第一篇:海洋生物制药在心脑血管疾病方面的研究
海洋生物制药在心脑血管疾病方面的研究
Scau
摘 要所谓心脑血管疾病就是心脏血管和脑血管的疾病统称。随着生活水平的提高和生活节奏的改变,被称为“富贵病”的“三高症”(即高血压、高血糖和高血脂)。随着人类寿命的延长和环境污染的加剧,心脑血管疾病对人类健康的威胁日益严峻,人类迫切需要寻找新的、特效的药物来治疗这种疾病。现代生物技术在制药产业中的作用越来越大,海洋生物技术的发展推动了海洋生物药物的研究,是今后海洋生物制药的发展方向。综述了海洋生物药物对心脑血管疾病的开发背景、国内外研究现状以及海洋生物药物对心脑血管疾病的功效,并展望了将来海洋生物制药在治疗心脑血管疾病的前景。
关键词心脑血管 ; 海洋生物制药;功效;现状;展望
心脑血管疾病是一种常见病和多发病,特别是近几年,随着生活水平的提高,心脑血管疾病逐渐成为影响人们健康的主要疾病之一。治疗心脑血管疾病药物通常包括口服西药、输入注射液和中成药。临床验证,西药和注射液虽短期作用明显,但治疗毒副作用大,而且价格昂贵。因此,从天然药物中去筛选和研究有效、安全、方便使用的治疗药物,已为世界各国医药工作者所瞩目。海洋是一个开放性复杂系统,在海洋非凡 的生态环境里生活着二十多万种动、植物和大量的微生物。这些海洋生物含有与陆地生物不同的、化学结构特异的活性物质(化合物)。随着人类寿命的延长和环境污染的加剧,心脑血管疾病对人类健康的威胁日益严峻,人类迫切需要寻找新的、特效的药物来治疗这种疾病。海洋主物制药己成为一个崭新的领域,显示出广阔的研究和市场前景。海洋生物药物治疗心脑血管疾病的背景
21世纪人类社会面临着“人口剧增、资源匾乏、环境恶化”三大问题的严峻挑战,一直以来作为药物主要来源的陆地生物正面临着被开发殆尽的危险。向海洋进军,开发海洋药物迫在眉睫。
海洋作为一个特殊的生态系统,在某种意义上,本身就是一个复杂的培养体系。海洋生物处于高盐、高压、低温和无光照的环境中,相互间的生态作用多是通过物种间化学作用物质如信息素(pheromones)、种间激素(kaimmones)、拒食剂(feeding deterrents)等来实现,远比陆生生物复杂和广泛,这导致海洋生物,特别是深海生物体内含有与陆地
生物无法比拟的化学结构奇特、新颖并具有高活性、高药效的先导化合物,为新药研发提供了大量模式结构和药物前体。目前已有超过100000种新型结构的化合物被发现,其中200多种已申请专利,主要包括枯类、聚醚类、皂贰类、生物硫、多糖、小分子多肤、核酸及蛋白质等,主要药理作用是防治心脑血管疾病等。现已开发的海洋药物已在治疗心脑血管病这种困扰人类的疾病方面显示出巨大的潜力。
2海洋生物制药在心脑血管疾病方面的研究现状
2.1海洋心脑血管活性物质
2.1.1 海洋心脑血管天然活性成分的发现。
对具有抗心脑血管疾病活性物质的研究是海洋天然产物研究的又一重点。海洋天然产物在心脑血管疾病的研究主要有ω-3多不饱和脂肪酸、多糖及其衍生物类:主要包括海藻多糖、甲壳多糖、硫酸软骨素、海参粘多糖、刺参粘多糖、羊栖菜多糖等,目前已有许多药物从实验室进入到临床研究阶段。海洋天然活性成分往往具有复杂的化学结构而且含量极低,建立快速、微量的提取分离和结构测定方法以及应用多靶点的生物筛选技术发现新的生物活性成分是当前科学家面临的挑战。
2.1.2 海洋心脑血管天然活性成分的结构优化。
从海洋生物中发现的大量心脑血管活性天然成分,有的可以直接进入新药的研究开发,但有的活性成分存在着活性较低或毒性较大等问题。因此,需要将这些活性成分作为先导化合物进一步进行结构优化,如结构修饰和结构改造,以期获得活性更高、毒性更小的新的化学成分。
2.1.3 解决药源问题。
不少海洋心脑血管天然活性成分含量低,原料采集困难,限制了该化合物进行临床研究和产业化。寻找经济的、人工的、对环境无破坏的药源已成为海洋心脑血管药物开发的紧迫课题。采用化学合成的方法进行化合物的全合成是解决药源问题的一个重要手段,已有不少海洋心脑血管活性天然产物实现了全合成,由于不少成分结构非常复杂,要进行全合成,难度大、成本高,不易形成产业化。另外也有采用人工养殖或模拟天然条件进行室内繁殖研究而。而运用组织细胞培养和功能基因科隆表达也是解决药源问题的一个新的发展方向,许多科学家正在进行这方面的有益的探索和深入研究,这些生物技术的应用必将为生物资源开发展现广阔的前景。
2.2抗心血管疾病的海洋生物及其功效
近些年来 ,随着对海洋心脑血管药物研究的深入开展,新的活性成分和功用不断被发现。从海洋药物中获取心血管活性成分等是药学和化学工作者孜孜以求的重要目标。
(1)海洋生物不饱和脂肪酸:很多海洋生物富含高度不饱和脂肪酸,其中有的生物含有丰富的二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)。近来研究证明EPA和DHA同属ω-3系列脂肪酸,可减少血浆甘油三酯和脂蛋白水平、防止微循环血小板聚集和抑制免疫细胞粘附、减缓动脉粥样硬化的发展[2]。二者都具有显著的医疗保健作用,对心脑血管疾病有很好的预防和治疗效用。
(2)海洋药物:在抗心脑血管疾病海洋药物方面,目前已有很多药物从实验室进入到临床阶段。日本京都大学海洋药物研究室从冲绳岛海域的鸡冠珊瑚中提取出一种治疗冠状动脉硬化性心脏病的化合物,临床试验效果良好。墨西哥科学家从珊瑚中提取出前列腺素,可用于治疗高血压和动脉硬化等心脑血管疾病[5]。我国海洋药物研究也取得了显著的成果。青岛海洋大学利用海带中的褐藻酸钠加工成抗血栓、降血脂新药藻酸双脂钠(PSS),具有良好的临床效果;其第二代产品甘糖酯(PGMS)也已应用于临床[9]。以牡蛎为主要原料研制成功的“东海三豪”等保健药物也具有降血脂、软化血管和改善微循环等功效。利用海藻加工成的“脉怡康”、“必索”和利用螺旋藻开发的“海王牌螺旋藻”对高血脂、动脉粥样硬化具有良好的预防和辅助治疗作用。近几年,国内从南海珊瑚中提取抗心血管疾病药物的研究取得了一些进展。到目前为止,从南海短指多型软珊瑚和细枝多指软珊瑚中分离得到了喹啉酮,从南海柳珊瑚中分离出具有抗心律不齐和降低心脏收缩力的柳珊瑚酸[6]。
(3)海洋生物毒素:多数海洋生物能生物合成、代谢和分泌、排泄一些有特殊生物活性的物质,称为海洋生物毒素[3]。目前,研究较多的、药理活性和化学结构较清楚的海洋生物毒素约50种,其中具有抗心脑血管疾病的活性物质如麝香蛸的麝香蛸毒素、岗比毒甲藻(Gambierdis-cus toxicus)的西加毒素(CTX)、长尾背肛海兔(Stylocheiluslongi)的海兔毒素等等[4]。
目前已研究出多种药物可有效预防和治疗心脑血管疾病,我国处于II期临床研究的糖类药物有抗脑缺血药物(D-聚甘酯、玉足海参多糖),有望成为抗心脑血管病的海洋Ⅰ类新药。海洋生物制药在心脑血管疾病方面的研究展望
世界卫生组织预测,到2015年,发达国家心脑血管疾病的死亡人数将从1985年的1320万增至2450万,发展中国家心脑血管疾病的死亡人数也将由720万增至1670万。心脑血管疾病被喻为人类健康的头号杀手,给人类的健康带来了极大的危害。我国每年死亡于冠心病、脑中风及其并发症的人数超过600万,占总死亡人数1/3以上,已位居10大死亡原因之首。为了开辟新药源,降低心脑血管疾病的死亡率,世界各国纷纷把目光投向海洋,力求在心脑血管疾病方面取得新的突破,海洋生物药物成为了当下科研热点,呈现出了广阔的发展前景。
3.1 国外海洋心脑血管药物研发进展迅速
近20年来许多沿海国家都加紧开发海洋,把利用海洋资源作为基本国策。目前,世界范围内海洋药物的产业规模已经高达数十亿美元,预计今后5年的年增长率将高达15%~
20%。如仅从柳珊瑚中提取的一种消炎药Pseudoterosin的特许权转让收入已超过120万美元,预计其产值将高达1亿美元。近年来,走在世界生物制药前列的美国、日本和欧盟等发达国家不断加强海洋药物研究的经费投入。美国投入海洋药物的研究基金达到植物化学药物和合成药总资金的11%,而我国不到1%;1991年,美国大学与国立海洋生物技术研究中心的研究费为4400万美元,其中海洋药物占14.6%;日本通产省1991年对海洋药物和其他精细化学品研究的投资也达150亿日元。欧盟国家强强联合,每年用于海洋药物开发研究的经费约为1亿多美元。海洋药物研制开发在全世界取得了令人瞩目的进展。到目前为止,科学家已经从海葵、海参、藻类生物、生物毒素、棘皮动物和微生物体内分离和鉴定了新型化合物3000多种,不少在抗心血管疾病方面效果显著,其中部分先导化合物已经进入临床或临床应用。
3.2 国内海洋生物心脑血管药物研发有待加强
海洋生物技术和海洋药物的研究是我国海洋“863”计划的重点课题,以青岛为主,我国沿海省市相继建立了相关研究机构,有数千名科研人员从事海洋药物及海洋生物制品的研发。我国科学家已从海洋生物中分离出多种种海洋活性物质,发现了一批新型治疗心脑血管的海洋药物。我国海洋心脑血管药物研究仍然存在许多问题:已发现的药用海洋生物品种十分有限,主要来自于沿海或近海,与我国海洋庞大的资源总量相比不太相称,特别是微生物、浮游生物的开发偏少;海洋新药十分罕见,这与我国新药开发的总体水平一致,仅在剂型上改进已远不能满足今后自身发展与国际竞争的需要;海洋药物在重大疾病治疗方面的潜力还没有得到应有的发挥;产、学、研结合不紧密;资金投入不足,项目多为零散组织,严重制约我国海洋生物医药的研究开发; 海洋生物医药的知识产权保护严重滞后,创新意识不强等等,都使得我国海洋生物制药在心脑血管疾病方面的研发面临的形势越趋严峻,亟需加强。
4结语
海洋面积占地球总表面积的70.8%,其中蕴藏着丰富的、可满足人类生存发展需要的各种资源。现已开发的海洋药物已在治疗心脑血管病这种困扰人类的疾病方面显示出巨大的潜力。在未来的21世纪,海洋生物必将会在增强人类战胜疾病的能力方面作出突出的贡献[1]。不断加强科技投入,越来越集中科技力量,加强中试环节,不断加强海洋生物活性物质研究,利用现代生物工程技术,提高海洋生物产物的质和量等等,已成为全世界各个国家的共识,想必这一定会进一步促进海洋药物尤其抗心血管疾病药物的研究与开发,使这一新生领域成为世界的热点和焦点。同时海洋生物制药产业也将为人类带来更美好的生活。
5参考文献
[1] Wallace RW.Drugs from the sea:harvesting the results of aeon chemical evolution.Mol Med Today,1997,3(7):291-295.[2] Ponte E, Cafagna D, Balbi M.Cardiovascular disease and omege-3 fatty acids.Mi
nerva Med, 1997,88(9):343-353.[3] 宋杰军,毛庆武.海洋生物毒素学.北京:北京科学技术出版社,1996.102.[4] 沈红梅,宋杰军,毛庆武.海洋生物毒素在药物开发应用中的前景.中国药学杂志,1
995,30(7):396-400.[5] 李来成.国外海洋生物技术发展概况.生物工程进展,1994,14(6):11-20.[6] 张培军.国内海洋生物技术研究.生物工程进展,1994,14(6):21-24.[7] 焦炳华.海洋生命活性物质和海洋药物的研究与开发.第二军医大学学报, 2006, 27
(1): 5~7
[8] 杨雨.海洋生物制药现状及展望.中国生物工程杂志, 2005,(增刊): 190~193
[9] 许实波.海洋生物制药.北京:化学工业出版社,2007,(第二版):8
第二篇:海洋生物制药的研究现状及展望
海洋药物研究发展现状及展望
摘要:现代生物技术在制药产业中发挥了重要作用,海洋生物技术的出现和发展推动了海洋生物药物的研究,是今后生物技术药物的发展方向。综述了生物技术在海洋药物开发中的应用,并展望了新世纪海洋生物制药的前景。
关键词: 海洋生物药物生物技术基因工程研究展望
海洋生物是巨大的生物资源库,由于海洋环境的特殊性和科学技术手段的限制,以往人们对海洋生物的研究和开发受到严重的限制。现代生物技术的迅速发展为研究和开发海洋生物搭建的平台,提供了锐利的武器。海洋生物技术是将现代生物技术的各种技术手段,基因工程技术、细胞工程技术、微生物技术、酶工程技术、生化分离技术等应用于海洋生物领域形成的现代生物技术的重要分支[1]。
海洋药物研究经历近半个世纪的探索和发展,已经获得了许多宝贵的经验积累和丰富的研究资料,特别是近年来生物技术的迅猛发展,为海洋药物开发提供了新的研究方法、研究思路和发展方向。现代的化学研究方法与多种生物技术越来越紧密地结合,已成为当今海洋药物研究发展的主流,并且是今后数十年海洋药物研究的主要趋势。随着海洋开发步伐的加快和现代生物技术的广泛应用,从海洋生物中发现活性天然产物,并将其开发成新型药物得到了研究人员的普遍重视。
(一)海洋生物活性成分的研究
1、海洋生物药物
21世纪人类社会面临着“人口剧增、资源匮乏、环境恶化”三大问题的严峻挑战,一直以来作为药物主要来源的陆地生物正面临着被开发殆尽的危险。向海洋进军,开发海洋药物迫在眉睫。海洋作为一个特殊的生态系统,在某种意义上,本身就是一个复杂的培养体系。海洋生物处于高盐、高压、低温和无光照的环境中,相互间的生态作用多是通过物种间化学作用物质如信息素(pheromones)、种间激素(kairomones)、拒食剂(feeding deterrents)等来实现,远比陆生生物复杂和广泛,这导致海洋生物,特别是深海生物体内含有与陆地生物无法比拟的化学结构奇特、新颖并具有高活性、高药效的先导化合物,为新药研发提供了大量模式结构和药物前体[3]。
2、海洋天然活性成分的发现
海洋天然活性成分的研究是海洋药物开发的基础和源泉。海洋生物种类繁多,存在着许多特殊的次生代谢产物。然而,目前对海洋生物中活性成分的发现还仅仅处在开始阶段,[2]
经过较系统的化学成分研究的海洋生物还不到总数1%,还有大量海洋生物有待于进行系统的化学成分研究和活性筛选。研究重点主要集中在无脊椎动物等低等的海洋生物。海洋天然活性成分往往具有复杂的化学结构而且含量极低,建立快速、微量的提取分离和结构测定方法以及应用多靶点的生物筛选技术发现新的生物活性成分是当前科学家面临的挑战。
(二)开展海洋化学生态学研究
海洋化学生态学是结合海洋天然产物化学和生态学方法,探讨海洋生物化学防御机制、追踪活性天然产物的生物源头及其生态学作用,揭示海洋生态系统的化学本质。研究海洋生态环境中活性化学物质在生物间的信息传递方式、化学防御机制、生物间的相互关系以及食物链关系等,从生态的宏观角度探讨生物活性物质的作用机制。
1、海洋药物基因工程
海洋药物基因工程,是指利用分离自海洋生物的有药用价值的基因或以规模化养殖的海洋生物作为表达受体进行遗传操作,从而大量获得高值廉价的药物。根据其供体基因和表达受体的不同,可以分为3个方面:
(1)将海洋药物基因转入陆地生物中表达。将药物目的基因重组入适当的载体后,借鉴微生物基因工程、植物基因工程和动物基因工程的方法,可在陆地微生物、植物或动物中表达。
(2)将来自陆地的药物基因转入海洋生物中表达。某些海藻的养殖,如海带,已经形成大规模的产业,在产量上相对于某些高产的陆地作物也具有很大的优势。可以将海洋生物作为来自陆地的药物基因的理想表达受体,生产人们所需要的药物。
(3)将海洋药物基因转入海水养殖生物中表达。将稀有昂贵的药物基因转入产业化的海水养殖生物中表达,不仅可以获得药物,还可以促进多种优良性状的优化组合,培育海水养殖新品种,带动现代海水养殖业向纵深发展。
目前,利用基因工程技术,将克隆的海洋药物取得了一定的进展。存在于某些藻类藻胆体中的藻胆蛋白具有显著的抗癌、抗辐射以及促进造血功能等多方面的生物活性,并能提高患癌生物的存活率。秦松等在克隆到别藻蓝蛋白(APC)基因后,将该基因转化到大肠杆菌后获得高效表达基因重组别藻蓝蛋白— — 镭普克(rAPC),该药物具有明显的抑制小鼠S,舯肉瘤的活性,相关的药理药效研究正在进行之中。中国药科大学生物技术中心在从鲨鱼肝脏中分离纯化肝刺激物质(sHSS),测定N.端氨基酸残基序列,根据序列分析结果合成简并引物并获得sHSS的cDNA序列。在此基础上,构建了该基因的原核表达载体质粒,转化大肠杆菌BL21后,利用半乳糖诱导,获得了重组产物。中山大学生命科学院海洋生物
功能基因组开放实验室从南海侧花海葵(Anthopleura sp.)触手毒腺cDNA文库中筛选、经基因工程技术改造后获得新型重组海葵肽类毒素hk2a,通过建立新西兰兔CCHF模型,给药后可即刻增加左室射血分数(LVEF),具有起效快、作用强,持续时间长,对心率无明显影响等特点,是一种新型的潜在正性肌力药物[4];中国科学院上海生化细胞研究所克隆了芋螺毒素(Conotoxin)的cDNA,是神经科学研究的有力工具药和新药开发的新来源。
目前,在海洋药物的开发研究领域走在前列的是美国、日本等科技发达国家,在我国,对海洋药物的研究尚是一个方兴未艾的领域。
有关资料显示,我国目前已有6种海洋药物获国家批准上市:藻酸双酯钠、甘糖酯、河豚毒素、角鲨烯、多烯康、烟酸甘露醇等;另有10种获健字号的海洋保健品。我国正在开发的抗肿瘤海洋药物有6-硫酸软骨素、海洋宝胶囊、脱溴海兔毒素、海鞘素A(BC)、扭曲肉芝酯、刺参多糖钾注射液和膜海鞘素等药物,但其长期疗效还有待于进一步观察评价。此外,尚有多个拟申报一类新药的产品进入临床研究,如新型抗艾滋病海洋药物“911”、抗心脑血管疾病药物“D-聚甘酯”和“916”等,国家二类新药治疗肾衰药物“肾海康”等。
(三)海洋生物制药研究展望
21世纪的海洋生物技术,将向着水产养殖、天然产物获取和新能源开发3个方向发展,海洋生物技术的兴起,大大繁荣海洋药物的研究与开发。今后海洋生物制药的主要发展方向有:
(1)开发海洋生物基因工程药物。用细菌、酵母、蓝藻作为表达系统,选择海洋生物中药理活性强的多肽和蛋白质类物质为突破口,开展基因工程研究,促进基因工程药品的发展。如不仅从受体生物中分离纯化单一成分的目的产物,还可以直接以海产品为口服性药物,进行海洋基因工程疫苗研究。
(2)开发海洋生物细胞工程药物。选择海藻细胞为突破口,通过筛选和改良,选取药用价值高的细胞株,利用相应的生物反应器,进行规模化生产。
(3)增强海洋天然产物的活性。以基因工程、细胞工程和酶工程为手段,培育出生长快、活性高、抗病性强的海洋药材新品种,并利用生物技术防治海洋药材人工养殖中的病虫害。
随着人类对海洋资源的依赖和开发,海洋生物技术的研究及应用对生产生活的影响日益增加。海洋生物技术是海洋药物产业化的主导技术和关键手段,随着生物技术向海洋生物研究领域的渗透,必将加速海洋药物的产业化进程。
海洋生物制药产业化,应当坚持“务实、高效”的原则,一方面通过政府政策鼓励和
宏观管理,增加在海洋生物技术尤其是海洋生物医药产业方面的投入;另一方面在大学、研究所和企业间建立密切联系,发挥各自在人力、智力、财力上的优势,协调合作,重点发展几个社会效益高、市场前景广阔的项目。最终形成在基础研究方面不断取得进展,并将研究成果迅速转化为现实的生产力,反过来支持和促进基础研究这一良性循环的局面。
现代生物技术应用于海洋药物的研究,改变了以往单纯从海洋生物中提取活性物质制药的模式,解决了海洋药物开发中规模化和合理化的矛盾,使生物技术制药进入一个新的时代,为海洋科学和制药产业的发展以及人类可持续地开发海洋资源开辟了新的道路。
参考文献
[1] 姚文兵、吴梧桐 生物技术制药概论(第二版)中国医药科技出版社
[2]关美君,林文翰,丁源.海洋药物一二十一世纪中国药学研究的新热点.中国海洋药物,20Ol,20(1):1—5
[3] 相建海.跨越新世纪的海洋生物高技术前沿.高技术通讯,2000,10(7):1—4
[4] 19]刘彦波,王鹏,欧阳平,等.重组海葵肽类毒素hk2a对慢性充血性心力衰竭新西兰兔左心功能的影响.第一军医大学学报,2004,24(3):269 272
第三篇:生物制药论文-海洋生物制药的研究及展望
海洋生物制药的研究现状及展望
摘要:海洋生物制药是当前正处于发展阶段的生物医药科学领域,是新兴的制药工业的分支学科,是研究海洋生物的药物来源、分布、形态、鉴别、采集加工、化学成分、药理作用、炮制、制剂、临床前研究及临床应用等多学科的综合性科学。本文阐述了在对海洋生物制药历程与意义解析的基础上,分析了目前海洋生物制药的研究现状及展望。
关键词:海洋生物;生物制药;基因工程
海洋生物是巨大的生物资源库,具有许多结构新颖、活性奇特的化合物[1],其中许多化合物如抗肿瘤、抗病毒、抗感染、抗血脂与降胆甾醇物质、降血压物质、海洋生物毒素等生物活性物质正是人类渴望获得的,这些生物活性物质对开发新药具有巨大的研究和使用价值。近年来,随着海洋开发步伐的加快和现代生物技术的广泛应用,海洋生物活性物质的研究已涉及到生物、医药、化学等多方面的知识和技术,从海洋生物中发现活性天然产物,并将其开发成新型药物已经得到了研究人员的普遍重视[2],海洋生物制药已成为一个崭新的领域,有着广阔的研究和市场前景。
一、海洋生物制药的研究现状
目前已经从各类海洋生物中发现了3万种以上的活性物质,在此基础上研究开发出了许多海洋生物药物,其主要药理作用包括抗肿瘤、防治心脑血管疾病、抗艾滋病、抗菌、抗病毒、延缓衰老及免疫调节功能等。现已开发的海洋药物[3]已在治疗癌症、艾滋病、心脑血管病、早老年痴呆症等一些至今仍困扰人类的疾病方面显示出巨大的潜力。目前,海洋药物研究的重点领域有:
1、抗肿瘤海洋药物的研究
海洋抗肿瘤药物的研究在海洋药物研究中一直起着主导作用。癌症是对人类威胁最大的疾病之一,从海洋生物中获得的抗癌活性物质或对其结构改造所得的化合物,可被制成毒性低、疗效高的治疗药物。因此,海洋药物已成为寻找新的抗癌药物的一个最有希望的药源。据报告显示,现已发现海洋生物提取物中至少有 10%具有抗肿瘤活性,现已分离到的具有抗癌活性的物质包括从海绵、海鞘、软珊瑚、海兔等海洋生物中得到的尿苷、酰胺类、聚醚类、萜类、大环内脂、环肽、直链肽等多种化合物。目前至少已有10种以上海洋抗癌药物进入临床或临床前研究阶段。因此,扩大海洋生物的活性筛选,继续寻找高效的抗癌化合物,直接用于临床或作为先导物进行结构改造,开发新的高效低毒的抗癌成分,将成为海洋抗癌药物研究的发展趋势。
2、心脑血管系统海洋药物的研究
目前已研究出多种海洋药物可有效预防和治疗心脑血管疾病,主要以多糖、毒素和多不饱和脂肪酸居多。如高度不饱和脂肪酸,其主要活性成分有二十碳五烯酸(EPA)和二十二碳六烯酸(DHA),主要存在于海洋鱼类、贝类和藻类,特别是单细胞藻类含有丰富的EPA和DHA,这两种脂肪酸都具有降低血压,降低高脂血症患者血浆中的三酰甘油(甘油三酯)、低密度脂蛋白和胆固醇,降低血小板凝聚,增加血凝时间等功能,这种高度不饱和脂肪酸是近年来研究和应用较多的。还有多种海洋生物毒素,不仅有强心作用,而且有很强的降压作用,河豚毒素的抗心率失常作用目前研究较多。此外,还有藻酸酯钠类、螺旋藻类,后者对于高血脂和动脉粥样硬化有良好的预防和辅助治疗作用。
3、抗菌、抗病毒海洋药物的研究
与海洋动植物共生的微生物是一种丰富的抗菌资源,其微生物提取物或其细胞外产物都有抗微生物(包括细菌、真菌、微藻和原生动物)活性。日本学者发现约27%的海洋微生物代谢产物具有抗菌活性。近年来,从海洋生物中发现了大量具有抗细菌和真菌的化合物,包括脂肪酸类、糖脂类、丙烯酸、苯酚类、溴苯酚类、碳水化合物、N-糖苷、肽、多糖、β-胡萝卜素等,这些化合物有的可能作为先导化合物,研制新的抗微生物药物,有的可能在农业上得到应用,如从蓝细菌中分离出来的具有抗水稻胚胞和小麦锈斑病的活性物质。此外,从海绵、珊瑚、海鞘、凹顶藻等海洋生物中分离到的一些萜类、核苷类、多糖类、生物碱类和其他含氮化合物,都不同程度地显示出抗病毒活性。
4、消化系统海洋药物的研究
如多棘海盘车中分离的海星皂甙及罗氏海盘车中提取的总皂甙均能治疗胃溃疡,后者对胃溃疡的愈合作用强于甲氰咪胍,壳聚糖的羧甲基衍生物,商品名为“胃可安”胶囊,治疗胃溃疡疗效确切,治愈率高,已进入临床研究。大连中药厂配合中药制成“海洋胃药”应用于临床已取得较好效果。
5、消炎镇痛海洋药物的研究
从海洋天然产物中分离的最引人注目的活性成分是manoalide,它是磷酸酯酶 A2 抑制剂,在上世纪 80 年代中期已被作为一个典型的抗炎剂在临床试用。
6、泌尿系统海洋药物的研究
褐藻多糖硫酸酯是一种水溶性多糖聚,具有抗凝血、降血脂、防血栓、改善微循环、解毒、抑制白细胞及抗肿瘤等作用,临床用于治疗心脏、肾血管病,特别对改善肾功能,提高肾赃对肌酐的清除率尤为明显,在国内外首先用于治疗慢性肾衰,挽救尿毒症患者有明显疗效,且无毒副作用。现已按国家二类新药获准进入临床研究,商品名为“肾海康”。
7、免役调节作用海洋药物的研究
海洋天然产物是免疫调节剂的重要来源。具有免疫调节活性的角叉藻聚糖,是来自大型海藻的硫酸化多糖的一大类成分,被广泛用于肾移植的免疫抑制剂和细胞应答的修饰剂。
8、其他海洋药物的研究
其他如神经系统药物、抗过敏药物等研究亦取得较大成果。海洋是新种属微生物的生存繁衍地,从众多的新种属微生物中,可以培养出一系列高效的抗菌药物,如来源于多种链霉菌的Teleocidin 即为一种强抗菌药物。海洋毒素是海洋生物研究进展最为迅速的领域,多数海洋毒素具有独特的化学结构。由于许多高毒性的毒素是以针对生物神经系统或心血管系统的高特异性作用为基础,因此,这些毒素及其作用机制是发现新神经系统或心血管系统药物的重要导向化合物和线索,也可作为寻找新农药的基础。现已发现的海洋毒素其化学结构大致可分为:聚醚类化合物、含氮化合物、溶血糖脂类、记忆丧失性氨基酸贝毒、酯溶性酚类和含磷化合设物。
从海洋生物中发现的大量活性天然成分,有的可以直接进入新药的研究开发,但有的活性成分存在着活性较低或毒性较大等问题。因此,需要将这些活性成分作为先导化合物进一步进行结构优化,如结构修饰和结构改造,以期获得活性更高、毒性更小的新的化学成分。不少海洋天然活性成分含量低,原料采集困难,限制了该化合物进行临床研究和产业化。寻找经济的、人工的、对环境无破坏的药源已成为海洋药物开发的紧迫课题。采用化学合成的方法进行化合物的全合成是解决药源问题的一个重要手段,已有不少海洋活性天然产物实现了全合成,如草苔虫内酯和海鞘素B均已成功地进行了全合成,由于不少成分结构非常复杂,要进行全合成,难度大、成本高,不易形成产业化。
目前,海洋生物制药主要通过海洋药物基因工程,包括:(1)将海洋药物基因转入陆地生物中表达;(2)将来自陆地的药物基因转入海洋生物中表达;(3)将海洋药物基因转入海水养殖生物中表达[4]。目前的热点集中在海洋活性天然产物的研究及新药研究、海洋多糖的研究及新药开发、海洋微生物的研究及新药开发和海洋生物基因工程技术的研究等四个方面。但我国海洋生物制药产业仍存在以下问题:1.研发费用与能力不足。2.技术兼经营型人才与专业型人才缺乏。3.缺乏海洋生物制药产业化的有效机制。
二、海洋生物制药的研究展望
二十一世纪的海洋生物技术,经历近半个世纪的探索和发展,已经获得了许多宝贵的经验积累和丰富的研究资料,将向着水产养殖、天然产物获取和新能源
开发3个方向发展[5]。海洋生物技术的兴起,再加上现代的化学研究方法与多种生物技术越来越紧密地结合,这大大繁荣了海洋药物的研究与开发。
在未来的很长一段时间内,海洋生物制药的主要发展方向有:(1)增强海洋天然产物的活性;(2)加强海洋微生物药物的开发;(3)开发海洋生物细胞工程药物;(4)开发海洋生物基因工程药物。当前,我国海洋生物产业发展正处于由起步向全面迈入产业化崛起的关键时期,应在资金和技术两方面加大投入,保障其持续发展。在增加政府公共投入的基础上,可吸引社会风险投资,支持企业产品研发,同时提升企业自主研发能力,逐步形成以市场为导向、企业为主体、高校和科研院所为支撑、其他社会资源为补充的技术创新体系。高度重视人才的培养和引进、加强官、产、学、研相结合的方式,促进我国海洋生物制药产业的快速发展,为人类的健康、作出贡献,使海洋生物制药产业在我国经济乃至世界经济中占有一席之地。预计我国未来还将形成深海养殖产业、生物资源评价和保护产业、海洋鱼类疫苗产业等新型的海洋生物产业,因此,海洋生物产业将成为未来中国生物产业发展的重点领域之一。
从和谐发展的角度看,我们在看到海洋药物的巨大潜力的同时,也应注意避免海洋生态系统被破坏。现代生物技术应用于海洋药物的研究,使生物技术制药进入一个新的时代,为海洋科学和制药产业的发展以及人类可持续地开发海洋资源开辟了新的道路。
参考文献:
[1] 相建海.跨越新世纪的海洋生物高技术前沿.高技术通讯,2000,10(7):1—4.[2]关美君,林文翰,丁源.海洋药物-二十一世纪中国药学研究的新热点.中国海洋药物,200l,20(1):1—5.[3] 罗素兰,张本,长孙东亭等.海洋药物研究新进展及其开发战略.海南大学学报:自然科学版,2003,21(4):365—370.[4] Morc0s N C.Phycocyamin laser activation cytotoxic effect and uptake in human atheresclerotie plaque.Lasers Surg Med .1988.8(1):7—10.[5] Luiten E E M,Akkennan I,Koulman A,et a1.Realizing the promises of marine biotec hnology.Biomolecular Engineering,2003.20(4-6):429—439.
第四篇:海洋生物制药复习提纲
海洋生物制药复习提纲
1.海洋生物制药涵义
应用海洋药源生物具明确药理作用的活性物质,按制药工程进行系统的研究,研制成为海洋药物的制药工程。
2.海洋生物制药品种与药品特点
品种:中药,化学药(西药),生物制品
特点:①是新发展的药物研究领域
②药源来自海洋药用生物
③海洋生物活性物质含量低微、结构奇特、活性显著,是海洋生物制药先导化合物的丰富来源。
3.应用海洋生物活性物质研发海洋生物新药的途径与思路
研发途径:
化学结构改造(分子修饰、人工半合成)——药物 活性物质——构效关系——人工全合成
研发构思:
①了解海洋生物活性物质的特点:活性集中(抗肿瘤);来源于低等动植物;化学结构、生物来源具多样性,含量低
②采集与提取标准化
③药理筛选
④结合现代生物技术,保证可持续发展利用:再生资源优先开发;养殖的工业化和生物合成;生物反应器及基因工程技术的应用;必须立足我国特有的海洋药用生物资源研发海洋生物一类新药
4.我国海洋生物制药产业化发展的重点领域
(1)海洋生物抗癌药物的研究
(2)海洋生物心脑血管药物的研究
(3)海洋生物抗菌、抗病毒药物研究
(4)海洋生物消化系统药物的研究
(5)海洋生物镇痛抗炎药物的研究
(6)海洋生物泌尿系统药物研究
(7)海洋生物免疫调节作用药物的研究
(8)海洋生物毒素先导化合物的研究
5.海洋生物的特点(海洋生物活性成分特异性的原因)
(1)生活环境与陆生生物迥然不同:有一定的水压、高盐度、小温差、有限的溶解氧、有限的光照及化学缓冲海水体系;
(2)次生代谢产物较陆生生物独特新颖:新陈代谢、生存繁殖方式、适应机制具有显著特性;
(3)化合物结构独特、生物活性多样;
(4)开展海洋药物研究具有重要的理论意义与实际应用价值。
8.海洋生物有效化学成份的概念和主要的化学成分种类
概念:指从海洋生物中分离纯化出具有生物活性的天然有机化合物。
种类:①大环内酯类;②聚醚类化合物;③肽类化合物;④C15乙酸原化合物;⑤前列腺类似物
9.溶剂分离法的原理与选用溶剂的注意点。
原理:根据活性物质在溶剂中溶解度(极性)的差异分离
选择溶剂注意点:①对有效成分溶解度大,对杂质溶解度小;②不与化学成分起化学变化;③经济、易得、使用安全
10.色谱法原理及其分类。
原理:利用不同物质在不同相态的选择分配性,以流动相对固定相中物质进行洗脱,混合物中不同物质会以不同速度沿固相移动,最终达到分离效果
11.超临界流体萃取的原理,什么是超临界CO2萃取及其特点
原理:利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的,具有提取率高、产品纯度好、流程简单、能耗低的特点。
超临界CO2萃取:以超临界状态下的CO2为溶剂,利用该状态下流体CO2所具有的高渗能力和高溶解能力分离混合物的过程。
特点:①可以在接近室温(35-40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散,完-1-
整保留生物活性,而且能把高沸点,低挥发渡、易热解的物质在其沸点温度以下萃取出来。
②由于全过程不用有机溶剂,因此萃取物绝无残留溶媒,同时也防止了提取过程对人体的毒害和对环境的污染,100%的纯天然,符合当今“绿色环保”、“回归自然”的高品位追求。
③控制工艺参数可以分离得到不同的产物,可用来萃取多种产品,而且原料中的重金属、无机物、尘土等都不会被CO2溶解带出。
④蒸馏和萃取合二为一,可以同时完成蒸馏和萃取两个过程,尤其适用于分离难分离的物质,如有机混合物、同系物的分离精制等。
⑤能耗少;热水、冷水全都是闭路循环,无 废水、废渣排放。CO2也是闭路循环,仅在排料时带出少许,不会污染环境。由于能耗少、用人少、物料消耗少,所以运行费用非常低。12.高速逆流色谱仪(HSCCC)如何做到化合物样品的分离
(1)样品中一种高分配系数的化合物在固定相中的浓度要高于在流动相中的浓度,要晚一些从柱子里洗脱出来。
(2)另一种低分配系数的化合物在流动相中的浓度要高于在固定相中的浓度,要早一些洗脱出来。
(3)如果一种化合物在两相中的是平均分配的(D=1),不论哪一相溶剂被选为流动相,在流动相流出1倍柱体积的量后,这种化合物都会被洗脱出来。
13.质谱仪器中最主要的三种离子是什么?分子离子的三个特征是什么?
分子离子:样品分子失去一个电子而形成的离子称为分子离子。
同位素离子:由重同位素组成的分子形成的离子
碎片离子:由M + ·或碎片离子单分子裂解产生的离子
特征:①质核比为分子量;②是奇电离子,分子失去一个价电子生成的离子;③并非所有的有机物分子离子都能出现
14.质谱在鉴定海洋天然产物结构的应用有哪些?
(1)(最基本)提供分子量信息
(2)确定碎片离子
(3)确定有机化合物的元素组成及其分子式
(4)确定有机化合物的结构式
15.海洋药用无脊椎动物的主要生物学来源有哪几个门,各举一例,并说明其主要的药用价值。
(1)多孔动物门:海绵,活体检测水质,具有抗肿瘤活性物质。
(2)环节动物门:沙蚕,提取沙蚕毒素。是一种仿杀虫剂。
(3)腔肠动物门:海蜇,治疗心血管疾病。珊瑚,抑制癌细胞增长。
(4)软体动物门:贝类、乌贼、海兔,中药:厣,海螵鞘,石决明,珍珠。
(5)节肢动物门:虾、蟹、鲎,甲壳质、壳聚糖。(6)苔藓动物门:苔虫素防腐蚀剂,抗癌,促进造血。
(7)棘皮动物门:海星、海胆、海参
16.海洋药用大型藻类的主要生物学来源有哪几个门,各举一例,并说明其主要的药用价值。
门类:红藻门(石花菜)、褐藻门(裙带菜)、轮藻门(苦草)
药用价值:①石花菜:清肺化痰、清热燥湿,滋阴降火、凉血止血
②裙带菜:抗癌
③苦草:清热解毒,止咳祛痰,养筋和血。用于急、慢性支气管炎、咽炎,扁桃体炎,关节疼痛;
外治外伤出血。
17.红树林有哪些主要的次生代谢产物,简述其中的一、两种。
(1)萜类:是红树林植物中含量最为丰富的一种代谢产物,二萜是最为重要的化学成分,与多种生物活性密切相关。二倍半萜化合物-柠檬苦素具有较好的细胞毒性。
(2)糖苷类化合物:是红树林植物中一种重要的代谢产物。
(3)甾醇:植物甾醇是滨海湿地植物中的常见化学成分,含量高且类型单一。
(4)生物碱类:在滨海湿地植物中发现较少。但在红树林植物中发现了新颖结果的生物碱,有拒食活性。
(5)含硫化合物:是滨海湿地植物中一类比较特殊的成分,目前仅在红树科的Brugiera属中有发现。有新颖结构的化合物发现。
(6)其它:芳香类表现抗革兰氏阳性菌和阴性菌活性。
18.红树里植物的次生代谢产物主要有哪些生物学活性?
①抗病毒活性;②抗肿瘤活性;③镇痛、抗炎及抗氧化活性;④抗菌、毒素和昆虫拒食素及其他活性
19.海洋生物技术概念与内容
概念:利用海洋生物或其组成部分,综合应用基因工程、细胞操作技术和细胞培养等技术手段,生产出有用的生物产品,以及定向改良海洋生物的某些遗传特性的综合性科学技术。
内容:①开发、生产和改造海洋生物天然产物,以便用作药物、食品、新材料;
②定向改良海洋动物、植物遗传特性,为海水养殖业提供具有生长快、品质高和抗病害的优良品种; ③培养具有特殊用途的“超级细菌”,用来清除海洋环境的污染,或者生产具有特定生物治理的物质。
20.海洋生物制药研发瓶颈及其解决办法
瓶颈:①有效成分无法确定;②药源不足
解决办法:①人工养殖;②开辟新的资源领域,探索新的方法和技术
21.优点:①节省水、电和蒸汽耗量,降低生产成本;②提高产品得率;③经济效益显著;④减轻劳动强度,改善生产环境。
22.什么是生物反应器?生产藻类活性物质生物反应器技术的研究有哪两项?
生物反应器:一般是指利用固定化酶及固定化细胞高效生产产物的技术,是现代生物技术研究的焦点。生产藻类活性物质生物反应器技术的研究
光和微藻生物反应器包括:
1.大面积室外养殖
2.真正意义上的生物反应器—在可控条件下高密度养殖
23.藻类基因工程的概念与研究进展
概念——是指利用分离自海洋生物的有药用价值的基因、以规模化养殖的海洋生物作为表达受体进行遗传操作,从而大量获得高值廉价的海洋生物药物。
海洋蓝藻基因工程的应用研究—发展为两个方向,海藻分子生物学与基因工程的研究;概念:从生物大分子角度研究海藻个体发育与系统发育,从分子水平上揭示海藻起源、进化及生命现象、生命过程的规律、本质以及机理。
进展:1)克隆技术2)质粒发现分离技术3)标记技术4)克隆与遗传转化技术
24.简答基因芯片在海洋生物制药中的应用
(1)新药靶点发现;(2)药物作用机制研究;(3)超高通量药物筛选;(4)药物毒理学研究;(5)药物基因组学研究
26.什么是药物筛选?目前活性筛选有哪些主要的方法?
药物筛选:是现代药物开发流程中检验和获取具有特定生理活性化合物的一个步骤,系指通过规范化的试验手段从大量化合物或者新化合物中选择对某一特定作用靶点具有较高活性的化合物的过程。
目前活性筛选的三种方法:
(1)寻找某类已知化合物及其类似物:如青蒿素紫杉醇苔藓虫内酯
(2)寻找具有某种活性的物质:抗肿瘤活性、抗菌筛选、抗病毒筛选等
(3)多种活性筛选:高通量筛选(HTS)、高内涵筛选、虚拟筛选
27.常用的药物活性筛选方法有哪些?
(1)抗菌活性筛选---抗生素的研究:抗一般细菌、厌氧细菌、真菌、支原体药物筛选
(2)对动物的影响活性:幼体定植或变态、无脊椎动物运动、金鱼毒性、器官和生理系统监测
(3)细胞水平筛选:抗肿瘤药物筛选
(4)酶抑制剂筛选法:抗肿瘤、血栓、病毒、糖尿病等
(5)受体拮抗活性筛选
(6)免疫调节活性代谢物的筛选法
(7)抗病毒药物的活性筛选
(8)其他筛选。如神经系统药物、抗炎、心血管疾病药物、抗氧化等筛选。
28.抗肿瘤药物筛选经常采用哪种筛选方法?常用的肿瘤筛选的细胞株?(4-5个即可)
方法:细胞水平筛选(MTT法、SRB法)
细胞株:P388(小鼠白血病细胞);A-594(人肺癌细胞);BEL-7404(人肝细胞性肝癌);S180(小鼠移植性肿瘤);Lewis(肺癌)
29.简述如何采用MTT法筛选抗肿瘤活性药物?
(1)接种一定量对数生长期细胞90μl/孔于96孔板,培养24h
(2)每孔加待测样液10μl,37℃ 5% CO2培养48h
(3)每孔加MTT20μl,培养4h,每孔加三联液50μl,CO2培养过夜
(4)酶标仪测OD570,计算待测样对细胞的影响
30.超高通量筛选平台发展的两个方向?高通量筛选技术体系的组成?
①微孔板/微阵列技术,芯片膜片钳技术
②微流体芯片技术
体系的组成:(1)化合物样品库;(2)自动化的操作系统;(3)高灵敏度的检测系统;(4)数据库管理系统。
31.高通量筛选技术的三种平台及其优缺点?
(1)反酵母双杂交系统的药物筛选模型
优点:①该系统中的酵母细胞能够繁殖,因此无须对靶分子进行耗时、耗力、耗材的生物纯化过程,而且能够在相对短的时间内对大量的蛋白质进行测试。
②该系统是在一个生物体环境内进行的,因此与体内环境较为接近。细胞通透性以 及细胞毒作用都作为参数在筛选过程中被考虑。而这一点恰前可以弥补体外筛选试验的不足。
③该系统能够与现有的高通量筛选兼容,从而可以在96孔或384孔板上测试组合化学分子库中的化合物。另外它还很容易与计算机工作站相结合,从而能够快捷地分析实验数据。
不足:①细胞通透性问题;
②药物浓度的要求超出了组合化学所能提供的水平等。
(2)基于细胞平台的药物筛选模型
优点:①细胞平台的药物筛选系统可以直接选取来源于人源组织的细胞或者是人源转化细胞株进行培养,更接近人体的情况,因此能够改善一些蛋白靶点在异源细胞中表达情况不够理想的局面。
②细胞的高通量筛选能够提供化合物对于特定受体、离子通道或者是细胞内的药理活性,而传统的生化分析往往不能得到这些活性数据。
(3)基于动物平台的药物筛选模型
优点:将动物模型作为药物筛选模型是今年来刚刚发展起来的。由于动物体的完整性,解决了筛选药物的药理活性和对药物的吸收、分布、代谢、排泄进行研究的问题。该模型尚处于发展阶段。
32.高通量筛选的的优缺点?
优点:①快速:每天筛选数万次;
②微量:筛选样品需要量为微克级;
③灵敏:准确判断筛选样品的活性和选择性;
④经济:筛选费用低。
缺点:①高通量筛选所采用的主要是分子、细胞水平的体外实验模型,因此任何模型都不可能反应药物的全面药理作用;
②用于高通量筛选的模型是有限的,要建立反应机体全部生理机能或药物对整个机体作用的理想模型,也是不现实的。
③其检测模型均建立在单个药物作用靶分子的基础上,无法全面反映被筛样品的生物活性特征,只得到有限的数据,初筛得到的阳性结果需要进一步确认。
35.海洋新药临床前评价的主要内容
(1)临床前主要药效学研究:①评价海洋生物新药的主要药效作用;②阐明海洋生物新药的作用部位和作用机理
(2)临床前药理研究:①一般药理研究;②复方药理学研究
(3)海洋生物新药临床前作用机制研究
(4)海洋生物新药临床前的毒理评价
(5)海洋生物新药的药代动力学评价
36.海洋生物新药临床前评价的基本要求
(1)明确不同实验的目的和意义
(2)把握药理毒理学研究的整体性
(3)强调具体问题具体分析
(4)执行药物非临床研究质量管理规范(GLP)
(5)注重“非临床安全性的全程评价”
(6)对各种因素进行综合分析
37.如何把握海洋生物新药临床前评价的”非临床安全性的全程评价”?
(1)对研究方法的评价:要注重对研究方法(手段、模型)的评价,以判断其预测临床安全性价值的大小。
(2)对实验结果的评价:应围绕实验目的(毒性靶器官、安全范围、提示临床检测指标)来进行。
(3)注意全面理解实验室检查结果变化的统计学意义与临床意义的关系,有统计学意义的结果,不一定有临床意义。反之也相关。要结合相关参数临床上合实验室参考范围等综合考虑。
38.如何选择海洋生物新药的主要药效实验的实验动物?
(1)选择健康的实验动物。选择动物必须健康、有些动物必须预选。
(2)实验动物年龄和性别的选择。一般是成年动物,常用雄性动物或雌雄各半。
(3)实验动物种属的异同性。实验动物和人间对药物的反应有共同性也有差异;多选择几种动物;不同种属动物对药物反应有明显差别;同一种属的不同品系之间,有时对药物反应也会有差异。
39.海洋生物新药主要药效学评价的指导原则
(1)负责人和研究人员专业
(2)实验室条件、仪器设备、各种试剂及组织管理均符合规范化要求
(3)实验设计应遵循科学研究的基本规律,按随机、对照和重复的原则进行设计
(4)试剂保证纯度,规格恒定,实验动物用药后的观察其内,要加强管理
40.海洋生物药物制剂研究的概念:指将原料通过制剂技术制成适宜剂型的过程。
41.海洋生物新药制剂类型的选择依据
(1)临床需要和用药对象;(2)药物性质和处方剂量;(3)充分考虑安全性
42.药物动力学的概念及其研究目的和意义
概念:研究药物在体内的量变过程的规律,采用数学方法定量地研究药物在体内的吸收、分布、代谢和排泄除的量变特征,特别是研究药物在体内方式中的量变规律。
目的和意义:
(1)为临床安全用药和合理用药提供依据和参考;
(2)应用药代动力学和生物利用度研究结果指导新制剂的设计或改造;
(3)是新药设计的中药组成部分。
43.海洋生物新药临床前安全性评价的目的和内容和意义。
目的:安全、有效是一切药物所具备的两大要素
内容:①一般毒理学、②特殊毒理学、③药物依赖性、④安全性药理、⑤毒代动力学
意义:药品是一种特殊的商品,它的安全与否关系到人民的生命健康,海洋生物新药临床前的安全性评价有助于人们了解药品的安全情况,很大方面上避免新药对人们生命健康的损害。
补充:
(说明:此部分内容海科班给的题库中有,而我们班没有的,可能是我们两个班拷得题库版本不同。)
1.什么是核磁共振谱、化学位移?影响化学位移的因素有哪些?
核磁共振谱:在静磁场中具有磁矩的原子核(1H、13C)存在不同能级,当原子核被特定频率的电磁波照射时,原子核便产生能级的跃迁而获得共振信号,即核磁共振谱。
化学位移:由于有机分子中各种质子受到不同程度的屏蔽效应,引起外加磁场()或共振频率(v)偏离标准值而产生移动的现象。
影响化学位移的因素:
2.使用核磁共振仪进行物质结构鉴定时,样品应该如何处理?
(1)对样品的要求:样品要纯;样品量不能太小,通常为1-3mg(低灵敏度NMR仪需10-30mg)、不含氧和灰尘;固体样品要用合适溶剂溶解;加入内标,如TMS
(2)对溶剂的要求:不含质子、沸点低、不与样品缔合、溶解度好,如CCl4, CS2, CHCl3,。为防干扰,多采用D代试剂,如CHCl3-d1,(CH3)2CO-d6, H2O-d2(水溶性试剂)TMS只能在测定时加入,不要加入过早。
3.核磁共振仪在海洋生物制药中的主要应用有哪些?
(1)结构鉴定:对于1H-NMR的简单图谱,可用化学位移鉴别质子的类型。
CH3O-, CH3CO-, CH2=C-, Ar-CH3,>HCH3, CH3CH2-,-CHO,-OH, 等。对于复杂的未知物,可以配合IR, UV, MS等数据,推定结构。
(2)定量分析:
4.碳核磁共振谱(13C-NMR)的特征有哪些?
(1)13C-NMR谱比1HNMR谱作用更大(化学位移δ范围更广);
(2)能反映出化合物结构上的精细变化;
(3)有利于对化合物中碳原子的确认;
(4)可以区别伯仲叔季各类碳原子;
(5)灵敏度较低,需要样品量较大,费时。
(6)在实际应用氢谱和碳谱是相互补充的。
5.什么是旋光光谱?如何表示,实际工作中又如何表示?
紫外及可见光经尼可尔棱镜产生偏振光,以偏振光照射具有旋光性的化合物,偏振光振动平面产生改变,产生旋光现象。
测出旋光度(α),以波长对比旋度[α]×10作图,所得曲线即旋光光谱。
[α]D =(α实/ C L)× 100
〔φ〕λ =〔α〕λ·M/ 100
6.什么是正常的或平坦的旋光谱线?什么叫简单康顿效应谱线?
(1)正常的或平坦的旋光谱线:化合物无发色团时,ORD谱线只是在一个相内延伸,没有峰也没有谷
(2)简单康顿效应谱线:分子中有一个简单的发色团时,ORD曲线在紫外光谱λmax处越过零点,进入另一个相区。形成的一个峰和一个谷组成的ORD谱线
7.如何利用本课程中学习的技术鉴定一个未知化合物的结构(包括立体结构)。
(1)质谱(MS):确定分子量、分子式
(2)计算不饱和度,推测化合物的大致类型
(3)紫外光谱(UV):是否具有共轭基团,是芳香族还是脂肪族化合物。
(4)红外光谱(IR):官能团类型
(5)核磁共振氢谱(1H-NMR):质子类型(具有哪些种类的含氢官能团);氢分布(各种官能团中含氢的数目);氢核间的关系
(6)质谱(MS):验证所推测的未知物结构的正确性
8.高通量筛选的模型有哪些?
(1)分子水平的药物筛选模型; 包括受体筛选模型;酶筛选模型;离子通道筛选模型。
(2)细胞水平药物筛选模型;包括:内皮细胞激活;细胞凋亡;抗肿瘤活性转录调控检测;信号转导通路;细菌蛋白分泌;细菌生长。
9.什么是虚拟药物筛选?其组成如何?
虚拟药物筛选定义:针对重要疾病特定靶标生物大分子的三维结构或定量构效关系(QSAR)模型,从现有小分子数据库中,搜寻与靶标生物大分子结合或符合QSAR模型的化合物,进行实验筛选研究。
组成:虚拟药物筛选应用软件,理论方法,操作对象,操作过程,结果分析评价。
10.基于分子对接的虚拟筛选的过程如何?
(1)收集文献上发表的小分子化合物结构的信息,组成二维小分子数据库。对每个小分子进行原子类型和化学键归属,将2D结构转变成3D结构并进行结构优化,组成3D小分子数据库。
(2)对生物大分子(蛋白质)进行质子化合原子电荷归属,并进行结构优化,确定小分子结合位点,构建计算网格;
(3)将3D小分子数据库中的每个化合物对接到生物大分子的活性位点,并进行打分-计算小分子-生物大分子的结合强度Ki(结合自由能)
(4)根据打分的结果挑选化合物(打分比较高的分子)进行类药性评价,选择化合物进行生物实验测试。
11.什么是高内涵筛选?其组成如何?
是指在保持细胞结构和功能完整性的前提下,同时检测被筛选样品对细胞形形态、生长、分化、迁移、凋亡、代谢途径及信号转导各个环节的影响,在单一实验中获取大量相关信息,确定其生物活性和潜在毒性。
组成:荧光显微系统、自动化荧光图像获取系统、检测仪器、图像处理分析软件、结果分析系统、数据管理系统和其他(生物信息学工具、新型细胞株的研制和选择性试剂)。
12.比较3种现代药物筛选技术的优缺点。
高通量:参见32题
虚拟筛选:优点:提高了筛选化合物的速度和效率,缩短新药研究的周期。
缺点:(课件上没找到)
高内涵筛选:
优点:①筛选取得了纵向和横向上的双重突破。
②HCS获得信息以细胞为单位
③获取多个终点的定量数据的能力全面加深了研究者对筛选中得到信息的理解
④显著提高发现先导化合物的速率,减少开发后期的失败率。
缺点:(课件上没找到)
13.海洋中药与陆生中药一样,亦有“四气”、“五味”之别。“四气”是指寒、热、温、凉四种不同的药性,还有一些药性较为平和,成为“平”性。“五味”指辛、甘、酸、苦、咸五种不同的味道,在五味以外,还有淡味、涩味。海洋药物体现了其具有甘、咸、寒、平。
14.2005年版《中华人民共和国药典》收载了海藻、瓦楞子、石决明、牡蛎、昆布、海马、海龙、还螵蛸等10余个品种。-2
第五篇:预防脑血管痉挛疾病要注意哪些
预防脑血管痉挛疾病要注意哪些? 脑血管痉挛会有头痛的情况,上海蓝十字脑科医院专家介绍:脑血管痉挛性头痛会有这样的特点:持续性的头痛、头部闷痛、压迫感、沉重感,有的病人自诉为头部有“紧箍”感。因此一定要注意该疾病的预防,预防脑血管痉挛疾病要注意哪些?上海蓝十字脑科医院专家指出可以根据下面的情况来认识。
预防脑血管痉挛疾病要注意哪些?生活中尽量做到以下几点
(1)要学会情绪的自我控制。生活中难免有喜怒哀乐,这些情绪的刺激对于健康者或年轻人大多能够应付,但是发生在具有脑血管痉挛病倾向的人身上,可能就会成为诱发脑血管痉挛病的因素,特别是对于患有高血压和动脉硬化者更危险性,有可能使脑血管破裂而患脑血管痉挛。因此遇到各种情绪的刺激时不要过分激动,焦虑,切勿与人争吵并设法避免和转移,最好的办法是很好的自我控制,亲朋好友的安慰和规劝也是有好处的。开朗的性格,心胸开宽,保持乐观情绪是很重要的。
(2)避免过度疲劳。过度劳累都可能给易患者带有危险因素,大量的事例证实过度疲劳可以诱发脑血管痉挛病。要做到生活规律,起居有节,不要做任何超过自己体力和精力所能负担的工作和家务,避免一次活动的过度劳累,如突击工作到深夜,长途旅行,应酬太多,看电影电视时间过长等。
(3)不要用力过猛。用力过猛可以引起血压升高,心跳过快,甚至心脏的严重损害或脑血管痉挛,所以应该避免用力屏气,搬抬重物,体育锻炼时不要做剧烈运动和超量运动。
(4)饮食不当。进餐时或饮食不当后常突然发生脑血管病,这往往是由于饮食过量或暴饮暴食,酗酒所致,所以应避免一餐饱食或一次摄入动物脂肪过多的餐食,还应避免大量饮酒,尤其是烈性酒。
(5)其他,气候变化时应加强保暖,预防感冒,天气酷热时要防止中暑。平时外出多加小心,不要跌交。夜间起床小便动作要慢,低头系鞋带等动作时也要慢些,不要急剧改变头位或体位,以免产生体位性低血压。平时不要用脑过度,洗澡时间不要过长等。
(6)当血压波动、气候变化、情绪激动等情况时要多加保重,特别是高血压病人,应坚持长期服降压药,不要随便停服,以防止血压反跳。