第一篇:直链淀粉的分离纯化--自己总结
橡实直链淀粉与支链淀粉的分离纯化
谢 涛,陈建华,谢碧霞
(中南林学院资源与环境学院,中国湖南株洲412006)
1.2.3 橡实直链淀粉与支链淀粉的分离纯化
取10 g橡实淀粉,先以少量的无水乙醇润湿,再加200 mL 0.5 mol/L的NaOH溶液,在热水浴中加热分散至整个淀粉糊完全透明,冷至室温,离心(6 000 r/min,20 min)除去不溶性杂质.淀粉糊以2 mol/L的HCl调至中性,再加90 mL正丁醇和异戊醇混合溶液,混合液中V(正丁醇)∶V(异戊醇)=3∶1,在沸水浴中加热搅拌至整个体系透明,冷却至室温,置于7℃冰箱中过夜,离心(6 000 r/min,20 min),沉淀物和上清液分别处理如下.将沉淀物加入120 mL饱和的正丁醇水溶液,在沸水浴中加热搅拌至溶液分散透明,冷至室温,在7℃冰箱中过夜,离心(6 000 r/min,20 min).按上述步骤所得的沉淀物重复处理5~10次(即重结晶5~10次).然后将沉淀物浸于无水乙醇中24 h,再反复以无水乙醇洗涤沉淀后,置于室温下真空干燥,此时得到的是纯化的直链淀粉样品.无水乙醇洗涤沉淀的目的是除去直链淀粉中所络合的正丁醇.上清液中加入10 mL正丁醇于沸水浴中加热搅拌至溶液分散透明,冷至室温,在7℃冰箱中过夜,离心(6 000 r/min,20 min),重复上述操作2~3次.将上清液真空浓缩后,加入冷的无水乙醇进行沉淀,再以无水乙醇洗涤沉淀物数次,室温下真空干燥得到纯化的支链淀粉样品.芋头淀粉的分离和纯化
孙忠伟 张燕萍 向传万
(江南大学食品学院,无锡, 214036)
干燥的芋头淀粉,用体积分数85%甲醇脱脂24h后,用无水乙醇脱脂6h,在40℃干燥48h,待用。
1·3·2 直链淀粉与支链淀粉的分离与纯化
1·3·2·1 直链淀粉与支链淀粉的粗分离
称取10g芋头淀粉,放入500mL烧杯中,加少量的无水乙醇,使样品湿润,再加入0·5mol/LNaOH溶液200mL。在沸水浴中加热搅拌20~30min至完全分散。冷却后离心(6000r/min,20min),去除未分散的残渣(沉淀部分)。用2mol/LHCl中和离心液,并加入100mL正丁醇-异戊醇(体积比3∶1)混合液,然后在沸水浴中加热搅拌20 min,此时溶液透明,冷却至室温,移入2~4℃冰箱静置24 h,离心(6 000 r/min, 20min),沉淀物即为粗直链淀粉,上清液即为粗支链淀粉溶液。分别收集备用。1·3·2·2 直链淀粉的纯化
将沉淀物即粗直链淀粉全部转移至装有120mL正丁醇饱和水溶液,然后置沸水浴中搅拌直至溶液分散透明,再逐渐冷却至室温,移入冰箱内(2~4℃)保持24 h,取出离心(6 000 r/min,20min),将得到的沉淀重复上述操作6次,然后将沉淀物浸入无水乙醇中24h,以无水乙醇洗涤沉淀数次,该沉淀于室温下真空干燥,即得直链淀粉纯品。无水乙醇沉淀的目的是除去直链淀粉中络合的正丁醇。
1·3·2·3 支链淀粉的纯化
支链淀粉溶液置于分液漏斗中静置,取下层溶液加40mL正丁醇-异戊醇(体积
比1∶1)混和液,在沸水浴中加热搅拌直至溶液分散透明,冷却至室温,移入冰箱于2~4℃静置48h,离心(6000r/min,20min),去除沉淀物,用上清液重复上述操作3~5次,所得上清液减压浓缩至原体积的一半,加入2倍体积的无水乙醇沉淀、离心,将沉淀溶于热的200mL 0·5mol/L NaOH溶液中,离心去沉淀,离心液中再加入2倍体积的无水乙醇,将沉淀溶于200mL的蒸馏水中,用2倍体积的无水乙醇再沉淀,以无水乙醇洗涤数次,室温下真空干燥,即得支链淀粉纯品。
直链淀粉的分级制备研究
刘志强,益小苏
(浙江大学高分子科学与工程系,浙江杭州310027)
1.3 原淀粉的去脂处理
(1)将210 g丙三醇或正丁醇与去离子水配成醇浓度为70%或85%的处理液,倒入500 mL的三颈烧瓶中.加入16 g淀粉,配成固含量约5%的淀粉悬浮液.(2)将烧瓶放入超级恒温水槽中,通氮气保护,搅拌溶液.控制水浴温度,使其在1~1.5 h中由
30℃上升至89℃.在89℃保持1 h后将烧瓶撤离水浴.(3)待烧瓶中的溶液冷却至25℃,将其分成两份,分别倒入500 mL的三颈烧瓶中,各加入300mL无水乙醇,搅拌1 h.(4)搅拌结束后,将悬浮液抽滤,用无水乙醇冲洗沉淀约3~4次,得到不含处理液的去脂淀粉.1.4 分散法分级
(1)将二甲基亚砜(DMSO)400 mL和去离子水100 mL倒入1 000 mL的烧杯,配成分散溶液.然后加入50 g淀粉,室温下搅拌若干小时(4,8,18 h),溶液呈乳液状.(2)将乳液倒入1 000 mL烧瓶中,在某一温度(60,80,100℃)的恒温水浴中搅拌加热30 min,然后加入100 mL的正丁醇,同时不停地搅拌5 min.(3)将溶液撤离水浴,冷却至室温,溶液中有细针状沉淀出现.用高速沉淀机分离沉淀(2 000r/min,30 min).(4)取出沉淀于500 mL烧瓶中,加入200 mL的1% NaCl溶液,在80℃的恒温水浴中加热30min,此时沉淀完全溶解.缓慢滴加100 mL正丁醇于热溶液中,同时用玻棒搅拌.(5)滴加结束后,将烧瓶撤离水浴,静止冷却至室温.用高速沉淀机分离出沉淀(2 000 r/min, 30 min).(6)根据需要重复(4),(5)步,增加重结晶次数.(7)取出沉淀置于培养皿,在70℃真空烘箱中干燥至恒重,得到直链级分.1.5 水浸法分级
(1)取8 g淀粉,350 mL去离子水倒入500 mL的三颈烧瓶中,配成浓度约为2%的淀粉悬浮液,用pH为6.3的磷酸缓冲液调节悬浮液的pH值为6.3.(2)将该悬浮液放入某一温度(70,80,90,98℃)的恒温水浴中,搅拌,通氮气保护.(3)保持15 min后,立即把溶液转移至薄壁塑料杯,放入冰盐浴中进行快速冷却.(4)把已冷却的悬浮液用离心沉淀机离心30 min,转速为2 000 r/min.(5)抽取上层清液,将其在60℃水浴中加热10 min后,缓慢滴加200 mL正丁醇,同时不停地搅拌,直至白色细针状沉淀生成.(6)用离心沉淀机分离沉淀(2000 r/min,10 min).(7)取出沉淀放入培养皿中,在70℃真空烘箱中干燥至恒重,得到完全干燥的直链级分.【玉米淀粉】
直链淀粉提纯方法的研究
无锡轻工大学食品学院(214036)
杨光丁霄霖
2·3·3碱液分散法
先加少量无水乙醇将淀粉充分湿润,加入0·5MNaOH溶液,沸水浴10~30min,用2NHCl溶液中和至pH7·5左右,加入丁醇-异戊醇(1∶1, v/ v),沸水浴10~30min,冷却至室温后,于4℃下静置至少12h,离心(1000r/min)20min,得到沉淀物,加适量丁醇饱和水溶液,沸水浴15~30min,不断搅拌,使沉淀物完全溶解,于4~25℃下静置3~12h,离心(1000r/min)20min,得到沉淀;如此循环3次以上,然后分别用78%乙醇洗涤3次,用95%乙醇洗涤3次,用无水乙醇洗涤3次,于40℃下真空干燥,即得直链淀粉纯品。
3·结果与分析
3·1碱液分散法
采用碱液分散法时,加入丁醇后,静置2~6h,即形成大量的沉淀,用普通离心机进行离心,可以将沉淀很好地分离。但是,应注意静置的温度不宜过低,否则,容易导致直链淀粉的老化。老化后的直链淀粉不溶于水,甚至加热至沸腾也不溶解,给以后的使用带来麻烦。直链淀粉老化主要是由直链淀粉结晶造成的,因此,随着纯化次数的增加,饱和丁醇水溶液的添加量也应该相应有所增加,使淀粉浓度适当稀释,尽量避免发生淀粉老化。
葛根直链淀粉和支链淀粉分离纯化的研究
杜先锋 许时婴 王 璋
(无锡轻工大学食品学院,无锡,214036)
1.3.2 淀粉组分的分离和纯化
取10g葛根淀粉,先以少量的无水乙醇润湿,再加200ml 0.5mol/L NaOH溶液,在热水浴中加热分散至整个淀粉糊完全透明,冷至室温,离心(6000r/min,20min)除
去不溶性杂质。淀粉糊以2mol/L HCl调至中性,再加90ml正丁醇-异戊醇(3∶1,V∶V)溶液,在沸水浴中加热搅拌至整个体系透明,冷却至室温,置于7℃冰箱中过夜,离心(6000r/min, 20min),沉淀物和上清液分别处理如下:
(1)沉淀物加120ml饱和的正丁醇水溶液,在沸水浴中加热搅拌至溶液分散透明,冷至室温,在7℃冰箱中过夜,离心(6000r/min,20min),所得的沉淀物按上述步骤重复操作5~10次(即重结晶5~10次),然后将沉淀物浸于无水乙醇中24h,再反复以无水乙醇洗涤沉淀,该沉淀物于室温下真空干燥,得到纯化的直链淀粉样品。无水乙醇洗涤沉淀的目的是除去直链淀粉中所络合的正丁醇。
(2)上清液中加入10ml正丁醇于沸水浴中加热搅拌至溶液分散透明,冷至室温,在7℃冰箱中过夜,离心(6000r/min,20min),重复上述操作2~3次。上清液经真空浓缩后,加冷的无水乙醇进行沉淀,再以无水乙醇洗涤沉淀物数次,室温下真空干燥得到纯化的支链淀粉样品。
马铃薯直链淀粉与支链淀粉的分离方法
吉宏武丁霄霖
A无锡轻工业大学食品学院
2.3淀粉的分散
称取10g干淀粉分散于100ml,水中,然后慢慢地倒入1.3L0.15mol/LNaOH中,并轻轻搅拌均匀,静置5min后加360ml5%NaCl溶液,用HCl中和至pH为6.5-7.5,在室温下放置15-20h,分为两层,将上清液吸出,经两次过滤,即为直链淀粉粗提液,下层胶体为支链淀粉粗提液。
2.4直链淀粉的纯化
直链淀粉粗提液,按10:1体积比加入重蒸的正丁醇,在常温下搅拌1h,静置3h后,将部分沉淀物离心(3500r/min,20min),沉淀物再用正丁醇搅拌饱和1h、静置、离心,重复四次后,将沉淀物转至无水乙醇中浸泡24h,再用乙醇洗涤几次,在室温下真空干燥,即为直链淀粉。
2.5支链淀粉的纯化
支链淀粉粗提液经离心后(30min,20°C,7000r/min),弃去上清液,沉淀物加入适量的1%NaCl,并轻轻搅动,放置15h左右,待其分层后,弃去上清液,部分沉淀物离心(30min,20°C,7000r/min),弃去上清液,沉淀物再加入适量的1%NaCl,并轻轻搅动,静置、离心,重复四次后,将沉淀物转至无水乙醇中放置一夜,再用无水乙醇洗涤3-5次,室温下真空干燥,即为支锭淀粉纯品。
[玉米淀粉]
直链淀粉和支链淀粉纯品的提取及其鉴定
(江南大学食品学院,无锡)
洪雁顾正彪刘晓欣
1.2.1直链淀粉和支链淀粉的分离与纯化
1.2.1.1直链淀粉与支链淀粉的粗分离
称取10g玉米淀粉,加入少量无水乙醇分散并湿润样品,再加入350ml 0.5mol/L的氢氧化钠,在沸水浴中搅拌10min,使溶液清澈透明,无结团状,冷却后冷冻,高速离心(8000r/min)10min,用2mol/L的盐酸中和至中性,加入100mL3:1丁醇(异戊醇的混合液,在沸水浴中加热搅拌10min后,冷却至室温,于2-4°C的冰箱中静置24h,取出,冷冻,高速离心(8000r/min)10min,得到的沉淀物为粗直链淀粉,离心液为粗支链淀粉。
1.2.1.2直链淀粉的纯化
将粗直链淀粉沉淀全部移入丁醇饱和的200ml水中,加热溶解至溶液透明,冷却至室温后放入2-4°C的冰箱中静置24h,取出,冷冻,高速离心(8000r/min)20min,得沉淀物,再纯化数次后,将沉淀物在砂芯漏斗中过滤,用无水乙醇洗涤数次,样品在40°C的鼓风干燥箱中干燥8h,即得纯直链淀粉。
1.2.1.3支链淀粉的纯化
将粗支链淀粉离心液在分液漏斗中静置数分钟后,分成三层,取下层乳胶体溶液,加40ml1:1丁醇(异戊醇的混合液,于沸水浴中加热搅拌10min,冷却后放入2-4°C的冰箱中静置48h后,冷冻,高速离心(8000r/min)10min,离心液中缓缓加入二倍体积的无水乙醇,在2-4°C的冰箱内静置24h,将沉淀物溶于热的0.5mol/L氢氧化钠溶液,依上述方法纯化数次,用无水乙醇脱水洗涤,样品在40°C的鼓风干燥箱中干燥8h,即得纯支链淀粉。
第二篇:生物分离与纯化复习题(本站推荐)
生物分离与纯化复习题 第一章
1、生物分离纯化技术的概念?
以生物物质原料为基础,对目标产物进行提取、纯化、加工制备的生产技术。
2、生物物质与生物产品的区别?
生物物质:生物物质是指存在于生物体内的所有生物活性物质的总称。生物物质的制成品统称为生物产品。
生物产品:在产业中的生物物质的制成品。
3、生物分离纯化技术的原理和特点?
基本原理:利用混合物中不同组分间物理、化学和生物学性质的差别来实现组分间的分离或纯化。
技术原理:选用能够识别这些差别的分离介质或扩大这些差别的分离设备来实现组分间的高效分离。
特点:⑴环境复杂、分离纯化困难含量低、工艺复杂
⑵ 稳定性差、操纵要求严格
⑶ 目标产物最终的质量要求很高
⑷ 终极产品纯度的均一性与化学分离上纯度的概念并不完全相同 ⑸ 终极产品纯度的均一性与化学分离上纯度的概念并不完全相同
4、发酵生物产品分离纯化的生产工艺? ⑴原材料的预处理 ⑵颗粒性杂质的去除
⑶可溶性杂质的去除和目标产物的初步纯化 ⑷目标产物精制
⑸目标产物的成品加工
5、生物分离技术的应用? 食品添加剂 药物
第二章
6、预处理的目的?
使目标产物最大限度的转移到溶液中。
7、改变发酵液过滤特性的基本方法?
⑴降低液体黏度(常用加水稀释法和加热法)⑵调整pH(改变物质的电离度和电荷性质)⑶加入反应剂(沉淀杂质)
⑷加入助滤剂(不可压缩的多孔微粒,使滤饼疏松,增大滤速)⑸凝聚和絮凝
8、对发酵液相对纯化的基本方法? 高价无机离子(Ca2+、Mg2+、Fe2+)
⑴Ca2+ 草酸钠→草酸钙沉淀(回收草酸)⑵Mg2+ 三聚磷酸钠→三聚磷酸钠镁络合物 ⑶Fe2+ 黄血盐→普鲁士蓝沉淀 杂蛋白 ⑴沉淀
⑵变性 ①加热大幅度调解pH ②加酒精、丙酮等有机溶剂或表面活性剂 ⑶吸附法
9、凝聚和絮凝的作用原理?
凝聚原理:加入电解质,中和胶体粒子的电性,夺取胶体粒子表面的水分子,破坏其表面的水膜,使胶体粒子能聚集起来 絮凝原理:(絮凝剂是一种能溶于水的高分子聚合物)通过静电引力、范德华引力或氢键的作用,强烈地吸附胶粒,形成较大的絮团
10、离心分离的基本原理?
⑴当物体围绕一中心轴做圆周运动时,运动物体就受到离心力的作用。
⑵旋转的速度越高,运动物体所受到的离心力越大。在相同转速条件下,不同运动物体所受到的离心力大小不同,表现出不同的沉降速度。
11、离心分离的常用方法及特点? ⑴差速离心法
⑵速率区带离心法 最大的梯度密度低于最小密度的沉降样品在最高的沉降物质 达到管底前停止,短时间,低速度
⑶等密度离心法 最大的梯度密度大于密度最大的沉降样品 使各组分沉降到其平衡的密度区,长时间,高速度
11、离心分离的常用设备类型及特点?
⑴根据其离心力大小,可分为低速离心机、高速离心机和超离心机; ⑵按型式可分为管式、碟片式等;
⑶按作用原理不同可分为过滤式离心机和沉降式离心机两大类。⑷按出渣方式可分为人工间歇出渣和自动出渣等方式。
第三章
13、微生物、植物细胞壁组成和结构特点? 细菌:肽聚糖,网状结构;
酵母细胞壁:葡聚糖和甘露聚糖的交联
霉菌细胞:几丁质或纤维素的状结构,其强度比细菌和酵母菌的细胞壁有所提高。
14、常用的细胞破碎方法?
⑴直接测定法:适当稀释,血球计数板计数; ⑵目标产物测定法 ⑶测定导电率
16、沉析分离的依据是什么?
通过加入某种试剂或改变溶液条件,使目标产物以固体形式从溶液中沉降析出的分离纯化技术。
17、盐析法的原理是什么?
在高浓度中性盐存在的情况下,蛋白质等生物大分子在水溶液中的溶解度降低并沉淀析出的现象称为盐析。
18、影响盐析的因素有哪些? ⑴盐饱和度的影响 ⑵蛋白质浓度的影响 ⑶pH的影响 ⑷温度的影响
19、盐析法分离蛋白质的特点? 优点:经济、安全、操作简便、应用范围广 缺点:盐析法分辨率不高
20、常用的蛋白质沉淀方法有哪些? ⑴盐析法
⑵有机溶剂沉淀法 ⑶等电点沉淀法
⑷选择性变性沉淀法 ⑸有机聚合物沉淀法
21、有机溶剂沉析原理和特点?
原理:有机溶剂加入使溶液介电常数减小,溶质之间静电作用增加。有机溶剂破坏溶质的水化层,使溶质间的作用力增加。优点:①分辨能力比盐析法高;
②有机溶剂沸点低,易挥发除去,不会残留于成品中,产品更纯净,沉淀物与母液间的密度差较大,分离容易。
缺点:①有机溶剂沉淀法易使蛋白质等生物大分子变性,操作需在低温下进行; ②需要耗用大量有机溶剂,成本较高;
③有机溶剂一般易燃易爆,所以贮存比较困难或麻烦。
22、等电点沉析原理和特点?
原理:两性电解质处于等电点时,分子表面净电荷为0,双电层和水化膜结构被破坏,溶解度降低。
特点:等电点沉淀法只适用在等电点时溶解度很低的两性生化物质
23、有机聚合物沉析原理和特点?
利用生物大分子与某些有机聚合物形成沉淀而析出的分离技术称为有机聚合物沉析。P52
24、结晶操作的原理是什么?
⑴当溶液处于过饱和状态时,分子间的分散或排斥作用小于分子间的相互吸引作用。
⑵ 结晶是一个以过饱和度为推动力的质量与能量的传递过程。
25、过饱和溶液形成的方法有哪些? ⑴将热饱和溶液冷却 ⑵将部分溶剂蒸发 ⑶化学反应结晶 ⑷解析法
26、稳定、亚稳定和不稳定区溶液的特征? 稳定区——溶液稳定。
亚稳定区——加入晶核,晶体成长 不稳定区——溶液自发形成结晶
27、常用的起晶方法有哪些? ⑴自然起晶法 ⑵刺激起晶法 ⑶晶种起晶法
28、结晶操作中3个主要过程的特点? 过饱和溶液的形成
晶核的形成:晶核是在过饱和溶液中最先析出的微小颗粒。晶核的大小通常在几个纳米到几十个纳米。
晶体的生长:溶液主体的溶质传递到晶体表面,溶质进入适当的晶格位置,结晶产生的热量传导到溶液中
第四章
29、色谱分离技术的概念
利用不同组分在固定相和流动相中的物理化学性质的差别,使各组分在两相中以不同的速率移动而进一步分离的技术。30、色谱分离系统的组成
色谱分离系统包括两个相:固定相,流动相。
31、色谱分离技术的分类
⑴根据分离时一次进样量的多少分类 分析规模(小于10mg)半制备规模(10~50mg)制备规模(0.1~10g)生产规模(>10g)⑵根据流动相的相态不同分类 气相色谱—以气体作流动相 液相色谱—以液体作流动相
超临界流体色谱—流动相是在接近它的临界温度和压力下工作的液体 ⑶根据固定相的附着方式分类: 纸色谱—液体固定相涂在纸上
薄层色谱—固定相涂敷在玻璃或金属板上 柱色谱—固定相装在圆柱管中 ⑷按分离机理不同分类 吸附色谱法 分配色谱法
离子交换色谱法 凝胶色谱法 亲和色谱法
⑸根据操作压力的不同分类 低压色谱:操作压力<0.5MPa 中压色谱:操作压力0.5~4.0MPa 高压色谱:操作压力4.0~40MPa
32、色谱法的特点 ⑴分离效率高 ⑵灵敏度高 ⑶分析速度快 ⑷应用范围广
缺点:处理量小;操作周期长;不能连续操作。
33、吸附色谱分离技术的要点
吸附法的关键是选择吸附剂和展开剂
34、离子交换树脂的基本结构 ⑴三维空间网状骨架 ⑵骨架上连接官能团
⑶官能团携带相反电荷的离子
35、离子交换树脂的分离原理
36、离子交换树脂分离的工艺过程 ⑴离子交换树脂的选择 ⑵离子交换树脂的预处理 ⑶离子交换操作条件的选择 ⑷离子交换过程 ⑸洗脱过程 ⑹树脂的再生 ⑺树脂交换操作 第五章
1、过滤技术的概念及过滤的原理
概念:过滤技术是将固体颗粒与液体进行分离的一种技术,是溶解物与不容物的分离。
原理:利用多孔性介质截留固液悬浮液中的固体粒子,进行固液分离的方法称为过滤
(推动力:重力、压力和离心力)
2、过滤的目的:
获得清净的液体产品,也可能是为了得到固体产品
3、过滤分类:
按料液流动方向:常规过滤、错流过滤
按操作压力:常压过滤、减压过滤和加压过滤 按过滤方式:表面过滤和深层过滤
4、过滤的介质
过滤的介质应由惰性材料制成;耐酸耐碱耐热适用于各种溶液的过滤;过滤阻力小,滤速快,反复利用,易清洗;具有足够的机械强度,廉价易得
5、常用的过滤介质:
滤纸、脱脂棉、织物介质、微孔滤膜等
6、过滤装置
普通漏斗、垂熔玻璃滤器、砂滤棒、板框式压滤机、微孔滤膜过滤器
7、常用的过滤方法
①深层过滤(深层过滤有滤芯和滤膜两种)
②筛式过滤(过滤分离取决于滤片基质孔径的大小)
③系列膜过滤(使用圆盘夹膜式滤器,依次降低所用膜的孔径)
8、影响过滤的因素
①混合物中悬浮微粒的性质和大小 ②混合液的黏度 ③操作条件
④助滤剂的使用
9、膜分离技术的概念
是指利用天然或人工合成的具有选择透过性的薄膜,以外界能量或化学位差为推动力对双组分或多组分体系进行分离、分级、提纯或富集的过程
10、膜的分类 按膜孔径大小:微滤膜、超滤膜、反渗透膜、纳米过滤膜 按膜的结构:对称性膜、不对称性膜、复合膜 按材料分:无机材料膜、高分子合成聚合物膜
11、膜的性能
耐压、耐温、耐酸碱 性、化学相容性、生物相容性、低成本
12、膜分离技术的特点
①处理效率高、设备易于放大; ②可在室温或低温操作
③化学与机械强度小、减少失活 ④无相变、节能
⑤选择性好、可达到部分纯化目的 ⑥回收率较高
13、膜组件 的定义
由膜、固定膜的支撑体、间隔物以及收纳这些部件的容器构成的一个单元称膜组件或膜装置
14、膜组件的形式
管式、螺旋卷式、毛细管式、中空纤维式、平板式
15、微滤技术的概念及原理
概念:利用辩分原理截留直径为0.05~10微米大小的粒子的膜分离技术
原理:利用微孔滤膜的筛分作用,在静压差推动下,将滤液中尺寸大于0.1~10微米的微生物粒子截留下来,以实现溶液的净化、分离和浓缩的技术。
16、微滤的操作方式 死端微滤和错流微滤
17、微滤膜的特性 ①孔径的均一性 ②空隙率高 ③滤材薄
18、超滤的定义
凡是能截留相对分子质量在500以上的高分子的膜分离过程称为超滤
19、超滤的原理
膜表面无数微孔截留住了分子直径大于孔径的溶质和颗粒从而达到分离的目的 20、超滤的特点和影响因素
特点:膜材料无毒无害
膜有较好的耐酸碱耐溶剂性能
低压操作
超滤装置无污染
成本低、回收率高
影响:溶质的分子性质、溶质的浓度、温度、压力 21、超滤前的准备:
充分了解超滤膜的性能、正确安装超滤装置、超滤膜清洗消毒处理后的检测、对加工溶液的要求、洗滤、超滤操作参数的优化、超滤膜的清洗储存(作为了解)、超滤设备
搅拌式超滤、无搅拌式超滤、中空纤维超滤
23、透析技术
透析是一种扩散控制的,一浓度梯度为驱动力的分离方法。
24、反渗透技术
一种只能透过溶剂而不能透过溶质的膜一般称为理想的半透膜
第六章
1、萃取的概念
根据混合物中不同组分在溶剂中的溶解度不同,将所需的组分分离出来,这个操作过程称为萃取
2、萃取的分类
根据参与溶质分配的两相不同分类 ①液液萃取 ②液固萃取 组分数目不同分类
①多组元体系 ②三元体系 有无化学反应分类
①物理萃取 ②化学萃取 萃取剂的种类和形式分类 ①双水相萃取 ②溶剂萃取 ③反胶团萃取 ④凝胶萃取 ⑤超临界萃取
3、萃取的特点
萃取过程具有选择性
能与其他需要的纯化步骤相配合 分离效率高,生产能力大
传质速速快,生产周期短
4、萃取的 原理
萃取是一种扩散分离操作,不同溶质在 两相中分配平衡的差异实现萃取分离
5、工艺流程
①混合 ②分离 ③回收
6、影响溶剂萃取的主要因素
PH、温度、盐析作用、溶剂性质
7、双水相的定义
两种不相容的亲水性高分子 聚合物在水溶液中形成的两相 双水体系形成的原因 :
由于较强的斥力或空间位阻,相互之间无法渗透,在一定条件下,即可形成双水相体系
亲水性聚合物水溶液和一些无机盐相混时,也因盐析作用会形成双水相体系
8、双水相萃取原理
溶质在两相中的溶解能力不同,遵守分配定律K=上相平衡总浓度/下相平衡总浓度
9、双水相萃取的特点: ①相混合能耗低 ②达到萃取平衡所需时间短 ③易进行工业放大 ④易实现连续操作
⑤步骤简便、通用性强
⑥适于易失活的蛋白质酶的提取纯化
10、双水相萃取的工艺流程 ①目的产物的萃取 ②PEG的循环 ③无机盐的循环
11、影响 双水相萃取的影响 ①成相高聚物浓度的影响 ②成相高聚物的分子量的影响 ③盐的影响 ④PH的影响 ⑤温度的影响
12、双水相萃取技术的应用 ①基因工程药物的分离与提取 ②酶工程药物的分离与提取 ③抗生素 的分离与提取
④天然植物药用有效成分的分离与提取
13、当三相成平衡态共存的点 称三相点
14、液气两相成平衡状态的点叫临界点
15、处于临界温度临界压力以上的流体叫做超临界流体
16、萃取原理
在温度不变的条件下,压力增加,其密度增加,其溶解度随之增加;压力不变的情况下,温度升高,密度降低,溶解度随之降低
17、超临界流体萃取的基本方法 等温法、等压法、吸附法
18、超临界流体萃取的特点 ①萃取和分离合二为一
②压力和温度都可以调节萃取过程的参数 ③萃取的温度低
④临街CO2常态下是气体无毒 ⑤超临界流体的极性可改变 20、超临界流体萃取的应用
细胞破碎、催化作用、去除杂质、杀菌作用 第七章
1、浓缩的目的
①作为结晶和干燥的预处理
②提高产品质量
③减少产品的体积和重量 ④增加产品的储藏 时间
2、浓缩的原理
指总固形物与溶剂部分分离的过程,使生物制品原料中水浓度降低到复合工艺要求的过程
3、蒸发浓缩的 定义
蒸发是溶液 表面的溶剂分子获得的动能超过了溶液内溶剂分子的吸引力而脱离液面逸向空间的过程
4、常用浓缩技术
蒸发浓缩、膜浓缩、冷冻浓缩、凝胶浓缩
5、冷冻干燥的过程 预冻
初级干燥 次级干燥
(冷冻温度为-10~-50°C)
6、干燥的定义 :浓缩物料脱水的过程
热干燥技术:指将物料加于湿物料并排除挥发性湿分,获得一定湿含量固体产品的过程
7、冷冻干燥技术原理
通过升华从冻结的生物中去掉水分的过程
8、干燥曲线
在恒定的干燥条件下,以干燥时间为横坐标,物料湿含量为纵坐标可得干燥曲线
(预热阶段——恒速干燥阶段、降速干燥阶段)
第三篇:血清γ-球蛋白的分离纯化实验报告
血清γ-球蛋白的分离纯化
一、目的与要求
1、掌握分离纯化蛋白质的基本原理和基本过程。
2、熟悉盐析、离心、层析、电泳等生化基本技术在蛋白质分离纯化中的综合应用。
3、学会设计和制定分离纯化蛋白质的实验方案,技术路线,质量监控和保证措施。
二、实验原理
血清蛋白有300多种,可粗略的分为清、球蛋白两大类,γ球蛋白只是球蛋白中的一个亚类。欲用常规方法获得,可先用半饱和硫酸铵从血清中盐析出球蛋白,接着用葡萄糖凝胶G-25脱去球蛋白中的盐分最后用DEAE纤维素阴离子交换柱便可直接从脱盐的球蛋白溶液中分离纯化出γ球蛋白,其反应机理如下:
C2H5
H
纤维素-O-(CH2)2-N(C2H5)2
纤维素-O-(CH2)2-N+……H2PO4
H++H2PO4
DEAE纤维素离子交换柱
COOH
C2H5
α、β、γ球蛋白
NH2
COO
H
经过盐析和脱盐的球蛋白液
纤维素-O-(CH2)2-N+…α和β
G
PH6.3
NH2
交换到柱上的α和β-球蛋白
H2PO4
COOH
γ-球蛋白
NH3+
被DEAE柱分离纯化的γ-球蛋白
被柱层析交换结合的α球蛋白和β球蛋白,可通过增加洗脱液的离子强度或降低洗脱的pH值(也可两者同时改变),使其分部洗脱下来而被纯化。纯化前后的γ球蛋白可用电泳方法进行比较鉴定。
三、仪器和材料
仪器:离心机,1.5×40cm层析柱,层析架或滴定台,核酸-蛋白检测仪,部分收集器,紫外分光光度计,色谱柱,电泳槽,电泳仪。
材料:马血清,Sephadex
G-25×200g,DEAE-32×200g。
四、实验步骤
(一)分离纯化步骤
1、取3mL,4℃预冷血清,加入3mL
4℃预冷的饱和硫酸铵。边滴边摇。
2、静置大于10min后,3500rpm离心15min,弃去上清液,将沉淀溶于少量的生理盐水。从中取0.5mL用于测定蛋白质含量。
3、将剩余的样品上Sephadex
G-25柱,用0.02
mol/L
pH6.5的NH4AC缓冲液洗脱,每管收集3
mL,用于绘制洗脱曲线,选择颜色最深(即浓度最高管)的取0.5mL留待电泳用。
4、将剩余的蛋白质溶液上已平衡好的DEAE-32柱(装一半的柱子),用0.02
mol/L
pH6.5
NH4AC缓冲液洗脱,用干净的试管收集,并用20%磺基水杨酸检测是否有蛋白流出,并绘制洗脱曲线,收集的蛋白质溶液即为γ球蛋白(留少量电泳用,0.5ml测[Pr])。
5、柱子再生。先用0.3mol/L高盐缓冲液,再用0.02mol/L缓冲液平衡。
(二)电泳步骤
1、安装垂直板电泳槽,按表配制分离胶溶液。用滴管吸取分离胶溶液,沿管壁注入玻璃板至距上端3cm处(插梳为准)
2、立即用滴管沿凝胶管壁加人蒸馏水约0.5cm高度,加水时应注意减少胶液表面的震动与扩散。加蒸馏水的目的,隔离空气中的氧和消除凝胶柱表面的弯月面,使凝胶表面平坦(加水时切勿呈滴状滴入胶液)。
3、静置30分钟,在凝胶表面与水之间出现清晰的界面,表示聚合已完成(注:刚加水时看出有界面,后逐渐消失,等再看出清晰界面时,表明凝胶已聚合)。用滴管吸去凝胶管的水层,并用滤纸条(无毛边)轻轻吸去凝胶表面残留的水分,注意不要损伤已聚合的凝胶表面。
4、按表制备浓缩胶,沿管壁加入浓缩胶,插上梳子,静置15分钟,待凝胶聚合后,待用。
5、加入10倍稀释的甘氨酸一Tris缓冲溶液于电泳槽中,用注射针排除样品孔中的气泡,样品与样品处理液1:1混合后,用微量注射器上样。
6、将上电泳槽的电极接至电泳仪的负极,下电泳槽的电极接至电泳仪的正极,接通电源,刚开始5分钟内6-7
mA/板,待示踪染料迁移到下口约0.5cm处时,就可停止电泳,切断电源(电泳时间约为
2/小时左右)。
7、剥胶
取下玻璃板,用带有10cm长的注射针头,内盛蒸馏水作润滑剂。将针头插人胶与玻璃板之间,边注水边慢慢推针前进,靠水流压力和润滑作用使玻璃板与凝胶分开。
8、固定,染色与脱色
固定染色液染色过夜,用脱色液脱色.9、染色,加入染色液,染色过夜。
10、拍照,记录结果。
五、实验结果与分析
**
血清样由于蛋白质种类较多,区带不清。脱盐后,样品中剩余蛋白质为α、β、γ-球蛋白,从结果中可以看到几条较为明显的区带。γ-球蛋白的电泳结果显示其分离的较为纯净。
六、注意事项
1、上样前要将使用过的柱子重生。
2、上样时要注意3个相切:缓冲液与柱床表面相切;样品与柱床表面相切;洗样时缓
冲液与柱床表面相切。
3、用琼脂糖封胶时一定要封延时,防止漏胶。
4、配胶时要按照顺序加样,配完后要立刻混匀。
5、剥胶时要在水冲洗的情况下进行。
第四篇:淀粉降解菌的分离与筛选实验与总结
第一章
绪
论
1.1 简介
1.1.1 淀粉
淀粉是葡萄糖的高聚体,通式是(C6H10O5)n,水解到二糖阶段为麦芽糖,化学式是(C12H22O11),完全水解后得到葡萄糖,化学式是(C6H12O6)。淀粉有直链淀粉和支链淀粉两类。淀粉是植物体中贮存的养分,贮存在种子和块茎中,各类植物中的淀粉含量都较高。
淀粉可分为直链淀粉(糖淀粉)和支链淀粉(胶淀粉)。前者为无分支的螺旋结构; 后者以24~30个葡萄糖残基以α-1,4-糖苷键首尾相连而成,在支链处为α-1,6-糖苷键。直链淀粉遇碘呈蓝色,支链淀粉遇碘呈紫红色。这并非是淀粉与碘发生了化学反应(reaction),而是产生相互作用(interaction),而是淀粉螺旋中央空穴恰能容下碘分子,通过范德华力,两者形成一种蓝黑色错合物。实验证明,单独的碘分子不能使淀粉变蓝,实际上使淀粉变蓝的是碘分子离子。
本实验的检测方式则利用了直链淀粉遇碘呈蓝色的特点。1.1.2 淀粉废水的产生
淀粉是一种重要的化工原料,广泛应用于食品、化工、纺织、造 纸、医药等行业。而在淀粉生产中会排放大量废水属高浓度有机废水,其 COD 浓度几千甚至上万,BOD 浓度也有几千,SS量也较高。如将废水直接排放,不仅是水资源的巨大浪费,而且将造成严重的环境污染。因此,国内外学者都在力求研究出一种快速、高效、低能耗的淀粉废水处理工艺。1.1.3 淀粉废水的处理方式
对于淀粉废水的治理,由于其污染物浓度高,危害大的特点,所以普通的化学治理方法难以达到很好的治理效果。目前对于淀粉废水的处理研究广泛采用生物治理方式,其技术方案大致包括厌氧生物处理法和好氧生物处理法。
1.2 国内外的研究进展
续前面所提到的厌氧生物处理法和好氧生物处理法,下面笔者将简单介绍两种方式的应用特点。(1)厌氧生物法
厌氧法处理淀粉废水,其最终产物是以甲烷为主的可燃气体,可作为能源回收利用;剩余污泥量少且易于脱水浓缩,可作为肥料使用;处理工艺运转费用低。在当前能源日益紧张的形势下,该方法作为一种低能耗,可回收资源的处理工艺日益受到世界各国的重视。近年来,厌氧发酵法处理淀粉废水主要有升流式厌氧污泥床(UASB)、厌氧流化床(AFB)、厌氧接触法(ACP)、两相厌氧消化法(TPAD)和厌氧滤池(AF)等。(2)好氧生物法
同厌氧生物法相比,好氧生物处理法具有处理能力强、出水水质好、占地少的优点,因此被当前各国广泛应用。近几十年来,国内外对好氧生物处理法的净化机理和曝气原理进行了大量的实验研究,使好氧生物处理法在设计和运行方面有了很大的改进和革新,特别是在 处理高浓度有机废水方面,取得了一定的成果。但与厌氧法相比,好氧生物法在处理淀粉加工废水方面有许多不足之处,例 如需要充氧、动力消耗大、无能量回收、微生物所需营养多和污泥量大等适合处理低浓度的有机废水。而淀粉废水的 COD 一般较大,所以在淀粉废水的处理中单独应用的较少,主要是活性污泥法、接触氧化法、生物氧化塘法和 SBR 法。在淀粉加工废水的处理中,好氧生物处理一般用作后续处理。
1.3 实验目的与意义
1.3.1 实验目的
(1).掌握微生物分离和筛选的基本方法及技术(2).巩固微生物实验操作的能力 1.3.2 实验意义
淀粉废水中的污染物浓度高,危害大,普通的化学治理方法又难以达到很好的治理效果,如果任其肆意泛滥,势必影响到生态环境和人民的身体健康,长远来看这更会影响到我国人口、经济、社会、资源、环境等各方面的可持续发展。由此,淀粉废水问题俨然成为了一个大问题,如此对其治理也更加是任重而道远。目前对于淀粉废水的处理研究广泛采用生物治理方式,但多种方案都有一定的欠缺之处,一直没有一个完善合理的办法来解决淀粉废水的问题。所以我们有必要去深入学习并领悟对其处理的方案及过程。
微生物方法对环境污染的治理有着十分重要的作用及非常可观的前景,所以对于每一个环境工程专业的同学接触同微生物分离与筛选有关的实验都是有重要价值,无论是对于理论的理解,对专业的认识,还是对实践的把握都是有着深刻意义的。
第2章
实验的材料与方法
2.1 实验材料
2.1.1 实验仪器
500ml烧杯*1,500ml锥形瓶*1,250ml锥形瓶*1,培养皿*10,试管*5,1ml移液管*1,10ml移液管*1,酒精灯*1,加热套*1,棉塞,棉绳,报纸若干。2.1.2实验药品
活性污泥,(NH4)2SO4 5g,KH2PO4 5g,淀粉5g,蛋白胨1.5g,牛肉膏3g,琼脂8g,蒸馏水400ml,(盐酸,氢氧化钠适量)
2.2 实验方法
2.2.1 实验原理
淀粉酶能使淀粉分解成葡萄糖,而淀粉与碘液发生反应形成蓝色化合物,葡萄糖不与碘液发生反应形成蓝色化合物。能分泌淀粉酶的菌落能在周围形成淀粉圈,从而通过碘液即可筛选出淀粉酶产生菌。
在活性污泥中的微生物通过初筛、复筛等过程可以达到分离的目的。初筛是对所得的纯种进行检测。由于淀粉酶是胞外酶,在分离培养基中加适量可溶淀粉通过平板透明圈法来检测淀粉酶产生菌。筛选透明圈比值大的菌株接种到培养基中进行培养。
2.2.2 实验步骤
1.固体淀粉培养基(周二)
固体培养基(NH4)2SO4
5g,KH2PO
45g,淀粉5g,蛋白胨1.5g,牛肉膏3g,琼脂8g,蒸馏水400ml,pH 7.0—7.5放于烧杯在加热套上加热,待瓶中颗粒完全融化后停止加热并倒入锥形瓶(500ml)然后用棉塞塞住瓶口,再用棉绳系好。试管、培养皿、移液管、锥形瓶一同高压蒸汽灭菌。2.培养(周三)
取5支试管(无菌),用移液管(无菌)吸取1mL活性污泥放入装有9.0mL无菌水的试管中吹吸数次混匀后即为10-1,再用无菌移液管吸取10-1的菌悬液1mL放入装有9.0mL无菌水的试管中吹吸数次混匀即为l0-2稀释液,照此方法分别制成l0-3~l0-5的稀释液。将10-1~10-5稀释液1mL涂布于平板培养基表面。用对应的移液管按浓度顺序依低到高分别往培养皿中各加1ml菌液,并标注对应的标签为10-1~10-5,在无菌条件下往各个培养皿中加入加热后适当温度的培养液,置于37℃的恒温培养箱中培养24h(可适当延长)。3.初筛(周四)
制作两个平板,在长出的菌落中,找出独立菌株并滴加碘液,挑取有淀粉水解圈的单菌落,在两个平板进行划线并培养24h(37℃)(时间可调整)。4.复筛(周五)
两个平板初筛菌株在同一块平板上分别划线培养,培养72h(37℃)(时间可调整)。5.精筛(周一)
用滴加碘液的方式挑选出最佳菌株 6.菌种鉴定(周二)
最后通过观察筛选到的菌株的菌落大小、形态,颜色及革兰氏染色等情况对筛选到的菌株进行初步鉴定。
(以上内容为原定步骤,在实际操作中由于条件变化情况,个别细节会有所改动,下文将说明)
第3章
实验过程与结果
3.1 实验过程
按照试验设计步骤的大方向进行试验,个别细节有所改变,具体过程及试验时间如下:
(1)配置固体淀粉培养基(周二)
固体培养基(NH4)2SO4 5g,KH2PO
45g,淀粉5g,蛋白胨1.5g,牛肉膏3g,琼脂8g,蒸馏水400ml,pH 7.0—7.5放于烧杯在加热套上加热,待瓶中颗粒完全融化后停止加热并倒入锥形瓶(500ml)然后用棉塞塞住瓶口,再用棉绳系好。试管、培养皿、移液管、锥形瓶一同高压蒸汽灭菌。(2)培养(周三)
取5支试管(无菌),用移液管(无菌)吸取1mL活性污泥放入装有9.0mL无菌水的试管中吹吸数次混匀后即为10-1,再用无菌移液管吸取10-1的菌悬液1mL放入装有9.0mL无菌水的试管中吹吸数次混匀即为l0-2稀释液,照此方法分别制成l0-3~l0-5的稀释液。将10-1~10-5稀释液1mL涂布于平板培养基表面。用对应的移液管按浓度顺序依低到高分别往培养皿中各加1ml菌液,并标注对应的-1-5标签为10~10,在无菌条件下往各个培养皿中加入加热后适当温度的培养液,置于37℃的恒温培养箱中培养48h。培养24h后取培养基进行观察,并无明显菌落生成。
(3)初筛(周五)
经48h培养后已经有较多菌株生成,通过滴加碘液选取几株长势较好,水解圈较大的菌株(图一)
制作两个平板,在长出的菌落中,滴加碘液选取的菌株挑取出来,在两个平板进行划线并在37℃的恒温箱中培养72h。
(5)复筛(周一)
选取两个平板中经初筛后长势较好的菌株(图二)在同一块平板上分别划线,在37℃的恒温箱中培养24h。
3.2 实验结果
菌种鉴定(周二)
最后通过革兰氏染色对筛选到的菌株进行鉴定。染色后的显微观察图(图三)
最终观察发现该菌落为白色湿润,易挑取。革兰氏染色后的显微观察为红色杆状菌体。
6
结
论
经过此次实验,本组同学成功地筛选和分离出了一株淀粉降解菌,即在淀粉培养基内的该菌株附近有明显的水解圈,且经碘液检测水解圈内的淀粉已经水解。同时本组采用的方法有简便、易行、快速的优点。
通过对整个环境处理方式的观察,废水处理工艺技术越来越向着多种技术组合为一体的新技术、新工艺发展,将其他物理、化学法同生物法相结合的综合手段往往具有效率高,运行好等诸多优点。可以看出,环境废水处理正朝着综合、系统、高科技的方向发展,不仅对于淀粉废水,甚至对于整个工业的发展都是是必不可少的配套技术,其意义十分深远。
但是,对废水的治理毕竟还只是一种被动的环境保护手段,不能从根本上解决环境和生产之间的矛盾,所以在淀粉产品开发及生产过程中,应尽量优化原料的使用和加工的手段,从污染源头削减产污量,使废消除在生产过程中,最终实现环境、经济、效益的统一。
个人体会与建议
以下是本人对实验操作过程中出现问题的思考总结:
1.固体培养基配方中琼脂的成分偏低,造成培养基凝固性差,给划线培养增加了较大的难度。
2.没有设置关于降解菌对淀粉降解能力测定的实验环节,未能取得有说服力的实验数据。
3.实验操作水平不高,影响实验效率。
4.理论知识及实验经验缺乏,不能准确预计菌落生长所需的时间。
个人体会
本次实验我们以小组的形式进行了从活性污泥中分离和筛选出具有特定功能的环境微生物,对其功能进行了初步的鉴定,及观察菌落形态、染色并镜检对其进行菌种鉴定的过程。
这是一个综合的技术训练,通过这次训练,让我对环境微生物的作用的理解更为加深了,而且更加深刻的明白了实践与理论相结合的重要性。
建议
如果条件允许希望可以优化实验设施,改善实验条件
第五篇:关于药物分离与纯化技术课程设计论文
1.课程设计
1.1课程设计理念
结合学生情况、教学资源等实际,课程设计上力求达到可操作性、科学性和规范性。以职业岗位需要的知识技能为课程设计的依据,按照企业实际药物分离纯化生产过程进行教学,依次讲授基本原理、萃取技术、蒸馏技术、色谱分离技术、膜分离技术、固液分离技术、固相析出技术、干燥技术和电泳技术。合理的教学内容是实现教学目标的保证,药物分离与纯化技术课程涉及一些工程计算等工程性比较强的内容,学生可以把这些知识作为兴趣课后学习,而在课堂上要精选分离纯化基础原理、技术等教学内容,以“必需、够用”为原则,并且适当引入新技术,拓宽学生的视野。减少知识的抽象性,多采用实物、模型、多媒体等直观教学的形式,探索现场教学模式,提高教学效果。要为学生学习和掌握技能奠定必要、足够的理论基础,同时注意理论知识的把握程度,不一味强调理论知识的重要性和完整性,在淡化理论的同时根据实际工作需求培养学生的实践技能。
1.2积极引导启发鼓励
学生认识不到课程的重要性主要是因为没有明确的职业规划,对未来职业的具体工作过程不了解,意识不到课程内容在以后工作中的作用。适当给学生介绍药品生产工作岗位的具体任务流程,同时建立生产工艺技术与质量控制的概念,让学生认识到药物分离与纯化技术在整个制药过程中的关键性地位。在传授知识的同时还要注重培养学生良好的学习习惯,利用课后时间与学生接触,多去理解学生的感受,给予他们积极的鼓励和建议。
1.3合理导入适当拓展
上好课的前提是备好课,不仅要选用合适的教材,还要提前了解学生相关知识基础和理解接受能力,在课堂教学中要随时观察学生反应,以合理的速度引导学习,顺利完成教学任务。绪论作为教学的开始,是该课程的第一堂课,其教学效果不仅直接影响到教师后续的教学,也影响到学生对该课程的学习。绪论中对整个课程的导入很关键,以后讲授每个章节时对章节的导入也很重要,良好的导入能激发学生的兴趣,改善教学效果。与飞速发展的科学技术相比,教材的内容总是滞后的,教学内容不能局限于教材。教师要关注最近研究进展,把学科发展前沿的技术介绍给学生。还可以自己的科研经验作为教学素材,让学生了解科学的研究方法和过程。例如薄层色谱是实验室广泛应用的分离纯化方法,其原理、操作在课本中都会有详细的介绍,但在实际科研过程中会遇到很多问题,而这些问题的解决方法是在课本里面学不到的,教师可以把这些经验归纳出来,传授给学生。另外还要补充一些GMP的相关知识,从整体上介绍药物从研发到制成成品的过程,让学生有一个整体的认识。
1.4方法多样合理搭配
本课程理论深奥抽象,与日常生活关系不大,在教学中如果仅用语言和板书进行讲述,缺乏形象直观的展示,学生会对很多知识点理解困难,对学习失去兴趣。多媒体课件可以展示各种图片、动画、影像资料,比传统教学方式更为直观。它能使复杂、抽象的理论简单化、形象化,还能解决实验条件不足的问题,开阔学生眼界、拓宽知识面。由于教学资源的限制,实验室条件很难跟上先进仪器设备的发展,也不可能具备所有的制药机械,借助多媒体可以将新技术、新设备直观的展示给学生,展示完整的工艺流程,加深印象。但多媒体包含知识量大,授课速度快,学生注意力容易分散,所以多媒体不能代替传统教学方法。教师在用多媒体授课的同时用板书将知识点进行归纳,适当提问,有利于教师和学生之间的互动交流,控制授课节奏,给学生留出消化和吸收知识的时间。教学方式有很多种,要合理搭配,取长补短。
1.5适当举例激发兴趣
教材编写通常采用的是学术用语,如果整节课都进行原理性知识的讲解,很多学生会感到迷茫,课堂气氛会陷入枯燥、沉闷的状态。应该适当调整方式,联系日常生活、生产和科研,增强课堂学习的趣味性、实用性及先进性。这样不仅能够加深学生对相关知识的理解,为课堂教学增加活跃的气氛,也让学生认识到课程的重要性,激发学习积极性。在讲授每章节的内容时,为减少学生对新知识的陌生感,激发其求知欲,可以将教学内容与实际生活中的一些情景结合起来,将抽象的知识点变成学生感兴趣的内容。例如在讲授膜分离时,让学生看到实验室最常见也最简单的滤纸过滤;在环境保护方面,让学生了解如何用液膜法处理废水;为学生介绍在进行海水淡化时用到的电渗析技术;也给学生介绍海带(生物膜)富集碘的原因。
1.6重视实验校企结合药物分离与纯化技术是一门实践性很强的学科,学生要在实训实践中学习并掌握相关的知识与技能。但目前受实训学时和条件的限制,实验内容的安排多为验证性实验。学生只要按照教师给出的步骤按部就班的操作,无需思考就能得到结果,这种实训模式不利于学生培养解决实际问题的职业能力。在开展实训之前要鼓励学生自己查阅文献资料,设计实验过程,验证理论知识,提高学生实际动手能力和分析问题、解决问题及独立工作的能力。近年来新技术、新设备不断涌现,迅速渗透到生产中的各个领域。除了在课堂上给学生介绍企业岗位职责要求和最新的分离纯化技术信息之外,教师还应与企业技术人员密切合作,组织学生参观药品生产企业,让学生参与药品生产中遇到的实际问题,了解书本和实际生产上的差距,弥补书本知识的局限性,开拓学生眼界。
1.7过程考核发挥导向作用
传统的考核结果往往只考虑期末卷面成绩,这样不利于调动学生的积极性,很容易忽略学生在平时课堂中的表现和创新能力的培养。本课程的考核方式为:学生期末总成绩(百分制)=期末考试卷面成绩(50%)+课堂出勤及回答问题表现(20%)+小论文撰写(10%)+实训操作(20%)。考核方式从四个方面进行综合测评,不仅重视结果,更重视过程。小论文的撰写要求学生选择自己感兴趣的一种分离纯化技术,查阅文献资料,设计一个具体的方案,将这种技术应用到实际的生产中。另外要求学生对课程有所反馈,提出自己的意见和建议。
2.小结
药物分离与纯化技术作为高职高专药学专业的主干课程,其教学内容的开展要围绕制药过程,同时结合最新的技术进展,重视实训教学,使学生在掌握基础理论的同时掌握必备的操作技能。课程设计上要结合多种教学方式,课前备好课,课堂上认真观察,课后反复总结反思,加强与学生的沟通,激发学生的学习兴趣,提高教学质量,为培养面向医药行业第一线的高素质技能型人才而不断努力。