信息学院数分期中考试2011

时间:2019-05-14 20:10:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《信息学院数分期中考试2011》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《信息学院数分期中考试2011》。

第一篇:信息学院数分期中考试2011

May 5, 2011

1.(22分)计算下列定积分:

(1)

(2)10x(1x)dx 01信息学院数分期中考试资料 2

0cos2xdx 2.(15分)求双曲线xy4与抛物线y(x3)2所围平面图形的面积,和该图形绕x轴旋转所成旋转体的体积。3.(37分)(1)判断反常积分0ln(1x)dx的敛散性; xm(1)n1(2)判断级数[]的敛散性; nnn1(3)判断级数1n的敛散性。(1)sinnn1

4.(16分)证明极限

xn

dx0(1)limn01x1

(2)lim2

n0sinnxdx0

5.(10分)证明:若f(x)为[0,1]上的递减函数,则对任给的a(0,1),恒有

af(x)dxf(x)dx。001a

参考答案(信息学院97分考卷,仅供参考):

12

1.(1);(2)1322

2.S4ln43;V27 5

3.(1)m(0,1)时收敛,其余均发散

(2)发散

(3)条件收敛

4, 5 略

第二篇:数分

1.2.2 I[0,];sin(xy)dxdy,I2 I[0,2];(xy)dxdy,I3.计算积分Ixdyydx22,其中C为椭圆2x3y1,沿逆时针方向。22C3x4y4.已知 zf(xz,zy), 其中f(u,v)存在着关于两个变元的二阶连续偏导数,求z关于x,y的二阶偏导数。

x2y2z25.求椭球体2221的体积。

abc6.若l为右半单位圆周,求|y|ds。

l7.计算含参变量积分I(a)0 ln(12acosxa2)dx(a1)的值。

8.若积分在参数的已知值的某邻域内一致收敛,则称此积分对参数的已知值一致收敛。试讨论积分

I10adx

1a2x2 在每一个固定的a处的一致收敛性。

9.讨论函数F(y)0 yf(x)dx的连续性,其中f(x)在[0,1]上是正的连续函数。

x2y222210.求球面xyz50与锥面xyz所截出的曲线的点(3, 4, 5)处的切线与法平面方程。

2211.求平面z0,圆柱面xy2x,锥面z222x2y2所围成的曲顶柱体的体积。

12.计算三重积分

I(xyz)dxdydz。其中 V:0x1, 0y1,0z1。

V13.利用含参变量积分的方法计算下列积分

14.计算333M ex2dx。

xdydzydzdxzdxdy, 其中M为上半椭球面

x2y2z2221,z0(a,b,c0), 2abc定向取上侧.15.求I(xy)ds,此处l为联结三点O(0,0), A(1,0), B(1,1)的直线段。

l

16.计算二重积分

I(x2y2)dxdy。

其中 是以yx,yxa,ya和y3a(a0)为边的平行四边形。

17.计算三重积分

IVx2y2z2(222)dxdydz。abcx2y2z2其中V是椭球体2221。

abc18.计算含参变量积分0eaxebx dx(ba0)的值。

xx2u2u19.已 知uarccos,试确定二阶偏导数与的关系。

yxyyx20.讨论积分xcosxdx的敛散性。pqxxxy2.求limlimf(x,y)和limlimf(x,y).极限limf(x,y)是否 21. f(x,y)x0y0y0x0x0xyy0存在 ? 为什么 ?

xy22 , xy0 ,2222.f(x,y)xy 验证函数f(x,y)在点(0 , 0)处连续 ,偏22 0 , xy0.导数存在 , 但不可微

2z2z23.设函数f(u,v)可微 , zf(x , xy).求 2 和 2

yx , 1 , 2)的方向..24.f(x,y,z)xxyyz, l为从点P0(2 , 1 , 2)到点P1(1求fl(P0).25.设为单位球面x222y2z21,证明:

1f(axbycz)d2f(a2b2c2t)dt.126. 求 xydxdy, 其中 D: yD1x , y2x , xy1 , xy3.2x8x2 dx.27.求积分I lnx028.求 yedxdy,其中D是以点(0 , 0)、(1 , 1)和(0 , 1)为顶点的三角形域.D2129.计算积分(2xsinLy2)dxx2cosy2dy.其中L为沿曲线yex1从

点(0 , 0)到点(ln2 , 1)的路径.30.V :xy2x , xyz2(xy).为V的表面外侧.计算积分 3223(xyz)dydz(xycosz)dzdx(xy22222232z)dxdy.231.已知 f(x,y)y.证明极限limf(x,y)不存在.2x0xyy032. 设函数u(x,y)和v(x,y)可微.证明 grad(uv)u gradvv gradu.33.设函数f在有界闭区域D上连续.试证明: 若在D内任一子区域DD上都有

f(x,y)dxdy0, 则在D上f(x,y)0.D34.求极限

(x,y)(0,0)limsin(x2y2)1xy122.1222(x2y)sin , xy0 ,22xy35.f(x,y)

0 , x2y20.求fx(0 , 0)和fy(0 , 0).36.设函数f(u,v)有连续的二阶偏导数 , zf(xy , xy).求

22zz、xy2z和.xy37.f(x,y,z)xyz , 点P0(1 , 1 , 1), 方向l:(2 , 2 , 1).求

23gradf(P0)和f沿l的方向导数fl(P0).39.曲线L由方程组

222 2x3yz9 , 2 22 z3xy 确定.求曲线L上点P0(1 , 1 , 2)处的切线和法平面方程 40.求函数f(x,y)xy在约束条件满足极值充分条件)

111之下的条件极值.(无须验证驻点 xyx2y41.f(x,y)4.试证明在点(0 , 0)处f(x,y)的两个累次极限均存在 , 但

xy2二重极限却不存在.xy , x2y20 ,22 42. f(x,y)xy 证明函数f(x,y)在点(0 , 0)处连续,偏导22 0 , xy0.数存在 , 但却不可微 43. 设 zlnx2y2, 验证该函数满足Laplace方程

2z2z0.22xy44.设函数f(x,y)在点(0 , 0)的某邻域有定义 , 且满足条件|f(x,y)|  xy.试证明 f(x,y)在点(0 , 0)可微。

222fxff45.设f(x,y)xy,求,;

xyyxy46.设zsin(xcosy),求全微分dz;

x2yz2xyz0所确定的隐函数的偏导数47.求由方程

z,xz。y48.求函数 zxe2y在点P(1,1)处从P(1,1)到Q(2,1)方向的方向导数。49.求2ydxdy, D由旋轮线 Dxa(tsint), 0t2 与y0围成; ya(1cost),50.求0exdx

limx2y2x2y211251.求二重极限 x0y0.2zz52.zz(x,y)由zexy确定,求xy.zz1yy3.53.设zln(xy),证明:x1313xyf(xy,)x2y2x54.设,则

f(x,y)_____________.15()()55.已2知,则2=___________.2256.设函数f(x,y)2xaxxy2y在点(1,1)取得极值,则常数 a________

57.已知f(x,y)xy(x4arctany)2,则fx(1,0)________.2z2zt220z2cos(x)xt2,证明:t58.设

33f(x,y)x12xy8y59.求函数的极值

zz,z60.求由exyzxy所确定的隐函数zz(x,y)的偏导数xy.

第三篇:数分题库11

(三十四)数学分析试题(二年级第一学期)

一 叙述题(每小题10分,共30分)叙述第二类曲线积分的定义。2 叙述Parseval等式的内容。叙述以2为周期且在[,]上可积函数f(x)的Fourier系数﹑Fourier级数及其收敛定理。

二 计算题(每小题10分,共50分)

1.求I(xy)ds,此处l为联结三点O(0,0), A(1,0), B(1,1)的直线段。

l2.计算二重积分

I(x2y2)dxdy。

其中 是以yx,yxa,ya和y3a(a0)为边的平行四边形。

3.一页长方形白纸,要求印刷面积占A cm2,并使所留叶边空白为:上部与下部宽度之和为h cm,左部与右部之和为r cm,试确定该页纸的长(y)和宽(x),使得它的总面积为最小。

4.计算三重积分

IVx2y2z2(222)dxdydz。abcx2y2z2其中V是椭球体2221。

abceaxebx dx(ba0)的值。5.计算含参变量积分0x三 讨论题(每小题10分,共20分)

2u2ux1 已 知uarccos,试确定二阶偏导数与的关系。

xyyxy2 讨论积分

数学分析试题(二年级第一学期)答案

一 叙述题(每小题10分,共30分)设L为定向的可求长连续曲线,起点为A,终点为B。在曲线上每一点取单位切向量(cos,cos,cos),使它与L的定向相一致。设 xcosxdx的敛散性。

xpxqf(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k

是定义在L上的向量值函数,则称

fdsP(x,y,z)cosQ(x,y,z)cosR(x,y,z)cosds

LL为f定义在L上的第二类曲线积分(如果右面的第一类曲线积分存在)。

2.函数f(x)在[,]可积且平方可积,则成立等式

2a01222 anbnf(x)dx。

2n13 若f(x)是以2为周期且在[,]上可积的函数,则 an bn11f(x)cosnxdx(n0,1,2,)

f(x)sinnxdx(n1,2,)

称为函数f(x)的Fourier系数,以f(x)的Fourier系数为系数的三角级数

a0 (ancosnxbnsinnx)

2n1称为函数f(x)的Fourier级数,记为

a0 f(x)~(ancosnxbnsinnx)。

2n1收敛定理:设函数f(x)在[,]上可积且绝对可积,且满足下列两个条件之一,则f(x)的Fourier级数在x收敛于

f(x)f(x)。

2(1)f(x)在某个区间[x,x](0)上是分段单调函数或若干个分段单调函数之和。

(2)f(x)在x处满足指数为(0,1]的Holder条件。二 计算题(每小题10分,共50分)

1。解 I(xy)dslOAABBO(xy)ds。

在直线段OA上y0, dsdx得

OA(xy)dsxdx011 2在直线段AB上x1, dsdy得

AB(xy)ds(1y)dy013 2在直线段BO上yx, ds2dx得

10BO(xy)ds2x2dx2

所以 I22。

2.解 22(xy)dxdydya3ayya(x2y2)dx14a4.3.解 由题意,目标函数与约束条件分别为Sxy与xr, yh,(xr)(yh)A.作Lagrange函数Lxy[(xr)(yh)A],则有

Lxy(yh)0, Lyx(xr)0, L(xr)(yh)A0.由此解得

rhAh.x, y, 111r于是有

x并且易知它是极小值点.4.解 由于 I其中

Arr, yhAhh.rVx2dxdydz2aVy2dxdydz2bVz2dxdydz,2cVx2dxdydz2ax2dxdydz,aa2Da这里D表示椭球面

y2z2x22122bcay2z2x22c(12)a

x22b(12)a1。

它的面积为

x2x2x2 (b12)(c12)bc(12)。

aaa于是 Vx2dxdydza2abcax24x(1)dxabc。

15a2a22同理可得

Vy24dxdydzabc,215bz24dxdydzabc。

15c2

V所以 I3(44abc)abc。155eaxebxdx(ba0)的值。5.计算含参变量积分 0xbeaxebxbeaxebxxyedy,dx dxexydy。解 因为所以 注意到exya00axx在域:x0, ayb上连续。又积分

0exydx对ayb是一致收敛的。事实上,当x0, ayb时,0exyeax,但积分

0eaxdx收敛。故积分

0exydx是一致收敛的。于是,利用对参数的积分公式,即得 从而得

0dxexydydybaab0exydx。

0eaxebx dx xabdy0exydxbadybln。ya三 讨论题(每小题10分,共20分)当0xy时,uarccosxarccosyxy。

ux11xy12xy12x(yx),uyx3x12y2y1x,22y(yx) 4 2uxy14x(yx)32,2u1yx4xy2(yx)2u2u于是,当0xy时。xyyx当0xy时,uarccos2.首先注意到

x4y(yx)3214x(yx)32,xarccosyxy。

x(1p)xp(1q)xq p。qpq2xxxxxx0若max(p,q)1,则当x充分大时p,从而当充分大时函数是递xqpqxxxx减的,且这时

xlimx0。

xpxq又因AcosxdxsinA1(对任何A),故xcosxdx收敛。pqxxxx0若max(p,q)1,则恒有p,故函数在x上是递增的。于是,qpqxxxx正整数n,有

42n2nxcosxdx

xpxq42 2 2n2nxdx pqxx2p q422常数0,pq8 

故不满足Cauchy收敛准则,因此

xcosxdx发散。

xpxq(三十五)数学系二年级《数学分析》期末考试题

一(满分 1 2 分,每小题 6 分)解答题:叙述以下概念的定义: 1 二元函数f(x,y)在区域D上一致连续.2 二重积分.二.(满分 1 6 分,每小题 8 分)验证或讨论题:

xy21 f(x,y).求limlimf(x,y)和limlimf(x,y).极限limf(x,y)是否

x0x0y0y0x0xyy0存在 ? 为什么 ? xy22 , xy0 ,222 f(x,y)xy 验证函数f(x,y)在点(0 , 0)处连续 ,22 0 , xy0.偏导数存在 , 但不可微.三.(满分 4 8 分,每小题 6 分)计算题:

2z2z1 设函数f(u,v)可微 , zf(x , xy).求 2 和 2.xy2 f(x,y,z)xxyyz, l为从点P0(2 , 1 , 2)到点P , 1 , 2)的方向.1(1求fl(P0).3 设计一个容积为4m的长方体形无盖水箱 , 使用料最省.4

322xydxdy, D: yD11x , y2x , xy1 , xy3.2x8x25 求积分I dx.lnx06 eDy2dxdy,其中D是以点(0 , 0)、(1 , 1)和(0 , 1)为顶点的三角形域.7 计算积分(2xsinLy2)dxx2cosy2dy.其中L为沿曲线yex1从

点(0 , 0)到点(ln2 , 1)的路径.8 V :xy2x , xyz2(xy).为V的表面外侧.计算积分 3223(xyz)dydz(xycosz)dzdx(xy22222232z)dxdy.2四.(满分 2 4 分,每小题 8 分)证明题:

1 f(x,y)y.证明极限limf(x,y)不存在.2x0xyy02 设函数u(x,y)和v(x,y)可微.证明 grad(uv)u gradvv gradu.3 设函数f在有界闭区域D上连续.试证明: 若在D内任一子区域DD上 都有

(三十六)二年级 《数学分析》考试题

一 计算题 : 1 求极限 f(x,y)dxdy0, 则在D上f(x,y)0.D(x,y)(0,0)limsin(x2y2)1xy122.1222(x2y)sin , xy0 ,22xy2 f(x,y)

0 , x2y20.求fx(0 , 0)和fy(0 , 0).3.设函数f(u,v)有连续的二阶偏导数 , zf(xy , x2y2).求

zz、xy2z和.xy4 f(x,y,z)xyz , 点P0(1 , 1 , 1), 方向l:(2 , 2 , 1).求gradf(P0)和f沿l的方向导数fl(P0).5 曲线L由方程组

222 2x3yz9 , 2 22 z3xy 23确定.求曲线L上点P0(1 , 1 , 2)处的切线和法平面方程.6 求函数f(x,y)xy在约束条件满足极值充分条件)二.证明题 :

111之下的条件极值.(无须验证驻点 xyx2y1 f(x,y)4.试证明在点(0 , 0)处f(x,y)的两个累次极限均存在 , 但 2xy 二重极限却不存在.xy22 , xy0 ,222 f(x,y)xy 证明函数f(x,y)在点(0 , 0)处连续,  x2y20. 0 , 偏导数存在 , 但却不可微.223 设 zlnxy, 验证该函数满足Laplace方程

2z2z 220.xy4 设函数f(x,y)在点(0 , 0)的某邻域有定义 , 且满足条件|f(x,y)|  x2y2.试证明 f(x,y)在点(0 , 0)可微.(三十七)数学系二年级《数学分析》考试题

一(满分 1 2 分,每小题 6 分)解答题:叙述以下概念的定义: 1 二元函数f(x,y)在区域D上一致连续.2 二重积分.二.(满分 1 6 分,每小题 8 分)验证或讨论题:

xy21 f(x,y).求limlimf(x,y)和limlimf(x,y).极限limf(x,y)是否

x0x0y0y0x0xyy0存在 ? 为什么 ?

xy , x2y20 ,222 f(x,y)xy 验证函数f(x,y)在点(0 , 0)处连续 , x2y20. 0 , 偏导数存在 , 但不可微.三.(满分 4 8 分,每小题 6 分)计算题:

2z2z1 设函数f(u,v)可微 , zf(x , xy).求 2 和 2.xy , 1 , 2)的方向.2 f(x,y,z)xxyyz, l为从点P0(2 , 1 , 2)到点P1(1求fl(P0).3 设计一个容积为4m的长方体形无盖水箱 , 使用料最省.4

322xydxdy, D: yD1x , y2x , xy1 , xy3.28 x8x25 求积分I dx.lnx06 yedxdy,其中D是以点(0 , 0)、(1 , 1)和(0 , 1)为顶点的三角形域.D217 计算积分(2xsinLy2)dxx2cosy2dy.其中L为沿曲线yex1从

点(0 , 0)到点(ln2 , 1)的路径.8 V :x2y22x , x2y2z2(x2y2).为V的表面外侧.计算积分

3223(xyz)dydz(xycosz)dzdx(xy32z)dxdy.2四.(满分 2 4 分,每小题 8 分)证明题: 1 f(x,y)y.证明极限limf(x,y)不存在.2x0xyy02 设函数u(x,y)和v(x,y)可微.证明

grad(uv)u gradvv gradu.3 设函数f在有界闭区域D上连续.试证明: 若在D内任一子区域DD上 都有

(三十八)二年级《数学分析Ⅱ》考试题

一 计算下列偏导数或全微分(共18分,每题6分): f(x,y)dxdy0, 则在D上f(x,y)0.Dxff2f1 设f(x,y)xy,求,;

xyyxy2 设zsin(xcosy),求全微分dz;

z3 求由方程x2yz2xyz0所确定的隐函数的偏导数,xz。y二 求函数分)zxe2y在点P(1,1)处从P(1,1)到Q(2,1)方向的方向导数。(12 9 三(14分)设

1,xysin2f(x,y)xy20,1 求

x2y20;x2y20.fx(0,0),fy(0,0);

f(x,y)在点(0,0)处可微。2 证明:四 求曲面3x22y22z10在点P(1,1,2)处的切平面和法线方程。(16分)

五 证明:半径为R的圆的内接三角形面积最大者为正三角形。(14分)

六(14分)计算下列重积分 : 1、22xydxdyx1,x1,x2yx其中D为直线及曲线围成的区D域。

2、xdxdydz其中为由曲面zx2y2,三个坐标平面及平面xy1围成的区域。

七(12分)求函数

f(x,y,z)xyz2 在约束条件

xyz0及x2y2z21下的最大值和最小值。

(三十九)二年级《数学分析Ⅱ》考试题

一(15分)设x,y为欧氏空间中的任意两个向量,证明“平行四边形定理”:

||xy||2||xy||22(||x||2||y||2)

二 计算下列极限:(10分)(x,y)(1,0)limlog(xey)xy22 ;(x,y)(0,0)lim(x2y2)x2y4;

二(10分)设隐函数

y(x)由方程

y(x0)y2xarctanx定义,求 y' 及 y''。三 计算下列偏导数:(10分)

xyzue(1);

(2)zarcsin(x1x2xn);

222

四 计算下列积分(20分):(1)(2)I[0,];sin(xy)dxdy,I2 I[0,2];(xy)dxdy,Ixa(tsint),(3)ydxdy, D由旋轮线 0t2 与y0围成;

ya(1cost),D2(4)0exdx。2

五 计算下列曲线积分(10分):

(1)(x2y2)nds, :xacost,yasint,0t2,其中nN;(2)(xy)ds, :顶点为(0,0),(1,0),(0,1)的三角形边界;

六(10分)设为单位球面x2y2z21,证明:

1f(axbycz)d2f(a2b2c2t)dt.1七(15分)利用Gaus公式计算曲面积分:

xdydzydzdxzdxdy,2222为球面xyza的外侧。

(四十)二年级《数学分析Ⅱ》考试题

一(16分): 设zxexy3z,求; 2xy2222 设向量场xiyjzk,求 div及rot。二(15分): 0exdx; x2(e1)11 2 21dx。3x(lnx)三 求下列二元函数的极限(16分): limx0y0sin[(y1)x2y2]xy22;

xy22 lim2。2x0xyy0四 判断下列级数的敛散性(15分): n1n; n22 (1)nn1n;

n13 cos2n。nn1五 试求幂级数n1(1)n1xn1的收敛

n(n1)半径、收敛域以及和函数(14分)。六 证明:函数项级数(1x)n02xn在[0,1] 上一致收敛(14分)。七 设an1n收敛,数列{nan}收敛,证明:

n(an2nan1)收敛(10分)。

(四十一)二年级《数学分析Ⅱ》考试题

一(10分)设x,y为欧氏空间中的任意两个向量,证明“平行四边形定理”:

||xy||2||xy||22(||x||2||y||2)

二 证明:欧氏空间的收敛点列必是有界的。(10分)三 证明:Rn 中任意有界的点列中必有收敛的子点列。(10分)四 计算下列极限:(9分)

sin(xy)lim1(x,y)(0,0)x2(x,y)(0,0);

x2y4lim(xy)22;(x,y)(1,0)limlog(xex)x2y2;

五 计算下列偏导数:(10分)

(1)u(2)ex(x2y2z2);

zlog(x1x2xn);

六(10分)计算下列函数 f 的Jacobian Jf:(1)(2)f(x,y,z)x2ysin(yz);

2221/2f(x1,x2,,xn)(x1x2xn);

七(10分)设隐函数 八(11分)在椭球 y(x)由方程 y2xarctg(y/x),x0 定义,求 y' 及 y''。

x2y2z22212abc内嵌入有最大体积的长方体,问长方体的尺寸如何?

九、(10分)求椭球面

x2y2z22212abc过其上的点p(x0,y0,z0)处的切平面的方程。

十、(10分)设函数f(x,y),g(x,y)是定义在平面开区域G内的两个函数,在G内均有连续的一阶偏导数,且在G内任意点处,均有

fgfgxyyx又设有界闭D0G,试证:在 D 中满足方程组 f(x,y)0

g(x,y)0的点至多有有限个。

(四十二)二年级《数学分析Ⅱ》考试题

一(10分)设x,y为欧氏空间中的任意两个向量,θ是这两个向量之间是夹角,证明“余弦定理”:

||xy||2||x||2||y||22||x||||y||cos).二 计算下列偏导数:(10分)

xyzue(1);

(2)zarcsin(x1x2xn);

AxByCz0

222三(10分)求用平面

x2y2与圆柱相交所成椭圆的面积。221

ab四 计算下列积分(16分):

(1)(2)(3)sin(xy)dxdy, I[0,];

I2 I[0,2];(xy)dxdy,2I2ydxdy, D由旋轮线 Dxa(tsint), 0t2 与y0围成; ya(1cost),(4)0exdx。2五 计算下列曲线积分(14分):

(1)(x2y2)nds, :xacost,yasint,0t2,其中nN;(2)(xy)ds, :顶点为(0,0),(1,0),(0,1)的三角形边界;六(10分)设常数a,b,c满足acb0, 计算积分:

2xdyydx, 22ax2bxycy 其中为反时针方向的单位圆周。七(10分)设为单位球面x2y2z21,证明:

1f(axbycz)d21f(a2b2c2t)dt.八(10分)利用Gaus公式计算曲面积分:

xdydzydzdxzdxdy, 为球面x2y2z2a2的外侧。

九(10分)设曲面有法向量n,a是一个常向量,求证:

apdp2and. 15

第四篇:08年数分考试大纲

《数学分析》研究生考试大纲

适用专业:基础数学、计算数学、应用数学、运筹学与控制论、系统理论

一、复习要求:

要求考生掌握数学分析课程的基本概念、基本定理和基本方法,能够运用数学分析的理论求解和证明相关命题。

二、主要复习内容

本课程考核内容包括实数理论和连续函数、一元微积分学、级数、多元微积分学:

1、实数理论和连续函数

(1)了解实数域及性质.(2)掌握几种不等式及应用。

(3)熟练掌握邻域,上确界,下确界的概念和确界原理。

(4)熟练掌握函数复合、基本初等函数、初等函数及常用特性(单调性、周期性、奇偶性、有界性等)。

(5)熟练掌握数列极限的“ε-N”定义。

(6)掌握收敛数列的常用性质。

(7)熟练掌握数列收敛的判别条件(单调有界原理、迫敛性定理、柯西准则等)。

(8)熟练掌握“ε-δ”等语言,且能用它叙述各类型的函数极限。

(9)掌握函数极限的常用性质。

(10)熟练掌握函数极限存在的条件,(归结原则,柯西准则,左、右极限、单调有界等)。

(11)熟练应用两个重要极限。

(12)掌握无穷小量、无穷大量的定义和性质,熟悉等价无穷小、同阶无穷小、高阶无穷小及其性质。

(13)熟练掌握函数在某点连续的定义和等价定义。

(14)掌握间断点及类型。

(15)熟练掌握区间上连续函数和一致连续函数的性质。

(16)知道初等函数的连续性。

2、一元微积分学

(1)熟练掌握导数的定义、几何意义,知道导数的物理意义。

(2)熟练掌握求导法则和求导公式。

(3)掌握微分的概念,并会用微分进行近似计算。

(4)熟练掌握理解连续、可导、可微之间的关系。

(5)熟练掌握微分中值定理及其应用。

(6)熟练运用洛必达法则求极限。

(7)熟练掌握单调区间、极值、最值的求法。并能证明相关命题。

(8)熟练掌握曲线的凹凸性及拐点的求法,并掌握凸函数及性质。

(9)会求曲线各种类型的渐近性。

(10)掌握区间套、覆盖、有限覆盖、聚点、予列的含义。

(11)掌握实数完备性的七个定理的等阶性,并且知道每个定理的条件与结论。

(12)会用七个定理证明其它问题,如连续函数性质定理等。

(13)掌握原函数与不定积分的概念。

(14)记住基本积分公式,熟练掌握换元法、分部积分法。

(15)知道有理函数的积分步骤,会求可化为有理函数的积分。

(16)掌握定积分定义和性质,知道可积条件和可积类。

(17)深刻理解微积分基本定理,并会熟练应用。

(18)熟练计算定积分,掌握广义积分收敛定义及判别法,会计算广义积分。

(19)熟练掌握平面图形面积的计算,会求旋转体或已知截面面积的体积。

(20)会利用定积分求孤长、旋转体的侧面积。

(21)会用微元法求解某些物理问题(压力、变力功、静力矩、重心等)。

3、级数

(1)熟练掌握级数收敛和发散的定义、性质和判别法。

(2)熟练掌握条件收敛、绝对收敛及莱布尼兹定理。

(3)熟练掌握函数列、函数项级数一致收敛的判别法,知道函数列的极限函数和函数项级数的和函数的性质。

(4)熟练掌握幂级数收敛域、收敛半径以及和函数的求法,知道幂级数的若干性质。

(5)熟练掌握函数的幂级数展开的方法,会用间接法求函数的幂级数展开式。

(6)熟记付里叶系数公式,会求付里叶展式。掌握余弦级数,正弦级数的求法。

(3)理解收敛性定理,掌握贝塞尔不等式、勒贝格引理等几个重要定理。

4、多元微积分学

(1)了解平面点集的若干概念,掌握二元函数、二重极限的定义、性质。

(2)熟练掌握二次极限、二重极限与二次极限的关系。

(3)熟练掌握二元连续函数的定义、性质

(4)掌握全微分和偏导数的几何意义

(5)熟练掌握二元函数连续、偏导数连续、可微、可导之间的关系。

(6)会计算偏导数和全微分,会求空间曲面的切平面、法线。

(7)会求函数的方向导数与梯度,会求二元函数的泰勒展式、无条件极值、条件极值。

(8)熟练掌握一个方程确定的隐函数的条件,隐函数性质,隐函数的导数和微分公式。

(9)掌握由m个方程n个变元组成方程组,确定n-m个隐函数组的条件,并会求这n-m个隐函数对各个变元的偏导数。

(10)会求空间曲线的切线与法平面,会求空间曲面的切平面与法线。

(11)知道二重积分、三重积分定义与性质。

(12)熟练掌握二重积分的换序和变量代换。

(13)了解三重积分的换序,熟练运用球、柱、广义球坐标变换计算三重积分。

(14)掌握含参量正常积分的定义及性质。

(15)知道重积分应用,会求曲面面积,转动惯量,重心坐标等。

(16)掌握含参量非正常积分一致收敛定义、性质和判别法。

(17)掌握用积分号下求导数、积分号下求积分方法计算一些定积分(广义积分)。

(18)了解欧拉积分,递推公式及性质。

(19)熟练掌握第一、二型曲线、曲面积分的计算。

(20)知道曲线积分,两种曲面积分的关系。

(21)熟练掌握格林公式、高斯公式、斯托克斯公式,掌握积分与路径无关的条件。

(22)了解场论初步知识,知道梯度,散度和旋度的慨念。

三、重点内容:

1、求极限的方法与类型。

2、掌握实数完备性定理,如数列的单调有界定理、柯西收敛准则、确界原理、有限覆盖定理、魏尔斯特拉斯聚点原则。

3、海涅归结原则、函数的一致连续性。

4、微分中值定理,微积分基本定理、导数及其应用。

5、积分法则、广义积分敛散性判别法、定积分的可积性及可积类的讨论、含参量广义积分的一致收敛判别法。

6、级数、函数列的各种收敛性判别法、幂级数的收敛域、和函数、幂级数展式。

7、多元函数极限和连续性、偏导数、全微分、一个方程确定的隐函数的导数、偏导数。

8、多元函数的极值。

9、二重积分换序、重积分及其几何意义。

10、格林公式、高斯公式、斯托克斯公式、积分与路径无关性。

四、参考书目:

1、《数学分析》(上、下册),华东师大编,(任意版本),高等教育出版社。

第五篇:数分考研大纲

2012西安电子科技大学数学分析考研大纲

一、考试总体要求与考试要点 1.考试对象

考试对象为具有全国硕士研究生入学考试资格并报考西安电子科技大学理学院数学科学系硕士研究生的考生。

2.考试总体要求

测试考生对数学分析的基本内容的理解、掌握和熟练程度。要求考生熟悉数学分析的基本理论、掌握数学分析的基本方法,具有较强的抽象思维能力、逻辑推理能力和运算能力。3.考试内容和要点(一)实数集与函数

1、实数:实数的概念;实数的性质;绝对值不等式。

2、函数:函数的概念;函数的定义域和值域;复合函数;反函数。

3、函数的几何特性:单调性;奇偶性;周期性。

要求:理解和掌握绝对值不等式的性质,会求解绝对值不等式;掌握函数的概念和表示方法,会求函数的定义域和值域,会证明具体函数的几何特性。(二)数列极限

1、数列极限的概念(N定义)。

2、数列极限的性质:唯一性;有界性;保号性。

3、数列极限存在的条件:单调有界准则;两边夹法则。

要求:理解和掌握数列极限的概念,会使用N语言证明数列的极限;掌握数列极限的基本性质、运算法则以及数列极限的存在条件(单调有界原理和两边夹法则),并能运用它们求数列极限;了解无穷小量和无穷大量的概念性质和运算法则,会比较无穷小量与无穷大量的阶。

(三)函数极限

1、函数极限的概念(定义、X定义);单侧极限的概念。

2、函数极限的性质:唯一性;局部有界性;局部保号性。

3、函数极限与数列极限的联系。

4、两个重要极限。

要求:理解和掌握函数极限的概念,会使用语言以及X语言证明函数的极限;掌握函数极限的基本性质、运算法则,会使用海涅归结原理证明函数极限不存在;掌握两个重要极限并能利用它们来求极限;了解单侧极限的概念以及求法。(四)函数连续

1、函数连续的概念:一点连续的定义;区间连续的定义;单侧连续的定义;间断点的分类。

2、连续函数的性质:局部性质及运算;闭区间上连续函数的性质(最值性、有界性、介值性、一致连续性);复合函数的连续性;反函数的连续性。

3、初等函数的连续性。

要求:理解与掌握函数连续性、一致连续性的定义以及它们的区别和联系,会证明具体函数的连续以及一致连续性;理解与掌握函数间断点的分类;能正确叙述并简单应用闭区间上连续函数的性质;了解反函数、复合函数以及初等函数的连续性。

(五)实数系六大基本定理及应用

1、实数系六大基本定理:确界存在定理;单调有界定理;闭区间套定理;致密性定理;柯西收敛准则;有限覆盖定理。

2、闭区间上连续函数性质的证明:有界性定理的证明;最值性定理的证明;介值性定理的证明;一致连续性定理的证明。

要求:理解和掌握上、下确界的定义,会求具体数集的上、下确界;理解和掌握闭区间上连续函数性质及其证明;能正确叙述实数系六大基本定理的内容及其证明思想,会使用开覆盖以及二分法构造区间套进行简单证明。

(六)导数与微分

1、导数概念:导数的定义;单侧导数;导数的几何意义。

2、求导法则:初等函数的求导;反函数的求导;复合函数的求导;隐函数的求导;参数方程的求导;导数的运算(四则运算)。

3、微分:微分的定义;微分的运算法则;微分的应用。

4、高阶导数与高阶微分。

要求:能熟练地运用导数的运算性质和求导法则求具体函数的(高阶)导数和微分;理解和掌握可导与可微、可导与连续的概念及其相互关系;掌握左、右导数的概念以及分段函数求导方法,了解导函数的介值定理。

(七)微分学基本定理

1、中值定理:罗尔中值定理;拉格朗日中值定理;柯西中值定理。

2、泰勒公式。

要求:理解和掌握中值定理的内容、证明及其应用;了解泰勒公式及在近似计算中的应用,能够把某些函数按泰勒公式展开

(八)导数的应用

1、函数的单调性与极值。

2、函数凹凸性与拐点。

3、几种特殊类型的未定式极限与洛必达法则。

要求:理解和掌握函数的单调性和凹凸性,会使用这些性质求函数的极值点以及拐点;能根据函数的单调性、凹凸性、拐点、渐近线等进行作图;能熟练地运用洛必达法则求未定式的极限。

(九)不定积分

1、不定积分概念。

2、换元积分法与分部积分法。

3、有理函数的积分。

要求:理解和掌握原函数和不定积分概念以及它们的关系;熟记不定积分基本公式,掌握换元积分法、分部积分法,会求初等函数、有理函数、三角函数的不定积分。

(十)定积分

1、定积分的概念;定积分的几何意义。

2、定积分存在的条件:可积的必要条件和充要条件;达布上和与达布下和;可积函数类(连续函数,只有有限个间断点的有界函数,单调函数)。

3、定积分的性质:四则运算;绝对值性质;区间可加性;不等式性质;积分中值定理。

4、定积分的计算:变上限积分函数;牛顿-莱布尼兹公式;换元公式;分部积分公式。

要求:理解和掌握定积分概念、可积的条件以及可积函数类;熟练掌握和运用牛顿-莱布尼兹公式,换元积分法,分部积分法求定积分。

(十一)定积分的应用

1、定积分的几何应用:微元法;求平面图形的面积;求平面曲线的弧长;求已知截面面积的立体或者旋转体的体积;求旋转曲面的面积。

2、定积分的物理应用:求质心;求功;求液体压力。

要求:理解和掌握“微元法”;掌握定积分的几何应用;了解定积分的物理应用。

(十二)数项级数

1、预备知识:上、下极限;无穷级数收敛、发散的概念;收敛级数的基本性质;柯西收敛原理。

2、正项级数:比较判别法;达朗贝尔判别法;柯西判别法;积分判别法。

3、任意项级数:绝对收敛与条件收敛的概念及其性质;交错级数与莱布尼兹判别法;阿贝尔判别法与狄利克雷判别法。

要求:理解和掌握正项级数的收敛判别法以及交错级数的莱布尼兹判别法;掌握一般项级数的阿贝尔判别法与狄利克雷判别法;了解上、下极限的概念和性质以及绝对收敛和条件收敛的概念和性质。

(十三)反常积分

1、无穷限的反常积分:无穷限的反常积分的概念;无穷限的反常积分的敛散性判别法。

2、无界函数的反常积分:无界函数的反常积分的概念;无界函数的反常积分的敛散性判别法。

要求:理解和掌握反常积分的收敛、发散、绝对收敛、条件收敛的概念;掌握反常积分的柯西收敛准则,会判断某些反常积分的敛散性。

(十四)函数项级数

1、一致收敛的概念。

2、一致收敛的性质:连续性定理;可积性定理;可导性定理。

3、一致收敛的判别法;M-判别法;阿贝尔判别法;狄利克雷判别法。

要求:理解和掌握一致收敛的概念、性质及其证明;能够熟练地运用M-判别法判断一些函数项级数的一致收敛性。

(十五)幂级数

1、幂级数的概念以及幂级数的收敛半径、收敛区间、收敛域。

2、幂级数的性质。

3、函数展开成幂级数。

要求:理解和掌握幂级数的概念,会求幂级数的和函数以及它的收敛半径、收敛区间、收敛域;掌握幂级数的性质以及两种将函数展开成幂级数的方法,会把一些函数直接或者间接展开成幂级数。

(十六)傅里叶级数

1、傅里叶级数:三角函数系的正交性;傅里叶系数。

2、以2为周期的函数的傅里叶级数。

3、以2L为周期的傅里叶级数。

4、收敛定理的证明。

5、傅里叶变换。

要求:理解和掌握三角函数系的正交性与傅里叶级数的概念;掌握傅里叶级数收敛性判别法;能将一些函数展开成傅里叶级数;了解收敛定理的证明以及傅里叶变换的概念和性质。

(十七)多元函数极限与连续

1、平面点集与多元函数的概念。

2、二元函数的二重极限、二次极限。

3、二元函数的连续性。

要求:理解和掌握二元函数的二重极限、二次极限的概念以及它们之间的关系,会计算一些简单的二元函数的二重极限和二次极限;掌握平面点集、聚点的概念;了解平面点集的几个基本定理以及闭区域上多元连续函数的性质。

(十八)多元函数的微分学

1、偏导数与全微分:偏导数与全微分的概念;可微与可偏导、可微与连续、可偏导与连续的关系。

2、复合函数求偏导数以及隐函数求偏导数。

3、空间曲线的切线与法平面以及空间曲面的切平面和法线。

4、方向导数与梯度。

5、多元函数的泰勒公式。

6、极值和条件极值

要求:理解和掌握偏导数、全微分、方向导数、梯度的概念及其计算;掌握多元函数可微、可偏导和连续之间的关系;会求空间曲线的切线与法平面以及空间曲面的切平面和法线;会求函数的极值、最值;了解多元泰勒公式。

(十九)隐函数存在定理、函数相关

1、隐函数:隐函数存在定理;反函数存在定理;雅克比行列式。

2、函数相关。

要求:了解隐函数的概念及隐函数存在定理,会求隐函数的导数;了解函数行列式的性质以及函数相关。

(二十)含参变量积分以及反常积分

1、含参变量积分:积分与极限交换次序;积分与求导交换次序;两个积分号交换次序。

2、含参变量反常积分:含参变量反常积分的一致收敛性;一致收敛的判别法;欧拉积分、函数、函数。

要求:理解和掌握积分号下求导的方法;掌握函数、函数的性质及其相互关系;了解含参变量反常积分的一致收敛性以及一致收敛的判别法。

(二十一)重积分

1、重积分概念:重积分的概念;重积分的性质。

2、二重积分的计算:用直角坐标计算二重积分;用极坐标计算二重积分;用一般变换计算二重积分。

3、三重积分计算:用直角坐标计算三重积分;用柱面坐标计算三重积分;用球面坐标计算三重积分。

4、重积分应用:求物体的质心、转动惯量;求立体体积,曲面的面积;求引力。

要求:理解和掌握二重、三重积分的各种积分方法和特点,会选择最合适的方法进行积分;掌握并合理运用重积分的对称性简化计算;了解柱面坐标和球面坐标积分元素的推导。

(二十二)曲线积分与曲面积分

1、第一类曲线积分:第一类曲线积分的概念、性质与计算;第一类曲线积分的对称性。

2、第二类曲线积分:第二类曲线积分的概念、性质与计算;两类曲线积分的联系。

3、第一类曲面积分:第一类曲面积分的概念、性质与计算;第一类曲面积分的对称性。

4、第二类曲面积分:曲面的侧;第二类曲面积分的概念、性质与计算;两类曲面积分的联系。

5、格林公式:曲线积分与路径的无关的四种等价叙述。

6、高斯公式。

7、斯托克斯公式。

8、场论初步:梯度;散度;旋度。

要求:理解和掌握两类曲线积分与曲面积分的概念、性质与计算,会使用对称性简化第一类曲线以及曲面积分;熟练掌握格林公式、高斯公式的证明并能利用它们求一些曲线积分和曲面积分;了解两类曲线积分及曲面积分的区别和联系;了解斯托克斯公式和场论初步。

二、考试形式与试卷结构 1.考试时间 180分钟。2.试卷分值 150分。3.考试方式 闭卷考试。4.题型结构

类型包括:选择题、填空题、计算题、证明题、应用题。

三、推荐教材参考书目

【1】 欧阳光中等主编 《数学分析》(第三版)高等教育出版社 【2】 华东师范大学数学系主编 《数学分析》(第三版)高等教育出版社 【3】 陈纪修等主编《数学分析》(第二版)高等教育出版社

下载信息学院数分期中考试2011word格式文档
下载信息学院数分期中考试2011.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    中国人民大学信息学院

    信息学院 2009级攻读博士学位研究生培养方案 一、适用学科专业 计算机应用技术 (学科门类:工学 一级学科:计算机科学与技术 ) 二、培养目标 1、具有良好的道德品质、严谨的科......

    信息学院请假条

    信息工程学院学生请假条存根No:本人因(原因)需请假(写 回家或写清去向),请假时间从2012年月日至2012年月日, 共天。 学生本人联系电话家庭联系电话 请假去向详细地址及联系人:请假......

    信息学院最新总结

    信息学院2010-2012学年学风建设工作总结 时光荏苒,岁月如梭,2010-2012年的工作有条不紊的进行,并获得阶段性的成功。注重良好的学风,培养学生明确学习目的、端正学习态度,营造良......

    光电信息学院

    学院简介: 光电信息学院在光学工程、电子科学与技术、材料科学与工程和物理学4个学科具有博士、硕士学位授予权及设有博士后流动站,在光学工程学科设有长江学者特聘教授岗位,有......

    学院网站信息维护

    学院网站信息维护培训 1、基础知识 1.1、学院网站群的大致构成 1.2、浏览器兼容性问题 1.3、现阶段后台地址 1.4、管理后台登录 2、信息添加 2.1、正确的信息添加步骤 2.2、......

    信息学院工会工作总结

    在过去的两年中,我们信息学院分会紧紧围绕学校的中心工作,在上级工会及院领导的正确指引下,充分调动全体会员的积极性,积极站在教育教学改革的前列,充分发挥部门工会的“桥梁”......

    参谋长信息学院讲话稿

    陕西信息工业学院学生军训动员大会上的讲话稿 尊敬的王院长,各位老师,亲爱的同学们: 大家好! 今天陕西信息工业学院在这里隆重召开2010级新生军训动员大会,揭开了为期15天军训......

    赤峰学院2014毕业信息

    《2014届毕业生资格审核表》填表说明 1、此表是学生毕业派遣的依据,请毕业生仔细核对每一个信息项,所填信息项必须准确无误,否则出现问题,后果自负。 2、表中已有数据为学生注册......