工程机械液压底盘性能及技术研究论文(合集五篇)

时间:2019-11-06 23:14:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《工程机械液压底盘性能及技术研究论文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《工程机械液压底盘性能及技术研究论文》。

第一篇:工程机械液压底盘性能及技术研究论文

1性能研究

在当前的波动载荷下,对工程机械液压底盘性能进行研究。谈及波动载荷,影响着工程机械的动力性、燃油经济性以及系统安全性。基于具体实践过程进行分析,对工程机械底盘性能的研究,有着极其重要的意义。

1.1问题的提出

关于工程机械本身的液压底盘而言,良好的动力性以及经济性的原则能够充分协调工程机械的稳定性。不论是在驱动层面还是在经济效益的层面,具有积极意义。基于实质角度分析可以发现,机械系统为机械自身提供原动力,促使机械能够良好运行。但为了营造良好机械运行环境,需要借助模拟的环境实现对整个工程机械液压底盘性能的影响进行评估,进而制定科学合理的技术方案,改善系统运行环境,为提高工程机械液压整体性能奠定基础保障。

1.2研究方向与内容

针对当前研究环境分析可以发现,基于工程机械液压底盘的研究已经屡见不鲜,并且在当前的研究领域中,由于受到波动载荷方面的影响,自虚拟的操作平台当中囊括了整个驱动系统以及各项加载系统当中的内容。因此,在目前已经得出结果的研究下,需要针对不同的系统模块进行液压底盘分析,为模块化运行提供基础保障。基于现代工程机械领域当中的所有研究内容分析能够发现,其中包含的内容具备多样性的特点,涉及到机械、电力以及液压等各个环节,而液压底盘方面的研究属于相对复杂的研究领域。基于该研究内容,具体内容主要包括以下几个方面:①液压底盘运转效率研究;②运用二次调节技术手段,实现对于工程机械液压底盘的动态性能研究;③整个工程机械驱动系统的驱动力研究。针对上述各项内容的明确,是此次开展研究的核心内容,同时也是此次研究需要论证的具体问题。基于具体实践角度分析可以发现,基于机械液压底盘性能方面的运营,其可行性值得论证。

2实验技术分析

工程机械系统液压底盘能够发挥实效,则需要波动载荷能够维持良好的自适应程度。一旦自适应的效果良好,则充分意味着该系统的表现与性能。在此次试验技术分析过程中,通过模拟的方式,确保工程机械设备本身的性能得到提升。

2.1实验设备准备

实验设备的前期准备是实验开展的前提条件,进行具体实验分析,需要构建一个工程机械装置的操控平台,将此平台作为研究基础,添加辅助设备。在充分结合物理学特质以及力学特点的同时,需要充分发挥出实践效果以及效能因素。设计试验台加载体系,为后续理论以及运转提供基本理论,使得效能分析能够更加直观。在该实验准备过程中,由于采用二次协调技术,实现对能量的回收,并进行再次利用,发挥出节能效果,为提高机械稳定性以及经济型提供基础保障。

2.2实验技术效能分析

由于此次试验基于波动载荷的基础之上,在统计时需要运用随机统计方法,确保在进行实验处理的过程中,控制波动载荷的影响程度。只有这样,才能够在波动载荷的基础之上,实现对非平稳数据分析结果的检测,满足确定性的考量机械驱动系统运行的平稳性分析。通过此种方法,能够满足函数表达式对于影响因素的分析,得出工程机械液压底盘系统的具体性能。

2.3实验结果与分析

此次试验开展中,多数的实验手段主要是通过仿真软件得以实现,确保将实验平台之上的各项单一的实验设备以及元件通过信息技术的软件进一步模拟。将实物与虚拟模拟设备结合,验证性能。完成模拟实验之后,经检测,工程机械液压底盘受到波动载荷参数变化状况的影响较大。可见,波动载荷对于性能层面以及存在影响,在进行具体性能评估与操作时,则需要按照该原理以及该角度进行具体分析。基于实践的角度来看,为充分降低波动荷载负荷下对于整个系统的运行效果的影响,将误差降至最低,需要重视输入信号来源,明确压力指标,对系统当中的节点进行充分的掌握。在整个实验结构以及框架当中,其中涉及到的各项实验设备与实验结构,框架相对清晰,能够符合运作机理以及运作效用。基于波动载荷下得出的结论,需要分析并阐述工程机械液压底盘驱动方面的整体运行状况,避免由于产生的波动载荷过大,导致性能检测结果无法得到保障。在具体实验结束之后,实验结果表明,系统性能以及波动载荷,工程机械液压驱动系统当中的整体性能也将发生改变。

3结论

综上所述,工程机械设备的运行,需要满足节能要求以及系统高效运转的目标。在此次研究中,基于波动载荷的基础之上,对于液压设备性能进行检测并改进。在未来,对于波动载荷下工程机械液压设备依旧需要进行性能的完善,为工程机械发挥出更好的效用提供基础。

第二篇:工程机械底盘设计

工程机械底盘设计

第二章传动系设计概述

1.传动系的类型、特点、适用 ①机械传动

优点:成本低廉、传动效率高、传动准确、利用了惯性; 缺点:负荷冲击大、有级变速、换挡动力中断、操纵费力;

适用:常用于小功率的工程机械和负荷比较平稳的连续式作业机械。②液力机械传动

优点:操纵方便、自适应性强、负载冲击小、寿命长、生产率高、起步平稳快速; 缺点:效率低、零部件成本高、行驶速度稳定性差; 适用:常用于功率较大、负荷变化剧烈的工程机械。③液压传动

优点:可无级变速、传动系统简单、可实现原地转向、利用液压系统制动、易于过载保护; 缺点:元件制造精度高、工艺复杂成本高、传动效率低、元件易发热、工作噪声大。适用:主要用于大中功率的工程机械传动系。④电传动

优点:传动效率高、便于控制、便于布置、易于实现多轮驱动等优点; 缺点:笨重,成本高;

适用:电传动主要用于大功率履带挖掘机、装载机(电动铲)及重型载重车辆等机械中。

2.传动比

传动系的总传动比iΣ是变速箱的输入轴转速与驱动轮转速之比,iΣ=n’e/nK

各部件传动比的分配:iiKioif

ik变速箱的传动比;i0中央传动的传动比;if最终传动的传动比 传动比分配的基本原则:由于发动机一般为机器中转速较高的部件,所以为了减少传动系中零件所承受的转矩,根据动力传递的方向,后面的部件应该取尽可能大的传动比。也就是说,先取尽可能大的if,其次取尽可能大i0,最后按iΣ的需要确定ik。

中间传动比的确定:

①速度连续原则:发动机应该始终工作于设定功率Ne′以上的范围,当由于工况变化使机器工作于设定范围的端点时换档,换档后机器立刻工作于设定范围的另一端点,而且换档前后机器的理论速度应该不变。

按速度连续原则确定变速箱中间档传动比时,应该使各档位的传动比成等比级数。②充分利用发动机功率原则: 其思路是:在换档时机恰当的条件下,机器在全部工作范围内应该获得尽可能大的平均输出功率。按照这一原则确定中间档的传动比的方法是,通过调整中间档的传动比,使所有档位曲线下面的面积最大。

(1)速度连续原则:在确定了最高档、最低档的传动比和档位数后,就可以很容易地计算出中间各档的传动比,而且结果比较理想,在新产品设计的初级阶段使用较好。

(2)充分利用发动机功率原则:结果相当理想,设计时还需要知道发动机的功率特性曲线,需要采用计算机的专门程序,可以用在机器改进完善阶段。

第三章主离合器

1.主要参数:

①离合器的摩擦力矩Mm:

MmMZkPRpZk,若认为压紧力P在摩擦面上均匀分布 :P=qA,对于工程机械来说,由于离合器使用频繁,而且载荷较大,一般取较小的[q]值。

②摩擦片直径:摩擦片的内径系数

C=R1 / R 2 22R13333Mq(R2R1)qR2(13)33R2 23qR2(1C3)3

由于减小C值对M的增大作用不明显,而且过小的C值还会导致摩擦片内外线速度差值加大,造成温升不一致和翘曲现象。通常,在结构允许的条件下,取较大的C值;干式离合器一般为0.55~0.68,湿式的为0.71~0.83。③转矩储备系数β:

为保证离合器能可靠地传递发动机最大转矩并有一定的使用寿命,必须使离合器的摩擦转矩有一定的储备量,这个储备量的程度用转矩储备系数β 衡量

MmMemax

第四章人力换挡变速箱

1.平面三轴变速箱:用于倒退不太频繁的机械(如汽车),以及液压驱动的传动系(其后退一般利用液压马达的反转来实现,变速箱不需要布置倒档,如稳定土拌和机)

2.空间三轴变速箱:

1、输入轴、输出轴、中间轴呈三角形布置

2、这类变速箱的输入轴、输出轴和中间轴都直接支承在变速箱箱体上,刚度好。由于换向齿轮可以布置在档位齿轮的前面,可以方便地获得多个倒档。

2、适用范围:空间三轴式变速箱在频繁倒退的机械上使用较多,如推土机。

3.轴在变速箱中的布置

布置时要充分考虑整机布置的需要和它前后连接部件的关系。为了便于换档,换档齿轮轴的位置要有利于布置拨叉; 为了降低机器的重心,输入轴应布置于变速箱的上方; 尽量避免在箱体中间布置支承;

倒档惰轮轴、过轮轴、空间三轴的中间轴等零部件,应尽量布置在齿轮啮合力在轴上的合力小得一侧。即从变速箱前面看,输入轴顺时针转时,这类轴布置在右边合理。

4.档位齿轮在轴上的布置

各档位齿轮应按由高档位到低档位的前后顺序排列,将啮合力最大的齿轮靠近箱体布置。采用斜齿轮时,如果同一轴上既有齿轮输入动力又有齿轮输出动力时,同时工作的两个轮齿的倾斜方向应相同,以抵消一部分轴向力。

为了减少变速箱轴向长度,应该尽量采用重叠的轴向空间,有利于缩小变速箱的轴向尺寸。

5.倒档齿轮的布置 两种布置形式:1)在输出轴之前布置倒档齿轮,平面三轴;2)在输入轴之后布置倒档齿轮,空间三轴。

对一种类型的变速箱,倒档也可以有多种的不同方案,设计原则是在保证所需倒档传动比的条件下,方便操纵,尽量减小轴向尺寸。

第五章液力传动

1.循环圆:通常把液力传动器件轴向断面构成(使液体循环流动)的环状空腔,称为循环圆。由循环圆所构成的回转体空间则是变矩器内油液进行循环的空间。循环圆的最大外径叫做有效直径。

2.液力变矩器的外特性

液力变矩器的外特性是指在泵轮转速nB一定的条件下,变矩器的输入转矩MB、输出转矩MT、效率η与变矩器涡轮转速nT的关系。液力变矩器的外特性也称为涡轮输出特性。液力变矩器的基本类型:a)向心涡轮式b)轴流涡轮式c)离心涡轮式

3.透穿性:液力变矩器的泵轮转速nB一定时,载荷MT的变化引起泵轮转矩MB变化的性能称为液力变矩器的透穿性。

如果MT增大时MB也增大,则称该变矩器有正的透穿性。如果MT增大时MB减小,则称该变矩器有负的透穿性。如果MT变化时MB不变化,则称该变矩器没有透穿性。

4.液力变矩器的输入特性:输入特性是变矩器泵轮转速nB与泵轮转矩MB的关系。对于给定的λB来说,MB与nB的关系是一条抛物线;变矩器输入特性是许多抛物线组成的曲线族。

5.向心涡轮变矩器:当变矩器涡轮进口处的半径大于出口处的半径时,涡轮内的液流是流向变矩器轴心的,这种型式的变矩器称为向心涡轮变矩器。与其它型式比较,向心涡轮变矩器有以下优点: ①、正透穿性:负荷增加时,涡轮转速减小,涡轮离心力对液流阻力减小,循环圆流量增大,使泵轮负荷增加;反之亦然。空载功耗小,也有利于操纵控制。

②、能容量大:泵轮、涡轮均在最大半径处,工作液的动能最大;传递功率相同的条件下,向心涡轮变矩器的体积小。

③、最高效率ηmax高:涡轮叶片工作面积大,能量转换彻底;传动比增加时,循环圆流量减少,变矩器内部能耗减少,于是效率增加,最高效率时的传动比增加。最大缺点是起动工况(i=0)的变矩系数K0较小。

6.相 —— 液力变矩器工作轮的工作状态数。

级——泵轮与导轮之间或导轮与导轮之间刚性相连的涡轮数目称为变矩器的级。变矩器的涡轮被泵轮和导轮分为几个部分,变矩器就有几个级。

7.液力变矩器的选型

①结构型式:采用向心涡轮变矩器。对于类似于推土机的机器,行驶速度低,行驶阻力大,变矩器工作于传动比 i 较大的时候不多,优先选用单相变矩器。如装载机这样的机器,行驶时速度高,行驶阻力也不大,工作于传动比 i 大的时候较多,在铲掘过程中牵引力大,而且变化剧烈,最好选用多相变矩器。

②变矩性能:为了便于机器起步,液力变矩器应有较高的起动工况变矩系数。但实际上,配有动力换档变速箱后,向心涡轮变矩器的变矩系数能满足大多数工程机械的需要。

③透穿性能:液力变矩器应有正的透穿性。为保证柴油机不熄火,变矩器与发动机工作时的工作点在任何情况下都不宜越过柴油机的最大转矩点。

④效率:从理论上讲,液力变矩器的效率越高、高效区越宽,变矩器的质量就越好。多相变矩器的高效区宽,但成本高。⑤速度变化:涡轮转速变化范围应该有一个限制,通常涡轮的最高工作转速应该小于最高效率时转速的1.5倍。

8.液力变矩器与柴油机共同工作特性分为共同的输入特性和输出特性。发动机与变矩器的合理匹配。共同工作的输入特性:将柴油机的调速外特性曲线与变矩器的输入特性曲线画在一起,就得到了液力变矩器与柴油机共同工作的输入特性曲线,它反映了柴油机的工作点与变矩器传动比的关系。

用共同工作的输入特性来评价二者的匹配是否合理,要从共同工作区的大小及其位置所处柴油机特性的区段是否合理来综合考虑。

影响因素:变矩器透穿性影响共同工作输入特性的范围大小。变矩器有效直径影响共同工作输入特性的位置高低。

9.发动机与变矩器的合理匹配原则

①、最大牵引功率原则:为了获得最大牵引功率,要求共同工作的输入特性曲线上,液力变矩器最高效率时的传动比(i*)所对应的负荷抛物线通过柴油机额定工作点MeH,这样机器可以获得最大的功率。

②、柴油机额定点与变矩器高效区中点匹配原则 ③、最高平均牵引功率原则

第六章动力换挡变速箱

1.单行星排传动的转速方程:单行星轮行星排取“+”号,双行星轮行星排取“-”号。

2.行星传动的闭锁: 在行星传动中如果某一行星排的太阳轮、行星架、齿圈三个元件任意两个的转速相等,第三件的转速也必然与前两个相等。实际设计中,常利用这个方法(闭锁离合器)实现直接档。

3.行星变速箱的传动分析(计算题,见课本)①、自由度分析

每组行星机构的自由度Y为:

Y=m-n m—行星机构旋转构件数(不计行星轮); n—行星机构行星排 ②、档位数分析

变速箱有确定运动的条件是只有一个自由度,每操纵一个操作件系统便减少一个自由度。所以,二自由度变速箱有几个操作件就可以实现几个档位

4.循环功率:应该指出:存在循环功率的方案,只要循环功率的数值与传递功率数值相比很小,方案和其他方案相比又有某些显著优点,例如结构布置方便,行星排特性参数合理,或者该档位不常用等,仍可采用。

特点:只在内部循环往复,对外不表现。与主功率同生同灭。存在及大小仅取决于行星排结构。

危害:使齿轮传动负荷增大,啮合损失增加,传动效率下降。使某些零件负荷增大,导致机构尺寸、重量加大,成本增加。引起的机械能损失转换成热能,导致系统温度上升。

5.行星传动的配齿条件: ①传动比条件

②同心条件:为了保证太阳轮、行星架、齿圈的轴心线相重合,太阳轮与行星轮的中心距应该等于齿圈与行星轮的中心距。Rq-Rt=2*Rx

即Zq-Zt=2*Zx ③装配条件

装配件条公式:(Zq+Zt)*θj/360=N

或(Zq-Zt)*θj/360=N 为了使行星传动各构件所受径向力平衡,在结构布置上一般使行星轮均匀分布,这是装配条件公式为:(Zq-Zt)/n=N n—行星排上行星轮的数目 ④相邻条件:为保证不干涉并减少搅油损失,一般相邻两行星轮的齿顶间隙应大于5~8μm。

ntnq(1)nj0

第七章万向节与传动轴

1.十字节传动轴:

主动轴以等角速ω1匀速转动,而从动轴的角速度是在ω*cosα,ω1/cosα之间变化,变化周期为180度。单个十字轴万向节在有夹角传动时的不等速性。夹角越大,传动的不等速性越严重。

当两个十字轴在同一平面时,传动的等角速条件为:

1)主动轴1与中间轴的夹角a1与从动轴2与中间轴的夹角a2相等;

2)当主动轴、从动轴在同一平面时,中间轴两端的万向节叉应该在同一平面。

当主动轴、从动轴不在同一平面时,第二条应为:中间轴上和主动轴连接的万向节叉在中间轴和主动轴组成的平面内时,中间轴上和从动轴连接的万向节叉在中间轴和从动轴组成的平面内。

注:①、当输出轴与输入轴有夹角α时,输出速度与输入速度不等。

②、夹角越大,使用单个万向节时传动的不等速性越严重,成对使用时附加弯矩越大,传动效率、使用寿命减小。故总体布置时应该尽量减少α。

第八章轮式驱动桥

1、主传动器又叫中央传动器。履带式机械的中央传动一般只有一对弧齿锥齿轮;轮式机械的中央传动往往与差速器做成一体。

2、锥齿轮传动简述

由于弧齿锥齿轮、双曲面齿锥齿轮具有承载能力强,传动平稳,容易实现大传动比的优点,广泛用在汽车、拖拉机和工程机械主传动上;

差速器齿轮由于相对运动少,而且同时啮合的齿轮数量较多,通常采用直齿锥齿轮。

3、常见几种锥齿轮的特点(P140)

4、克服普通差速器当一边车轮陷入泥泞时另一侧车轮也失效的缺点,目前有许多方法,大体上可以分为两类。一是采用差速锁使差速器失效;二是增大差速器的内部阻力,限制滑动。差速锁原理:当一侧车轮打滑时,利用离合器将一个半轴齿轮和差速器壳体连接一起,从而限制行星轮的自转。这样两侧驱动轮便可以得到由附着力决定的驱动力矩,从而充分利用不打滑侧车轮的附着力,驱动车辆前进。优点:结构简单,可传递全部转矩;但操作时需要停车,在行驶到良好地面时,要及时分离。不宜接合过早或分离过晚,否则转向沉重甚至造成某些构件损坏。

5、功率循环

理论行驶速度vT=wKrd;理论上,车辆直线行驶时,vT1=vT2=v;实际上,各车轮的动力半径与设计值不同vT1≠vT2;由于前、后车轮的实际速度v1=v2;前、后车轮的滑转率不等;因此前、后轮的在行驶过程中会出现滑转、滑移现象。

循环功率(又称寄生功率)是由于前后驱动轮一个滑转,一个滑移引起的。因此,功率循环不仅是在前后车轮的理论上速度不等时才可能产生,当机械在高低不平的地面上直线行驶时,即使前后驱动轮的理论速度相等,但由于在相同时间内前后轮的行程不同,或机器转弯时,前后轮到转向中心的距离不相等,也可能在相同时间内前后轮行程不同,使前后轮实际速度不同,引起功率循环。

循环功率是有害的。它增加传动零件的载荷并产生附加的功率损失。

6、消除功率循环的方法

①在传动系统中布置脱桥机构 :在轻载、路面坚实的条件下工作时,利用脱桥机构分离某一车桥的传动,采用单桥驱动。在重载或松软地面上工作时,接合脱桥机构采用全桥驱动。②采用轴间差速器:在两个驱动桥之间安装轴间差速器,利用轴间差速器来调节前后桥上驱动轮的转速,保证前后桥的驱动转矩相等而转速不相等,从而解决车轮的滑移、滑转问题,以达到减小或避免循环功率的产生。

7、半轴的型式:可分为全浮式和半浮式两种型式。半轴与驱动轮毂在桥壳上的支承形式决定了它的受力情况。全浮式:桥壳通过两幅相距较远的轴承支承在轮毂上。半轴两端只承受驱动转矩而不承受任何其他反力和弯矩。广泛使用在工程机械等各种自行式车辆上。

半浮式:半轴通过一个轴承直接支承在桥壳外端。半轴外端除传递驱动转矩外,还承受地面反力产生的弯矩和轴向力,内端仅承受来自差速器齿轮的转矩。用于反力弯矩较小的车辆。

第九章履带驱动桥

1.转向半径:从中心O到机械的纵向对称平面的距离R,称为履带式机械的转向半径。

B'2'1R'22'1

第十章轮胎式工程机械转向系

1.三种转向方式:

①偏转车轮转向(包括偏转前轮式、偏转后轮式、全轮转向式、斜行/蟹行转向):整体式车架,其转向是通过车轮相对车架偏转来实现。

②铰接转向:铰接式车架,其转向是通过前、后车架相对偏转来实现。

③滑移转向:整体式车架,其转向是通过改变左右两侧车轮的转速来实现。

2.转向方式定义

①偏转前轮式:前外轮的转向半径大于后外轮转向半径。只要前外轮避过障碍物,后外轮便可以顺利通过,便于避过障碍、估计运行路线,是一种常用转向方式。

②偏转后轮式:后外轮的转向半径大于前外轮转向半径。估计运行路线、避过障碍较前轮转向困难。驾驶员多根据工作装置外缘通过障碍物情况来估计后轮通过情况。

③全轮转向式:转向时前后轮同时偏转,且偏转方向相反。转向半径小,车辆机动性好;前后轮转向半径相等,易于避让障碍物。后轮驶于前轮车辙,滚动阻力小。④斜行(蟹行)转向:斜行转向为全轮转向的另一种形式,前后轮偏转的方向相同。⑤铰接转向:铰接式车架,其转向是通过前、后车架相对偏转来实现。

⑥滑移转向:整体式车架,其转向是通过改变左右两侧车轮的转速来实现。

3.转向方式应用

①偏转前轮式:常用形式。

②偏转后轮式:用于工作装置前置的机器。有利于简化结构,提高作业性能。(叉车、翻斗车)。

③全轮转向:一般用于机身较长,常在狭窄场地工作的机器(如大型轮胎起重机等)。④斜行(蟹行)转向:机器可以斜行,即运行方向与机器纵向轴线之间偏斜一个角度,可以使车辆从斜向靠近或离开作业面,给车辆在受结构物或地形限制的作业面作业时带来很大方便。当机械横坡作业时,采用斜行法,可提高作业时的整体稳定性。⑤铰接转向:

优点:可用非转向桥实现全桥驱动;结构简单,转向灵活。

缺点:行驶稳定性差;转向后不能自动回正;转向过程可能产生循环功率;前后车架间的传动布置困难。

铰接转向一般用于驱动力较大、速度较低的工程机械上。如装载机、压路机等。⑥滑移转向(速差转向):

特点:整体刚性车架;转向时两侧车轮角速度有速差。

优、缺点:转向灵活,可原地转向;转向时轮胎有侧滑现象。滑移转向一般用于要求结构紧凑的小型工程机械上。

4.单个从动轮转向时的受力分析(P180)

P=Zμ时的β角应该为车轮偏转角的极限值,在β>βmax时,增大驱动力P车轮将不再滚动,而是沿P力的方向滑动。

实际设计时,考虑到急速转向时的离心力会使机器严重失稳,高速机械的βmax值一般为30°~40°,不宜超过45°。

5.转向阻力矩计算

转向系统的设计是按照原地转向阻力矩进行的。

6.偏转车轮转向系设计

①、基本设计原则:偏转车轮转向时,要保证所有车轮都作纯滚动,即应使转向时所有车轮均绕一个共同的瞬时中心作弧形滚动。

②、转向半径:距转向中心最远的一个车轮在转向时其轨迹的曲率半径。偏转车轮的最小转向半径:

RminLsinmax

NBNcotL,L 车轮偏转角:

cotBL 车轮偏转角关系:为了满足左右车轮偏转角关系,在两侧车轮之间需要一个联动机构。常用的是转向四连杆机cotcot构和对顶曲柄机构。

7、①、转向梯形结构:又叫转向四连杆机构(P184)转向梯形的结构设计采用相似理论和优化理论。

对于B与L比值相同的一类机械,α与β的关系是相同的;根据几何相似原理,这一类机械只要知道一组横拉杆长度a、梯形臂长度c的最优值,其它情况可以按比例得出。

LkL轴距系数:B akaB横拉杆长度系数: ckcB梯形臂长度系数:

主销距离为一个单位长度(kb=1)的轮式机械,其轴距为kL,求横拉杆长度ka、梯形臂长度kc。

cot'cotB1LkL

理论偏转角β:由偏转角关系式计算得到。

实际偏转角β’:由转向梯形结构的平面几何关系得到。

实际偏转角-理论偏转角=

优化目标:在梯形臂长度系数kc给定时,调整横拉杆长度系数ka,总能找到一个ka值,满足△βmax最小,也就是该kc下的最优ka值。

实际设计中,四连杆机构的最小传动角不能太小。传动角γ越大,有效分力越大,径向压力越小,对机构的传动越有利。在机构运动过程中,传动角的大小是变化的;为了保证机构的传动性能良好,设计时应使γmin ≥30°。②、对顶曲柄机构:近似机构

第十一章轮式工程机械行驶系

1.通过性的主要几何参数

概念:工程机械底盘上各种部件的外形轮廓与地面之间形成的几何关系。作用:直接影响着车辆越过障碍物的能力。内容:

①最小离地间隙h:底盘由车轮支承在地面上时,整机除车轮外的最低点与地面之间的距离。②接近角α 和离去角β:整机侧视图上,自车身前、后最低突出点向前、后车轮引切线,切线与地面之间的夹角。前方称为接近角,后方称为离去角。③纵向通过半径ρ1:整机侧视图上与前、后车轮及它们之间机器的最低点相切的圆弧半径。④横向通过半径ρ2:整机正视图上与左、右车轮内侧及它们之间机器最低点相切的圆弧半径。

⑤最大涉水深度h1:保证机器正常行驶时所能通过浅水滩的最大深度。单从某个指标讨论,要提高机器的通过性,最小离地间隙h、最大涉水深度h1、接近角α 和离去角β愈大愈好;纵向通过半径ρ

1、横向通过半径ρ2愈小愈好。但实际机器性能有许多指标综合形成,不能只追求某个指标。(P206)

2.铰接式车架:由两段(或两段以上)采用销轴铰接的方法连接成车架。①、铰点的位置:

总体布置时,应该首先考虑将铰点布置在前后桥的中间。稳定性好,前后车架的转弯半径相等,采用全桥驱动时也能有效防止转向时传动系的功率循环。铰点布置应首先满足机器的作业性能。(P208)

布置铰点时,也要考虑结构的可能性和维修的方便性。②、铰销的结构设计:

加大铰销的长度可以减小铰销的受力,因此实际设计应该尽量加大铰销的长度,也可以将销轴设计为两段。不过,铰销太长会使其他构件布置困难,相应构件的工艺性也会变差。3.轮胎式工程机械悬架:

悬架也成为悬挂,轮式机械的悬架是指车架与车桥(车轮)之间的连接部件。作用:通过连接车架与车桥(车轮)将各种工作阻力、重力、侧向力通过车轮传到地面上去,并保证车轮的受力基本稳定,弹性悬架还可以缓和、衰减振动与冲击。工程机械的悬架大致可分为刚性悬架和弹性悬架两种。

4.摆动桥

车桥与车架铰接, 能够相互摆动, 可保证车轮始终良好接地。摆动桥应选取对工作装置影响较小的车桥。摆动范围限制在±8°~10°左右。

5.转向桥的车轮定位四个定位参数

转向轮定位包括:主销后倾、主销内倾、转向轮外倾及前束。①主销后倾:车辆纵向平面内,主销上端略向后倾斜。

作用:保持车辆直线行驶的稳定性,并力图使转弯后的转向轮自动回正。后倾角越大,车速越高,转向轮的稳定性越强,但角度过大会导致方向盘沉重,一般小于3°。采用钢板弹簧悬挂的机器,主销后倾一般是通过改变钢板弹簧前后悬挂点的高度来实现的。

②主销内倾:车辆的横向平面内,主销上端略向内倾斜。作用:减小转向阻力矩,使转向操纵轻便;使转向轮自动回正。内倾角越大,车架抬起越高,自动回正作用越显著,但转向费力,轮胎磨损加剧。一般5°~ 8°。内倾角是由转向轴制造时使主销孔轴线上端向内倾斜而获得。主销后倾 VS 主销内倾:

共同点:使车轮转向后自动回正,保持车辆直线行驶的稳定性。

别:主销后倾的回正作用靠离心力产生,与车速有关,适于高速车辆。主销内倾的回正作用靠车辆本身重力,与车速无关,适于低速车辆。③转向轮外倾:车轮旋转平面上方略向外倾斜。

作用:防止车轮内倾,使轮胎磨损均匀和减轻轮毂外轴承负荷,提高转向轮工作的安全性和操纵的轻便性。外倾角大虽然对安全和操纵有利,但角度过大会使轮胎横向偏磨增加,油耗增多,为1°左右。外倾角是通过转向节轴颈相对于水平面向下倾斜而得到的。④转向轮前束:在通过车轮轴线而与地面平行的平面内,两车轮前端略向内束缚。(前束值=A-B)作用:消除车辆行驶过程中因车轮外倾而使两转向轮前端向外张开的影响。转向轮前束可通过改变横拉杆长度来调整,为0~12mm。

第十二章履带式机械行驶系

1.悬架的功用:用来把机架与支重轮连接起来,并传递机器的重力。悬架机构是用来将机体和行走装置连接起来的部件,它保证车辆以一定速度在不平路面上行驶时具有良好的行驶平顺性和零部件的工作可靠性,有刚性悬架、半刚性悬架、弹性悬架。

第十三章制动系

1.车轮制动过程分析(P248)

制动前:Mj,PjMf,Pf

制动时: Mr,PB

有效制动力:PBGd

X0YM0oPfPBPjGdZ

0MrMf(PBPf)rdMj0

PB不仅取决于制动转矩的大小,还取决于地面的附着条件。

当PBGd时,抱死的临界状态,最佳制动状态。车轮的最大有效制动力等于附着力。

2.工程机械的行车制动性能

行车制动性能是指工程机械在行驶状态迅速降低行驶速度直至停止的能力。制动性能通常用制动距离来衡量,制动距离是从操纵制动机构开始作用到机械完全停止所行驶的距离。

制动距离不是越短越好。制动距离缩短会造成制动减速度的增大,制动力增大,操纵力增大,进而导致机器稳定性变差。设计机器时,制动性能只要符合相关标准即可。

3.工程机械的停车制动性能

工程机械在一定倾斜度的坡道上停放,除了必需备有合适的停车制动器使机械的车轮不在坡道上滚动之外,还应保证制动车轮与地面之间具有足够的附着力。

停车制动器制动转矩在车轮上产生的制动力应能平衡工程机械的总重力沿坡道方向向下的分力。

工程机械设计

上篇

1.工程机械的设计特点与要求

①工程作业环境条件复杂多变,要求设计能够适应当地的气候、地理特点。②以工程机械底盘理论为基础,要求发动机、行走机构与工作装置的特性之间具有良好的匹配关系。

③工作介质性质复杂,要求工作装置结构设计形式多样。

④工作介质的状态在作业中发生不断变化,要求工作参数调节方便。

⑤工程质量要求不断提高,要求产品具有较高的作业质量控制水平,普遍应用机电液一体化和现代控制技术。

⑥现代工程机械与人们的生活关系日益密切,要求产品设计人性化,造型美观。

2.所谓模块就是一组具有同一功能和结合要素(指联接部位的形状、尺寸、联接件间的配合或参数等),但性能和结构不同,却能互换的单元。

模块化设计方法的核心是将系统功能分解为若干功能单元,即模块,通过模块的不同组合,以获得不同品种、不同规格的产品。

模块化设计就是将产品具有同一功能的单元设计成具有不同性能、可以互换的模块,选用不同模块,即可组成不同类型、不同规格的产品。

模块化设计的原则是力求以少数模块组成尽可能多的产品,并在满足用户要求的基础上使产品精度高、性能稳定、结构简单、成本低廉。

3.虚拟设计是以计算机仿真为基础的现代设计方法与技术,其核心是虚拟样机技术。

4.工业设计(Industrial Design)是指以造型艺术、色彩、人际关系等为主要内容的工业产品系统性设计,是关于产品功能、结构、材料、视觉传递、审美价值、宜人性以及商品化等方面的综合性创造活动。

通过工业设计可以使产品的内在质量、外观质量和人机质量达到充分和谐,使所设计的产品尽善尽美,从而实现产品的最大效益。

下篇

第一章振动压路机

1.四种压实方法: ①静压:依靠机器自身重量产生的静压力迫使土壤颗粒相互靠近。由于土壤的内摩擦阻力使得这种静作用力无法向更深处波及,这种作用力所能影响的深度是很有限的。静作用压实有一个极限的压实效果和影响深度,无限地增加静载荷并不能得到相应的压实效果,反而会破坏表层土的结构。

②冲击:非圆滚轮在滚过突角的一瞬间将产生坠落,犹如利用自由落体原理所产生的一次冲击,将对土壤产生一个压力波,使得土壤颗粒处于运动状态,其内摩擦阻力减小,从而为压实创造了良好的条件。冲击能量大,具有较高的压实厚度、深度和影响深度。

③振动:连续高频冲击载荷所产生的动态作用力,使土壤颗粒处于高频振动状态,它们之间的内摩擦力几乎完全丧失,由压路机的静作用力迫使这些振动的颗粒重新排队而得到压实。

④揉搓:柔性滚轮特有的压实效果。揉搓力能使轮胎触及区域的土壤在一个封闭空间内相互揉搓,犹如蒸馒头时和面一样,从而使材料均匀的压实。振荡压实是对材料产生一种高频率的水平揉搓,会使材料表面产生很好的密实效果。

2.总体技术性能(评价压路机技术水平和制造质量的主要依据)①、作业性能反映压路机在一定铺层材料和作业环境下完成压实作业的适应能力,是评价压路机技术水平的特定性能。压实性能、压实质量特性、牵引性能、机动性能、越野性能。②、技术经济性能反映压路机在使用中的成本和经济效果,即投入----产出关系。压实生产效率、燃料经济性、可维修性能、运营经济性。

③、一般技术性能是指除上述作业性能和技术经济性能之外的其他性能。制动性能、坡道稳定性能、工作可靠性、驾驶舒适性、防公害性能。

3.驱动轮从动轮在压实质量上的差异?

4.压路机技术参数的确定

压路机主要技术参数是决定压路机基本技术特性的整机参数; 在实际设计工作中通常应用类比法寻求这些参数的变化规律; 压路机的主要技术参数大致可分为四类:主参数(工作质量)、工作极限、参数、工作速度、设计参数。

工作质量是压路机的主参数,我国压路机的质量规格以吨为单位。

5.主要工作参数包括工作质量、压轮尺寸、转弯半径、振动参数、工作速度及发动机功率。①工作质量概念:工作质量是压路机的主参数,它是按规定加入油、水、压重物、随机工具,并包括一名司机(65kg)在内的压路机总质量。

压路机的重量分布主要是前、后轮以及上、下车之间的重量分配比例。

对于单轮驱动的压路机,驱动轮较大的分配质量能保证压路机产生足够的附着力和制动力矩,转向轮较小的分配质量可以减少从动轮的拥土现象,但转向轮较轻将导致压路机转向不稳定。

花纹轮胎单驱动压路机的驱动轮分配重量虽然可以小到40%以下,但考虑到不致使从动轮产生过多的拥土现象,所以应控制在45~50%为宜。对于全轮驱动的压路机,双钢轮串联振动压路机前后轮等同的分配重量。轮胎驱动单轮振动压路机的振动轮分配重量可取整机的60~65%,以增大其压实能力。

经验表明,振动压路机上、下车的质量分配近似相等时,可以兼顾振动压路机对地面的作用力和冲击能量。

③压路机的最小转弯半径:压路机以最大转向角转向行驶时,压痕外缘到回转中心的距离。压痕外缘的回转半径取决于压路机的轴距、转向角及压轮宽度,并且与压路机的转向型式有关。

④压路机振动参数的选择 ²振动频率:

压路机振动轮在激振力的作用下产生受迫振动,振动频率 f(Hz)和角频率(rad/s)分别按以下公式计算:

fnn2f60 30

²工作振幅和名义振幅;所谓“名义振幅”,是指把振动压路机用支撑物架起来,振动轮悬空时测得的振幅,也称为“空载振幅”,用A0表示。振动压路机的工作振幅一般比名义振幅大。

²振动加速度

²激振力和动作用力

6.压路机的工作速度:应考虑作业工况的碾压速度和运输工况的行驶速度。碾压速度应存在一个最佳值,这个最佳值就是在不降低压实质量的前提下,选择尽可能高的碾压速度,以保证压路机有较高的生产率。

第五章沥青混合料搅拌设备

沥青混凝土搅拌设备的主要性能是额定生产率,它是指沥青混凝土搅拌设备在标准工况下的生产能力,即标准工况下,每小时生产沥青混合料的重量(t)。

标准工况是指环境湿度20℃,标准大气压,矿料集料的规格符合规范要求,且矿料集料的平均含水量为5%,沥青混凝土出料温度为140℃。

第六章沥青混合料摊铺机

1.摊铺机主参数指最大摊铺宽度、最大摊铺厚度和最大摊铺速度。设计时常常是首先确定最大摊铺宽度和最大摊铺厚度。①、最大摊铺宽度一般根据市场需求、技术性能等级、产品系列型谱、销售价格等因素确定。摊铺机的基本摊铺宽度受车辆行驶及运输空间的限制,一般在2.5m~3m之间。②、最大摊铺厚度应根据中国现行路面施工规范和压实机械的压实能力确定,摊铺沥青路面不超过12cm为宜,摊铺稳定土不超过30cm为宜,也可达到50cm左右。③、最大摊铺速度的确定主要考虑以下几个因素:

第一,摊铺速度对摊铺后路面压实度的影响。压实度是摊铺机最主要的技术性能指标之一。理想的摊铺速度是5m~6m/min。

第二,摊铺速度对摊铺后路面平整度的影响。

第三,由摊铺速度、宽度和厚度所决定的生产率应与配套搅拌设备的生产率相匹配。综上所述,液压传动的摊铺机其最大摊铺速度不宜超过20m/min,机械传动的摊铺机其最大摊铺速度不宜超过12m/min。

2.摊铺机压实度:对摊铺机摊铺后的铺层,在碾压前实测其密度,与标准标密度相比,所得到的比值称为摊铺机压实度或预压实度。

3.振捣参数:

①振捣频率:根据经验,摊铺机的最大振捣频率不超过25Hz(1500r/min)为宜。当振捣频率大于25Hz时,除了产生不良的夯实效果外(如过振,将石料振坏),机械噪声会大增,结构件损坏严重,安装在熨平装置上的自动调平仪器振动会过大。

③振捣质量:振捣质量指振捣件的质量。振捣件包括振捣梁及随动连接件。根据经验,一般振捣质量为每米摊铺宽度40kg~80kg,压实度高取大值,压实度低取小值。

④振捣梁间相位角

熨平板加宽时,应注意振捣器连接中形成相位角;当左右基本段振捣相位角为60°,推荐加宽段相邻振捣器相位角应设定为120°,可保证振捣器不平衡惯性力较小。

4.熨平装置设计 熨平板的比压:熨平装置底板上单位面积的质量称为熨平板比压,其大小影响着预压实度和平整度,因此必须控制在一个合理有效范围内。在熨平装置设计时,应尽量使各个熨平板组件的比压趋于相等,保证在全宽度上比压的均匀性。

熨平装置的刚度:纵向变形位移、垂向变形位移

熨平板越宽,刚度越差。

熨平装置的设计,除了应具有理想的功能外,还应具有相当大的刚度,以避免熨平板扭曲变形,保证熨平板仰角的衰减对平整度的影响在允许的范围内。这一点对于大宽度熨平装置尤其重要。

熨平装置的几何参数包括静态几何参数及动态几何参数。静态几何参数指熨平装置的外形尺寸。

动态几何参数是指熨平装置(包括大臂)与主机、螺旋(包括导料板)在运动中相互匹配、相互关联的位置尺寸。

第三篇:工程机械液压技术发展综述

工程机械液压技术发展综述

孙新学’苏曙’荣茜’朱靖,1)河北建筑工程学院机电工程系2)北京916”部队

摘要简要回顾3工程机械液压技术发展的几个时期.指出了障阻工程机械液压

技术发展的几个问题.概括了液压技术在工程机械上的地位及发展前景.关健词工程机械;液压技术;综述

中图号TH 137

由于液压传动具有功率密度高.易于实现直线运动、速度刚性大、便于冷却散热、动作实现

容易等突出优点.因而在工程机械中得到了广泛的应用.据统计.目前95%以上的工程机械都采

用了液压技术.工程机械液压产品在整个液压工业销售总额中占40%以上.现在采用液压技术的

程度已成为衡量一个国家工业水平的重要指标.1工程机械液压技术发展的几个时期

工程机械最初引用液压技术是为了解决车辆转向阻力问题.以减小司机的劳动强度.在转向

系引用了液力助力器.由于液力助力器在应用过程中显示出的突出优点以及人们对液压元件、液

压系统研究的深入.液压技术很快在工程机械其它动作部分得到了广泛应用.其发展大致经历了

以下几个时期.c1)初期发展时期.20世纪四五十年代是工程机械液压技术发展的初期阶段.在这一时期.人

们摸索着将简单的液压元件和液压系统应用到工程机械上来解决其它方式实现比较困难的问题

(如执行元件的直线运动等).这一时期.液压系统压力很低.一般在2MPa--7MPa.(2)高速发展时期.工程液压技术应用在20世纪60年代进入了高速发展时期.这一时期液压

系统的主要特点是高速、高压化.系统压力提高到了20MPa.系统压力的提高使得液压传动功率

密度大幅度增力。(如液压泵功率重量比由5。年的告KW/Kg提高到了2KW/Kg)、液压元件的重量明

显下降.液压技术的应用逐渐由工程机械工作装置扩展到转向系、行走系、传动系和制动系.在这

一时期.人们研制出了全液压挖掘机和全液压叉车等工程机械.液压技术趋于了成熟化.(3)重视环境时期.由于泵的工作容积与吸、压腔的转换会导致容腔压力急剧变化.而这个 变化传给泵体就形成噪声.因此.高速、高压的结果必然导致噪声.试验证明,液压泵压力或排量

每增加一倍.其噪声约增加3dB(A);泵转速每增加一倍.其噪声约增加6dB(A).因此液压系统噪 声限制了液压传动功率密度的进一步提高.在20世纪70年代初中期.工程机械液压技术研究主要

围绕降低液压系统及整机的工作噪声.(4)重视可靠性时期.由于工程机械大多数是野外作业的施工机械.其液压系统经常受到尘

埃、振动、高低温、风雨雪、臭氧的侵袭.造成液压油污染,引发故障.据统计.工程机械液压系统

发生的故障的最大原因来自于液压油的污染(约占液压系统故障的70%-85%).因此在20世纪70年

代后期.降低工程机械液压系统污染.提高系统可靠性成为这一时期的主要研究课题.(5)电子、计算机技术与液压技术结合时期.进入20世纪80年代.随着电子技术的迅猛发展.本文收稿日期:2000-04-20 第一作者:男.1964年生,讲师.张家口市、075024

第四篇:液压设备传统改造技术研究

液压设备传统改造技术研究

摘要:对液压成形设备进行改造,为解决传统液压系统中液压油对液压系统的冲击和振动问题提供依据。目的在于优化系统的设计,提高机器的整体性能。关键词:液压成形;设备液压成形的实用化与迅速发展,很大程度上取决于专用设备的开发与普及。美国、日本及一些欧洲国家都已开发出了专业的液压成形设备。国际上能够提供成套技术与设备的制造商多数集中在欧洲。其中,以德国舒勒公司、SPS公司和瑞典AP&T公司为主要代表。此外,还有日本的川崎油工,美国的ITC、HydroDynamicsTechnology,德国的GrabenerMaschinentechnik、S.DUNKES,加拿大的ValiantMachine&Tool等公司。哈尔滨工业大学是国内最早开展液压成形技术研究和设备研制的单位,燕山大学、上海交通大学等高校也相继开展了此技术的研究。本文所改造的液压机为合肥锻压机床总厂的YH28-100/180-SM双动薄板拉伸液压机,它主要用于不锈钢及其它各种金属薄板的拉深成形,具有结构紧凑、速度快、效率高等特点,有较先进的液压和控制系统,操作方便,功能齐全。该机有独立的动力机构和电气系统,并采用按钮集中控制,可实现调整、半自动、自动三种工作方式,液压系统采用二通插装阀,结构紧凑,安装维修方便,动作灵敏可靠,传动效率高,密封性能好。1

该机拉伸油缸采用快速缸,速度可达280mm/s,拉伸力可达1000KN,压边力可达800KN,速度和压力都可在规定范围内调节,用户可根据需要把拉伸速度和压边力选择到最佳工作状态,可拉深出质量较高的不锈钢等各种制品,是薄板拉深的理想设备。液压室供油系统要求满足液压成形的工艺要求,同时系统不会过于复杂。现设计其液压原理如图1所示。其动作说明如下:电机启动,泵来油经换向阀中位流回油箱,泵卸荷。当1DT通电时,油经过换向阀、单向阀进入注油板将板料压入凹模而成形。在成形的末期,1DT断电,2DT通电,油经过增压缸进入注油板,在超高压的作用下,板料进一步紧贴凹模而成形其小圆角。该液压系统中的关键是变频器5与增压缸10.在液压成形中,根据工艺的需要,液压系统提供给液压室的工作流量和工作压力应该是不断变化的,因此液压系统所消耗的功率也应该是随着工作流量和工作压力的变化而不断变化的。液压泵是液压系统的动力源,液压机中的液压泵大多是定量泵,拉深工序中不同动作所需的液压油工作流量和压力是通过一系列阀门及相关回路来调节的。由于泵的流量一定,也就意味着在工作周期的各个阶段其流量均为最大工作流量,在不需最大工作流量的工序上,多余的压力油经溢流阀回路流回油箱,而驱动液压泵的电机始终保持着维持最大工作流量时的转速,因此电机所消耗的功率也始终维持在工作周期中的最大功率上,造成了大量的电能浪费。

在液压回路上加装变频器回路,根据工作周期中所需的压力的变化,利用变频器的变频功能改变驱动电机的电源频率,使周期中的每一个确定的液压工作流量都对应不同的电机转数(频率),使电机的转数根据工作要求的变化而实时变化,从而可达到对液压系统的工作流量和工作压力进行实时控制和节约电能的目的。增压缸是在成形的最后阶段为成形工件的小圆角而为液压室提供高压的一种措施。由于所需压强较高,一般的液压元件难以满足,若整个系统采用超高压泵和耐高压液压元件,势必会增加制造成本,所以采用了增压缸来满足成形后期所需的高压。由于在加工前后注油板需要升降,所以我们的成形力液压系统采用了软管与注油板相连接。在液压成形过程中,由于需要很高的液压,因此,本文采用组合密封的形式。组合密封通常由一个聚四氟乙烯制造的主密封环和一个辅助弹性密封元件组成,属接触型自紧式密封。弹性密封元件一般采用O形圈,安装时,主密封环和弹性体密封环放置于同一沟槽中,并给弹性密封环一定的压缩量。由于弹性密封环受压缩产生的初始应力作用在聚四氟乙烯环上,既阻止了低压流体可能通过,同时通过主密封环把接触力传递到主密封环与金属接触表面之间的通道,起到初始密封的作用。当密封压力增加时,流体压力把O形密封环推向低压侧,与槽壁紧密接触。在高压流体作用下,O形圈发生变形,并挤压四氟乙烯主密封环,使主密封环与金属表面的接

触应力增加。流体的压力越高,挤压应力也就越大,以此达到自紧式密封的作用。密封组合大多用于液压缸密封。但液压成形所需密封形式不同于液压缸密封,因此在用于液压成形的密封时,其安装形式需要改变,但其密封原理仍然不变。本文采用聚四氟乙烯环与O形圈组合,此种密封结构又称斯特封,耐压程度达60MPa.至此,对传统液压成形设备改造完毕。在液压成型过程中,液压系统的压力设定、控制和密封对于板料成形的影响较大,而且各参数之间有很多组合,加上液压系统在成形瞬间对模具的冲击,振动等对板料的成形也有很大的影响,因此对一种零件的板料成形,其各参数的确定都比较困难。目前为得到一种具体零件的液压成形过程中液压系统各参数的设定都采用反复试验的办法,既繁琐又不经济。利用该系统的动态特性进行动态仿真,分析一些主要的参数对板料成形性能的影响,可以在模拟之中得到液压系统各参数变化对成形工艺的影响,并获得所需参数。对液压系统的仿真可以使设计人员在设计阶段预测机器的性能,避免因重复试验及加工所带来的昂贵费用,可以优化系统的设计,提高机器的整体性能。为解决传统液压系统中液压油对液压系统的冲击和振动问题提供依据。参考文献:[1]张德明。液压平衡回路应用实例分析[J]。液压气动与密封,2007,(6)。[2]何梦辉。液压系统中电磁比例阀振动的解决方案[J]。液压气动与密封,2007,(3)。[3]杨乃乔,液力

传动油的现状与发展[J]。液压气动与密封,2004,(5)。[4]周志红。基于功率键合图方法的液压锤动态仿真[J]。凿岩机械气动工具,2002,(2)。[5]郭世伟。基于功率键合图的MATLAB建模仿真在液压系统中的应用研究[J]。煤矿机械,2001,(2)。

第五篇:浅谈工程机械液压系统污染

浅谈工程机械液压系统污染

摘 要:液压传动技术在工程机械领域得到广泛的应用,液压系统很容易被污染从而引起机械设备多种故障。野外施工环境恶劣,应做好有效得当的预防和保护措施,最大限度上切断液压系统污染源,降低液压系统被污染的几率。

关键词:工程机械;液压系统;污染控制

液压传动技术在工程机械领域得到广泛的应用,与机械传动和电气传动相比有六大优点:

1、重量轻,体积小,运动惯性小,反应速度快;

2、操纵控制方便,可实现大范围的无级调速;

3、可自动实现过载保护;

4、元件可根据需要方便来灵活布置;

5、很容易实现自动化;

6、采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长。

液压系统也有其脆弱的一面,对于我们野外施工企业,施工机械长期处于恶劣环境高负荷作业,容易引起发诸多故障,其中尤以液压系统的故障发生率高,影响机械的工作效率,缩短机械的服役寿命。根据维修情况分析,大多数故障都是由液压系统污染造成的,如何有效合理的使用和维护液压系统,是延长设备使用寿命,确保设备安全高效可靠运转和提高经济效益的关键。

一、液压系统污染物的种类

液压系统污染物大体分为固体颗粒污染、水和空气污染、化学和微生物污染、静电磁场放射性物质等能量形式的污染等四大类。

(1)固体颗粒污染物:元件在加工和组装过程中残留的金属切屑、焊渣、型砂、磨料、涂料、锈片、尘埃等固体颗粒,以及设备在维修保养过程中进入液压系统的固体颗粒。这些颗粒对液压系统的损坏比较大。

(2)水和空气:当液压油中水的含量超过0.05%时,能使金属表面腐蚀加剧,加速油液变质氧化产生粘胶质。同时,混入油液中的空气会降低油液的体积弹性模量,使系统失去刚性和响应特性,引起气蚀、系统爬行、振动和噪声,促使油液氧化变质。

(3)化学和微生物污染:油液中添加剂、油液氧化分解产物、油液中的大量微生物等都能引起油液的变质劣化,降低润滑性能,加速元件腐蚀。

(4)液压系统中存在静电,磁场,热量及放射性物质等也是一种能量形式的污染物。

二、液压系统被污染的主要危害

污染物进入液压系统,会引发液压系统故障,造成液压元件磨损,其中以固体颗粒对系统造成的危害最大。

(1)固体颗粒进入油液中,当颗粒嵌入其中一个运动元件表面时,颗粒尖棱对另一表面产生切削磨损。当颗粒同时与俩运动表面接触时,在零件相对运动中将挤压和擦伤表面,使表面材料发生显著变形和错位,从而导致元件疲劳损坏。表面材料的凹起部位则形成金属与金属的接触,从而引起粘差磨损。若有固体颗粒液流对零件表面的冲刷也使零件产生磨损。

(2)固体颗粒堵塞或淤积在泵、阀、孔眼和各种间隙,造成损坏或卡紧现象,导致特性改变,甚至控制失灵。

(3)液压元件受到污染的侵害和磨损,内泄量增大,工作性能下降,元件丧失了工作性能而报废。

(4)油液污染后,其物理性能和化学性能均产生变化,粘度、消泡性、抗乳性、润滑性、冷却性能等均变差,加速机械磨损。油液的污染是液压系统的最大危害,有效的控制和降低油液污染度是保证工程机械液压系统正常运转和延长使用寿命的前提。

(5)静电可以引起对元件的电流腐蚀,还可以导致矿物油的挥发物碳氢化合物燃烧而造成火灾;磁场的吸引力可使磁性磨屑吸附在零件或过滤器中,导致磨损加剧,堵塞,卡紧等故障;系统中过多的热量使油温升高,导致油液润滑下降,泄露增加,加速油液变质密封件老化;放射性将使油液酸值增加,氧化稳定性降低,挥发增大,加速密封件材料变质。

三、液压系统污染的控制

为避免液压系统被污染,应在机械的日常使用和保养过程中,采取措施预防控制污染物侵入液压系统,结合实际经验和有关资料,现将具体措施总结如下:

(1)防止空气进入:经常检查油箱中油面的高度,保持有足够油量,在工作过程中油液会损耗,必须及时补充新的同规格油液;即使在最低油面时吸油管和吸油口也应保护在油面以下,使用性能良好的密封件,失效的密封装置应及时更换,管接头及各结合面的螺钉都需要拧紧,在使用中应防止系统中各处的压力低于大气压或局部真空,液压系统中进入空气是不可避免的,维修和换油后,要按说明书的规定排除系统中的空气。在更换油箱中的油液后,应开动机器循环运转几次,排除系统中的空气,对液压系统中的外部泄露(尤其是液压油缸和工作装置过载阀)要及时处理。

(2)液压油的选择:①适当的粘度;②良好的粘温特性;③良好的抗氧化和水解安定性;④抗燃性和剪切安定性;⑤与密封材料环境的相容性;⑥良好的抗性和润滑性。

(3)防止固体颗粒侵入:①加油时,液压油必须过滤加注,加油工具应可靠清洁;②保养时,拆卸液压油箱加盖、滤清器盖、检测孔、液压油管等部位,造成系统油道暴露时,要避开扬尘,拆卸部位要彻底清洁后才能打开;③定期检查液压油质量保持液压油的清洁,更换液压油滤芯,更换液压油并将油箱底部积存的杂质清理干净;④机械应经常保持清洁,防止灰尘杂物落入油液中,油箱加盖密封。

(4)保持适宜的液压油温度:①保持油箱中的正常油温,使系统有足够的油液进行循环,防止水分混入液压系统;②液压油桶不要露天放置,存放时油桶应倒置,桶口朝下;

(5)提高维修人员的意识,避免再加油,更换或清洗时因操作水平条件简陋等而带入污染物。

(6)施工机械通常在野外作业,为了减少粉尘污染,保持环境干净和空气温度适中,尽可能用洒水车定是喷洒工地;此外,机械在雨天尽可能不要施工,防止水分进入系统,造成生锈引起污染。

(7)正确执行操作规程,防止粗暴和随意操作作业,避免过猛过快,以免突然打开或关闭液压缸或液压马达执行机构进出口时,产生冲击,导致各部油封加速损坏,高压软管起泡破裂,管接头处渗漏,阀芯卡死,內漏,造成工作无力,工作效率降低。

(8)建立超前的维护保养理念及行之有效的方案,在液压系统未发生故障之前,定期检查油液清洁度的变化,并采取适当的措施将隐患清除以达到防患于未然。

总之,我们在使用工程机械的同时,要科学合理地维护和保养设备,更要从根本上意识到保养液压系统的重要,这就要求操作人员和维修人员在日常保养维护过程中,做好有效得当的预防和保护措施,最大限度上切断液压系统污染源,降低液压系统被污染的几率,确保设备安全可靠地运行,从而延长机械的使用寿命,减少维修成本,提高经济效益。

下载工程机械液压底盘性能及技术研究论文(合集五篇)word格式文档
下载工程机械液压底盘性能及技术研究论文(合集五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    金属材料性能及国家标准

    金属材料性能 为更合理使用金属材料,充分发挥其作用,必须掌握各种金属材料制成的零、构件在正常工作情况下应具备的性能(使用性能)及其在冷热加工过程中材料应具备的性能(工艺性......

    工程机械液压系统液压油的更换

    工程机械液压系统液压油的更换 工程机械由于使用环境恶劣、工作条件差,经常会出现故障。据统计,工程机械液压系统 的故障中有75%以上是由液压油原因造成的。液压油超期使用......

    浅谈工程机械液压系统的维护

    浅谈工程机械液压系统的维护 对机械施工企业来说,工程机械技术状况的良好与否是企业正常生产的直接因素。现在的工程机械大多采用机电液一体化,液压系统的正常运行是其良好技......

    网络安全技术研究论文.

    网络安全技术研究论文 摘要:网络安全保护是一个过程,近年来,以Internet为标志的计算机网络协议、标准和应用技术的发展异常迅速。但Internet恰似一把锋利的双刃剑,它在为人......

    防水涂料的性能及要点

    南京市江宁区宇诚防水防腐材料厂-防水涂料,防水施工,APP-841高强防水涂料,SBS改性沥青防水涂料 防水涂料的性能及要点 防水涂料的性能: 1.固体含量:固体含量指防水涂料中所含......

    竹纤维性能及发展展望

    竹纤维性能及发展展望我国是竹子资源最丰富的国家,竹种类、面积、蓄积、产量均居世界之,被誉为“竹子王国”。竹类种植广泛.长快,成材早,再生能力强,具有一次植可持续利用、速生......

    工程机械概论论文

    工程机械概论论文 多功能小型装载机综述 多功能小型装载机综述 装载机是一种用途非常广泛的铲土运输机械.它不仅用来对松散的堆积物料进行铲、挖、装、运、卸等作业,还可铲运......

    常用工程机械液压系统维护方法与措施

    常用工程机械液压系统维护方法与措施 对机械化施工企业来说,工程机械技术状况的良好与否是企业能否正常生产的直接因素。就液压传动的工程机械而言,液压系统的正常运行是其良......