受力要求,即使采用多股铅丝,仍然因不能共同工作,一根先受力破断,然后逐根破断。
关于第一组设置缆风绳的高度问题,原检查表中规定了15m设一组,经对24m龙门架计算,在顶部一组缆风绳即满足受力要求,故规定了20m高处设第一组。因为龙门架、井架的架体刚度如果足够,缆风绳只起整体稳定作用;当架体刚度较弱时,单靠加密缆风绳仍起不到加强作用。规定了20m以下设一组的缆风绳,既受力满足又方便了现场施工,五层以下建筑只设一道缆风绳即可。
当高度超过20m时如何增设第二道缆风绳,对于井架没有问题,对于龙门架顶部一道缆风绳因有横梁做传递形成整体,而中间一道缆风绳只是牵拉架体的两根单立柱,容易拉弯,为此应设置临时夹板,将龙门架两立柱连成一体。当建筑达到一定高度时,用附墙杆与建筑连接,拆掉临时夹板及中间缆风绳。、(4)关于地锚。地面锚固缆风绳应采用与钢丝绳拉力相适应的地锚。一些地区在低层建筑施工时,由于架体低受力小,且地面土质紧硬,采用了将脚手架钢管或型钢打入地面做锚桩,以此锚定缆风绳。实验认为,当受力小于10kN,土质较好时,可采用平行打人两根钢管,水平相距1m左右,入土深度1.,一1.7m,上部用横管及扣件锁住,使两管同时受力共同工作。打入一根管或前后方向打人两根管都不能满足受力要求。
六、提升机的安装与拆除
(1)安装精度要求,一般垂直偏差不大于I.5‰一3‰,并不得超过200mm。
(2)规定了龙门架、井架的安装及拆除程序。由于安装及拆除工作不按程序而发生
(3)低架龙门架整体安装和拆除方法,在有起重条件、场地条件的现场经常采用,但整体搬起将给架体增加弯矩,这在设计架体时是不考虑在内的,所以必须采取加固措施,选定吊点,注意安装顺序,尤其在最后摘除索具之前,必须确认缆风绳都已锚定并起作用后才能进行。否则就会造成整体失稳的倒塌事故。
七、检验规则及试验方法
由于提升机作为正式产品,所以从设计、制作、出厂、使用都应进行检验。特别对专门从事起重生产厂家,应按批量抽检,并进行整机试验。
试验方法如下:
(1)空载试验:即在空载情况下做规定的动作并进行检查。
(2)额定荷载试验:按规定的承载能力,在吊篮内,按规定的偏心位置摆放重物,并按规定的动作进行试验及检查。
(3)超载试验:按额定荷载的125%进行,分五次加载,即每次加5%,最后加到125%。
第五篇:河床开挖施工方案基坑稳定验算[推荐]
石特涌开挖及两侧挡土墙专项施工方案
一、工程基本情况
XX桥位于XX市XX村,跨越XX河,将河床进行回填处理,回填至高程1.9m。根据设计施工方案,为保证挡土墙及基坑开挖边坡的稳定性,其基础采用打松木桩处理,并在9#墩~10#墩、11#墩~12#墩之间打水泥搅拌桩护墙。
现有河涌宽约15m,处理涌长约65m,现状涌底标高0.20m,回填河床标高1.90m。XX桥的修建需对现有河两岸旧挡土墙拆除后,重新进行修复,原挡土墙两端与新建挡土墙接顺,在清挖河涌,采用砌石铺底。
河床挡土墙及河床开挖必须待上部架梁和桥面整体化层完成后,才开始挡土墙基坑开挖、挡土墙砌筑以及河床开挖、河床底铺砌等施工。
二、河涌两侧挡土墙施工
10#墩处挡土墙A长47.2 m、4#墩处挡土墙B长55.0m,其墙身采用M7.5浆砌片石,并用M10砂浆勾缝及墙顶抹面厚2cm,基础采用50cm厚现浇C25砼。挡土墙基础底面地基允许承载力应不小于100Mpa。
1、施工工艺
施工准备→拆除旧挡土墙→基坑开挖→打松木桩→20厚砂垫层→C15砼垫层→C25砼基础→浆砌块石挡土墙→设置ф8PVC排水孔→挡土墙C25压顶→墙后分层回填砂、土→场地清理→交工验收。
2、基坑开挖
根据设计图纸,准确测定出挡土墙边线和原路面标高,经核查无误后上报监理工程师认可后方可开挖基坑。
(1)根据现场施工设备和施工环境,基坑的开挖采用小型挖机开挖成形,最后用人工进行细平和修整边坡达到设计要求的方法。开挖时为确保基坑边坡的稳定,采用分段开挖的方式,每段开挖长为10~15m,开挖时严格根据土质控制开挖深度,严禁超挖而影响原堤岸土的稳定。
(2)挖出的土不能任意堆放需运出场地,以免妨碍开挖基坑及其他作业。(3)基坑开挖应避免超挖,底面应高于设计高程20cm左右,以保证夯实后满足设计要求。(4)基坑开挖时若有地下水汇集,基坑槽开挖时要随时采取降水措施,降水采用潜水泵抽排基坑内积水,可以排入原有河涌。
(5)开挖深度超过2m时周边必须安装防护栏杆,高度不应低于1.2m。防护栏杆应安装牢固,材料应有足够的强度。
(6)基坑内应设置供施工人员上下的专用梯道。梯道应设置扶手栏杆,梯道的宽度不应小于1m,梯道的搭设应符合相关安全规范的要求。(7)地基处理结束并经检测合格后再进行人工整平,然后夯实。监理工程师认可后,才可进行下一道工序施工。
3、打松木桩基础
在河涌两岸挡土墙基础采用尾径≥8cm松木桩处理,桩长6m,间距55cm,布置4排,两侧共752根,4512m。拟采用2台挖掘机打桩,沿河涌两侧进行松木桩的施工。木桩主要在当地木材市场采购,采用汽车运到工地现场;所有松木桩选材要求尾径8cm以上,长度6m,松木桩材质要求新鲜、均匀、外表顺直、无弯曲,以保证打桩时进尺顺利,避免受力不均匀产生斜桩、拉位发生移动现象。
1)施工工艺流程:测量放线→挖出工作面 →桩位放样 → 打松木桩→锯平桩头→砼垫层施工→挡土墙基础施工
2)测量放样:松木桩施工前,由测量人员依据设计图纸进行放样,确定每个木桩打设桩位,并用木桩予以标记。
3)松木桩的制作:桩径按设计要求严格控制,且外形直顺光圆;小端削成 30cm 长的尖头,利于打人持力层;待准备好总桩数 80 %以上的桩时,调入挖掘机进行打桩施工,避免挖掘机待桩窝工;将备好的桩按不同尺寸及其使用区域分别就位,为打桩做好准备; 严禁使用其他木材代替松木。
4)打桩前,桩顶须先截锯平整,其桩身需加以保护,不得有影响功能的碰撞伤痕,桩头部位宜采用铁丝扎紧。
5)先试打桩10根,以大概确定桩长。地质报告显示淤泥深度为-6.13 m,为确保试桩成功,并考虑该类型桩的特殊性,配桩长度比同位置桩的有效长度大0.5米。
6)挖掘机打桩流程:挖掘机就位,为了使挤密效果好,提高地基承载力,打桩时由外两侧往内施打;选择正确桩长的松木桩,并扶正松木桩,桩位按梅花状布置;将挖掘机的挖斗倒过来扣压桩至软基中;按压稳定后,用挖斗背面击打桩头,直到没有明显打入量为止,确保松木桩垂直打入持力层;严格控制桩的密度,确保软基的处理效果。
7)因在梁板安装完后打松木桩,若梁底净空不够机械压桩时,可先用人工压桩1~2m深后,在用机械进行压桩,确保梁底不受损坏。
8)锯平桩头:根据设计高度控制锯平桩头后的标高。桩头应离淤泥顶面30cm,20cm 插入砂垫层、10cm插入砼基础垫层,与之凝为一体。
4、基础垫层施工
松木桩打设完毕后,对桩顶面进行平整后,随即进行砂垫层施工,垫层材料宜用级配良好,质地坚硬的中砂或粗砂,砂中不得含有杂草,含泥量不大于3%。砂垫层施工完成后立即进行C15砼垫层及C25砼基础施工。在砼浇筑捣完后凝固前,应抛毛石嵌固。
5、浆砌片石挡土墙施工
选用的片石必须合格,石料质地坚硬,要求不易风化,无裂纹,中部最小厚度不小于150mm,强度等级不低于MU30,严格按挤浆法施工,保证砂浆饱满。严格按施工规范要求,贯彻“平、稳、紧、满”的施工工艺原则,按图纸要求设置沉降缝和排水孔,砌石面要求整齐划一,做到外观顺滑美观,及时做好材料检验的砂浆试件,并按规范进行养护。挡土墙每15m设一道沉降缝,其缝宽约2cm,用沥青麻筋填塞。Ф8PVC排水孔间距2m,向河边坡度为3%,应高水面不小于40cm,进水口放置约50kg碎石,碎石采用耐老化并具有一定强度和渗透性良好的土工布包裹。
片石砌筑采用挤浆法分层、分段砌筑:分段位置设在沉降缝或伸缩缝处,分层水平砌缝大致水平。各砌块的砌缝相互错开,砌缝饱满。各砌层先砌外圈定位砌块,并与里层砌块连成一体。定位砌块选用表面较平整且尺寸较大的石料,定位砌缝满铺砂浆,不得镶嵌小石块。
定位砌块砌完后,先在圈内底部铺一层砂浆,其厚度使石料在挤压安砌时能紧密连接,且砌缝砂浆密实、饱满。砌筑腹石时,石料间的砌缝互相交错、咬搭,砂浆密实。石料不得无砂浆直接接触,也不得干填石料后铺灌砂浆;石料大小搭配,较大的石料以大面为底,较宽的砌缝可用小石块挤塞,挤浆时用小锤敲打石料,将砌缝挤紧,不得留有孔隙。
定位砌块表面砌缝的宽度不大于4cm。砌体表面三块相邻石料相切的内切圆直径不大于7cm,两层间的错缝不小于8cm,每砌筑120cm高度以内找平一次。填腹部分的砌缝减小,在较宽的砌缝中用小石块塞填。
砌体表面的勾缝符合设计要求,并在砌体砌筑时,留出2cm深的空缝。勾缝采用凹缝或平缝,勾缝所用砂浆强度不得小于砌体所用砂浆强度。当设计不要求勾缝时,随砌随用灰刀刮平砌缝。砌筑完毕后必须保持砌体表面湿润并做好养护。
6、墙后回填砂、土墙体强度达到75%后,方可进行墙后回填,必须分层分段回填,每层填筑后夯实,回填至墙顶标高,达到设计要求。填料厚度控制在每层30cm,分段施工时要做好接茬处理。
基坑回填应注意,挡土墙A墙后基坑回填砂,B墙后基坑回填土,回填砂、土用手扶打夯机压实,压实度应达到路基设计要求。回填时必须分层分段进行施工,并观测挡土墙变化情况,确保挡土墙不发生位移或倾覆。
三、河床开挖及河底铺砌施工
河床开挖必须在河岸挡土墙砌筑完成后,才能开始施工。因在架梁完成通车后进行河道开挖,开挖时只能用小型挖机与人工配合的开挖方式。
开挖河道标高为1.9 m、河底标高为-0.5 m、深度为2.4 m,开挖至河底标高后,基础采用30cm厚砂垫层,在砂垫层上铺砌40cm厚M7.5浆砌片石作为河床铺底。
1、施工工艺
施工准备→围堰→河道分层分段开挖→河床底砂垫层→河底铺砌
2、河床开挖及注意事项
根据变更设计图纸,准确测定出河床开挖边线,经核查无误后上报监理工程师认可后方可开挖。
(1)根据现场施工设备和施工环境,河床开挖采用机械分层分段开挖,人工配合修整河底,严禁掏挖施工。
(2)挖出的淤泥不能任意堆放,运至指定的弃土场,不能随意堆放在挡土墙边上,更不能堆放在施工范围内以免妨碍其他作业。
(3)河床开挖拟用小型挖机,人工配合。在开挖前,河床开挖的宽度、开挖的次序和堆土位置由现场施工员向司机及土方工详细交底。为保证河床底土壤不被扰动和破坏,在用机械挖土时,要防止超挖,挖至离设计标高10~20cm时用人工开挖、检平,尽量避免超挖现象。若有超挖,应将扰动部分清除,并用中砂回填,用平板震动器振实。开挖河道周边不许堆载,挖土随挖随运,保证开挖河道两侧的安全稳定。
(4)开挖时,应随时测量监控,观测河岸两侧挡土墙及3#、4#墩的变化情况,设定观测点,及时观测其变化情况,并做好相应记录,确保挡土墙及墩柱不发生倾覆或位移。施工中,如出现裂缝和滑动迹象时,立即暂停施工,须对挡土墙进行挡板支护处理等应急抢救措施,采取预防性的保护措施,以防止挡土墙位移或倾覆。
(5)河床铺砌按河床分段开挖的实际情况,也采取分段铺砌方式。(6)河床开挖深度为2.4 m,河床开挖厚度按路基填土松铺厚度40~50cm进行控制,即按40cm开挖一层,大致分6层开挖,以确保开挖卸载速率。(7)河床底铺砌长度为55m,分五段铺砌,按10~15m一段,用小型拖拉机或翻斗车将片石运至河床铺砌处。
(8)铺砌的左侧边线离桥梁边线7.94 m,围堰离边线大约在1.5m范围内,围堰填筑高度大致高出挡土墙顶50cm,宽度1.0m,同时排出河道内的水。右侧是便道,不用围堰。
(9)的淤泥应及时远运,不能堆放在沿岸。防止雨天淤泥回淤以及在淤泥的堆压下产生滑坡。
(10)河床开挖动土前,需对挡土墙、桥墩、台进行定位放线、并对开挖宽度限定,用石灰粉放出灰线开挖范围。
四、河床开挖对挡土墙的观测
1、因河床开挖面积较大,开挖深度在2.4m,该项目工程对周边环境要做好充足的保护措施。根据场场地质及环境条件,河床开挖施工对周边结构物的影响相当敏感,应严格控制土体的变形,确保河涌两侧挡土墙及墩柱的安全稳定。开挖施工期间,须周期性的对周边环境进行观测,及时发现隐患,并根据监测成果相应地及时调整施工速率及采取相应的措施,确保两侧挡土墙壁等构筑物的安全稳定。所以,对开挖进行现场监测是十分必要,在河床开挖时,每天必须对完成的两侧新建挡土墙进行监测,并做好相应观测记录,若有异常情况立即上报处理。
河床开挖直接涉及淤泥层,该层具有流塑性且透水性较好,在水头高差作用下易产生管涌、流砂等不良地质现象,应做好止水、隔水及排水措施,以确保河床开挖的施工安全。
2、通过监测的目的是为了及时发现开挖施工过程中的地质情况变形发展趋势,及时反馈信息,达到有效控制施工对挡土墙等构筑物的影响,使得整个河涌开挖过程能始终处于安全、可控的范畴内。
3、河床开挖后,河底淤泥土体会产生回隆,并带动挡土墙、墩桩柱等结构物一起沉降或位移,如隆起量过大,会引起结构物的位移。为观测河床开挖过程中结构物的垂直位移变化情况,掌握河床开挖过程中系统的稳定性,以及河床开挖施工对结构物的影响,拟在墩柱高程的中心两侧进行设点。
4、挡土墙沉降、位移监测
用冲击钻将道钉打入墙顶混凝土时将钢钉植入。沉降测量采用精密水准仪,通过联测稳定的高程基准点,建立固定的水准线路,计算各监测点的高程。水平位移测量采用视准线法,通过建立稳定的基准线,量测监测点相对于基准线的位移量。在两侧挡土墙顶上各布设3个位移观测点,在挡土墙的内侧即与搅拌桩护墙之间的土体埋设A、B、C、D四个沉降观测点。为了确保工程顺利进行和挡土墙建筑物的安全,在挡土墙的沉降监测中如发现沉降速率变化较大或差异沉降过大时,应立即对其设置倾斜监测点,对其进行倾斜监测。
5、河床开挖的安全监测
(1)开挖前7天左右对挡土墙及墩柱的结构物情况进行观测记录,对结构物水平位移监测点等初始值进行采集。
(2)河床开挖时,应每天监测一次;如出现异常,增加监测频率,甚至随时进行监测,以确保河床开挖对两侧结构物的安全稳定。
(3)完成河底铺砌达到设计强度并且观测情况稳定后,停止观测。
7、监测频率及报警
1)水平位移监测:河床开挖深度在1.5m以内,可每2d观测一次,开挖至2m以下及开挖完成后一周内,每天观测一次。开挖至基底后一周后无明显位移时,可适当延长观测周期,每3~5d观测一次。
2)垂直位移及结构物沉降观测:在河床开挖过程中应每天观测一次。3)当出现监测值达到报警标准、监测值变化量较大或速率加快、临近的结构物或地面突然出现大量沉降、不均匀沉降或严重开裂时,应进一步加强监测,缩短监测时间间隔,加密观测次数,并及时向业主、监理及设计单位相关人员报告监测结果。当有危险事故征兆时,应连续监测。
4)挡土墙顶及墩柱的水平位移不大于5mm/ d进行控制,对结构物沉降位移报警值设为15mm,倾斜报警值设为10mm,当出现结构物砌体部分出现宽度大于1.5mm的变形裂缝及附近地面出现宽度大于10mm的裂缝情况时,应立即报警处理。
五、水泥土桩墙稳定性验算及坑底涌砂稳定性验算 采用水泥土搅拌桩墙进行支护的计算取值:基坑开挖深度h=2.3m,墙体宽度b=0.95m(两排桩)、1.35m(三排桩),墙体入土深度(基坑开挖面以下)hd=7.0m,墙体重度γ0=20KN/m3,墙体与土体摩擦系数μ=0.25,土的容重γ=18 KN/m3,内摩擦角φ=35°。
1、抗倾覆稳定性验算
沿墙体纵向取1延米进行计算,则主动和被动土压力系数为:
Ka=tan(45°-35°/2)=0.27,Kp=tan(45°+35°/2)=3.69 墙后主动土压力:
Ea=1/2×γ(h+hd)×Ka=1/2×18×(2.3+7)2×0.27=210.17 KN 主动土压力的作用点距墙趾的距离为:
Za=1/3×(h+hd)=1/3×(2.3+7)=3.1m 墙前被动土压力:
Ep=1/2×γ×(hd)2Kp=1/2×18×72×3.69=1627.29 KN 被动土压力的作用点距墙趾的距离为:
Zp=1/3×hd=1/3×7=2.33m 墙体自重为:
W=b(h+hd)γ0=0.95×(2.3+7)×20=176.7KN 抗倾覆安全系数,Kq取1.3 Kq=抗倾覆力距/倾覆力距 =(b/2×W+ Zp× Ep)/ Za×Ea =(0.475×176.7+2.33×1627.29)/3.1×210.17 =3875.52/651.53=5.95≥1.3,满足要求。
2、抗滑移稳定性验算
墙底抗滑移安全系数,Kh取1.2 Kh=(μW+ Ep)/ Ea =(0.25×176.7+1627.29)/ 210.17=1671.46/210.17 =7.95≥1.2,满足要求。
22bhdZPEPEaZa
水泥土桩墙稳定性验算图
3、河床开挖坑底涌砂稳定性验算
计算取值:现有高水位+1.20,河底开挖标高-0.5m,水头高差h′=1.7m,搅拌桩入土深度h2=7.0m,水面以下搅拌桩长h1=8.7m,ρw为水的密度取10KN/m、ρb为土在水中的密度取7KN/m、K为安全系数取值为2。
不生产坑底涌砂的安全条件为:
33ρb(h1+h2)≥K·ρw·h′ ρb(h1+h2)/ρw·h′≥K 即:7×(8.7+7)/10×1.7=6.46≥K(值为2),满足要求。
1.8桩顶h'=1.7m1.2常水位-0.5h1=8.7m河床底部h2=7m-7.50桩底坑底涌砂稳定性验算图
六、基坑、河床开挖应急预防措施
根据现场情况,在基坑开挖、河床开挖时较易对河涌两侧挡土墙发生坍塌事故,若事故一旦发生抢救难度较大,故需要引起高度重视,必须加强监控管理,在技术上采取有效的防护措施。
在施工前要认真研究整个施工区域和施工场内的工程地质和水文资料、挖土和弃土要求、施工环境等,制定有针对性的安全技术措施。
开挖前对工程应验算搅拌桩支护墙或基坑的稳定性,并注意由于土体内应力场变化和淤泥土的塑性流动而导致周围土体向基坑开挖方向位移,决定是否需要支护,选择合理的支护形式,在基坑开挖期间应加强监测。
在开挖前应准备好木方、工字钢、脚支撑、挡板等临时支护用具,以防止开挖过程中出现异常情况能及时采取临时支护的措施。
河床开挖过程中,为防止出现裂缝和滑动迹象,有必要对挡土墙加以预防性的保护措施,以避免开挖时对结构物造成位移、倾覆或垮塌现象。
若在基坑、河床开挖失稳时,对未开挖地段立即停止开挖,以减少事故发生,对出现开裂、沉降、倾斜的墙体用木方、工字钢、挡板进行支撑防护、注浆等加固措施,以确保结构的安全,避免故事进一步的发展。同时,加强监测,每天观测频率2次以上,并及时上报量测情况,指导施工现场。
在施工过程中,若一旦出现坍塌事故,立即向项目经理报告,并如实向业主、监理工程师汇报,项目经理在接到报告后立即到达现场,会同现场施工负责人采取应急措施,防止事故进一步扩大,同时由项目部总工程师会同监理工程师进行原因分析,确定坍塌等级,立即启动相应的应急方案。