第一篇:气相色谱法实验报告
气相色谱法实验
实验目的1.了解气相色谱仪的各部件的功能。
2.加深理解气相色谱的原理和应用。
3.掌握气相色谱分析的一般实验方法。
4.学会使用 FID 气相色谱对未知物进行分析。
实验原理
1.气相色谱法基本原理
气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图 1 所示:
图 1.气相色谱仪器框图 仪器均由以下五个系统组成:
气路、进样、分离、温度控制、检测和记录系统。
2.气相色谱法定性和定量分析原理
在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图 2 的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。
图 2.典型的色谱流动曲线 D 3.FID 的原理
本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。
三.实验试剂和仪器
(1)试剂:甲醇、异丙醇、异丁醇(2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014 气相色谱仪);
氢-空发生器(SPH-300 氢气发生器)、氮气钢瓶;
色谱柱;
微量注射器。
四. 实验步骤
打开稳定电源。
打开 N 2 钢瓶(减压阀),以 N 2 为载气,开始通气,检漏;调整柱前压约为 0.12MPa。
调节总流量为适当值(根据刻度的流量表测得)。
调节分流阀使分流流量为实验所需的流量。
打开空气、氮气开关阀,调节空气、氮气流量为适当值。
根据实验需要设置柱温、进样温度和 FID 检测器温度。本实验柱温的初始温度恒温。气化室及检测器温度设定,一般比柱温高 50~100℃。
打开色谱工作站,设定相关参数。
待仪器稳定后,进样分析,注意进样量,1µ L 左右。
峰记录与处理,微机化后自动获得积分面积、高、保留时间等数据。
实验结束后首先调节柱温到室温,调节氢气、空气流量为零,随后关闭氢-空发生器,待柱温降到室温后关闭色谱仪,最后将氮气钢瓶关闭。
五.数据记录和处理
用气相色谱法对未知混合物进行气相色谱测定,可得其色谱图如图 3 所示:
图 3.未知混合物的气相色谱图 Peak# Ret.Time Area Height 2 2.341 2386957 1627752 3 2.622 1451103 937144.9 将未知物与标准溶液对照,发现未知混合物的色谱图与异丙醇和异丁醇的气相色谱图标准溶液相吻合,第一个峰:停留时间 2.341 与异丙醇接近,第二个峰停留时间 2.622,与异丁醇接近。可推断该混合物为异丙醇和异丁醇的混合物。
2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 min0.000.250.500.751.001.251.501.752.002.25 uV(x1,000,000)
Chromatogram2.341/23869572.622/14511032.833/7671
(1)异丙醇
图 4.异丙醇的气相色谱图 Peak# Ret.Time Area Height 2 2.359 5673681 3509001(2)异丁醇
图 5.异丁醇的气象色谱图 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0min0.00.51.01.52.02.53.03.54.04.55.0uV(x1,000,000)Chromatogram2.359/56736812.632/24012.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 min0.000.250.500.751.001.251.501.752.002.252.50uV(x1,000,000)Chromatogram2.631/28921902.837/15612
Peak# Ret.Time Area Height 2 2.631 2892190 1790486
六. 思考与讨论
1.在气相色谱仪中有单气路和双气路之分,二者各有什么特点?
答:气相色谱仪中有单气路和双气路之分一般是指热导检测器,热导检测器正常工作的时候,需要一路气做比较气,常称作为参比气,另外一路气做样品,这样两路气同时有阀件独立提供,两路气体在调节和使用时互不干扰,是并联方式的气路,这就是双气路。但在工作中,由于成本,气路复杂性,样品的复杂性等等众多原因,在使用中,常常会将两路气体的流动串联成单路流动,只有一路阀件控制两路气,这样的作法,结果是损失了一些 S 值,但很多用户所测含量是百分含量或者是千分含量,这样对结果就没有影响了。
2.在分析有机物时常采用氢火焰离子化检测器,这是为什么?
答:氢火焰离子化检测器有很多优点:灵敏度很高,比热导检测器的灵敏度高约 103倍;检出限低,可达 10-12 g·S-1 ;火焰离子化检测器能检测大多数含碳有机化合物;死体积小,响应速度快,线性范围也宽,可达 106以上;而且结构不复杂,操作简单,是目前应用最广泛的色谱检测器之一。
3.在色谱分析中,经常会出现色谱峰不对称的现象,除了进样量的影响之外,还有什么其他影响因素?
答:色谱峰的不对称性来源于色谱过程本身,也有些来源于仪器。造成峰不对称的原因有以下几个:
不完全分离:歪曲的峰形有时实际上是因为未分离的其他溶质组分峰的叠加造成的。
缓慢的动力学过程:包括溶质在固定相中为空隙中的扩散,溶质与表面能量分布不均匀的固定相的相互作用;对液相色谱来说,还有在溶剂化不充分的键合固定相表面传质缓慢的影响。动力学过程造成的不对称可以通过梯度洗脱予以改善。
化学反应:如溶质在柱内发生化学反应,会形成拖尾峰或宽得不正常的峰。
第二篇:第十七章 气相色谱法 - 章节小结
1.基本概念
固定液相对极性,麦氏常数,程序升温,噪声,漂移,分流比,检测器灵敏度,检测限等。2.基本理论
(1)差速迁移:在色谱分析中,分配系数不同是组分分离的前提条件。气相色谱法中,载气种类少,可选余地小,要改变组分之间分配系数的或大小或比例,主要通过选择合适的固定液。
(2)GC中的速率理论:速率理论是从色谱动力学的角度阐述影响柱效的因素,以Van Deemter方程式表示,在填充柱中,速率方程为:
H=A+B/u+Cu =2λdp+ 2gDg/u+ 在开管柱中,A=0,此时速率方程为:
H=B/u+Cgu+Clu =u +
最小板高对应的载气线速度称为最佳线速度,为了减少分析时间,常用的最佳实用线速度大于最佳线速度。在学习速率理论时,应熟悉速率方程式中各项和各符号的含义,即这些因素是如何影响柱效的,从而理解分离条件的选择。
(3)色谱柱分填充柱及毛细管柱两类,填充柱又分气-固色谱柱及气-液色谱柱。固定液按极性分类可分成非极性、中等极性、极性以及氢键型固定液。固定液的选择按相似性原则。常用硅藻土载体分为红色载体和白色载体,红色载体常用于涂渍非极性固定液,白色载体常用于涂渍极性固定液。硅藻土载体常需进行钝化,其目的是为了减小载体表面的活性。载体钝化的方法有酸洗(AW)、碱洗(BW)和硅烷化,这些钝化方法分别除去碱性氧化物(主要是氧化铁)、酸性氧化物(氧化铝)和覆盖硅羟基。
毛细管柱可分为涂壁毛细管柱(WCOT)、载体涂层毛细管柱(SCOT)、多孔层毛细管柱(PLOT)和填充毛细管柱。
检测器分浓度型及质量型两类。氢焰检测器是质量型检测器,具有灵敏度高,检测限小,死体积小等优点。热导检测器是浓度型检测器,组分与载气的热导率有差别即能检测。电子捕获检测器也是一种浓度型检测器,检测含有强电负性基团的物质,具有高选择性和高灵敏度。
为保护检测器和色谱柱,开气相色谱仪时,必须先开载气,后开电源,加热。关机时,先关电源,最后关载气。
(4)柱温的选择原则为:在使最难分离的组分有尽可能好的分离度的前提下,要尽可能采用较低的柱温,但以保留时间适宜及不拖尾为度。对宽沸程样品,采用程序升温方式。
(5)定性与定量:定性方法有已知物对照法,相对保留值,保留指数,利用化学方法配合,两谱联用定性。定量方法常用归一化法和内标法,在没有校正因子情况下,使用内标对比法较好。3.基本计算
固定液的相对极性
分离方程式 R=
相对重量校正因子= 归一化法 Ci%=
外标法 mi =
内标法 mi=fiAi ms=fsAs mi= Ci%=
内标对比法
第三篇:滤棒含水率的测定气相色谱法-中国烟草标准化
《滤棒 含水率的测定 气相色谱法》
编制说明
1、工作简况
1.1 任务来源及提出背景
《滤棒中水分的测定 气相色谱法》行业标准,是《国家烟草专卖局关于印发2016烟草行业标准制修订项目计划的通知》(国烟科[2016]149号)下达的标准制定项目。
通过文献查阅,现有的滤棒辅材水分测定方法,有烘箱法(二醋酸纤维丝束,成形纸和内衬纸)和卡尔费休法(三乙酸甘油酯)两种。
滤棒由二醋酸纤维丝束(少部分产品使用聚丙烯丝束)、胶水、纤维素纸(仅沟槽滤棒)和成形纸以及用于固化的三乙酸甘油酯组成。烘箱法的缺点是在高温环境下导致滤棒一些挥发性半挥发性物质或热分解产物释放,从而使滤棒水分的测定值高于实际值。比如:滤棒中的热熔胶、中线胶和二醋酸纤维丝束在高温下可能会分解释放乙酸;用于丝束固化的三乙酸甘油酯可能会在高温环境中直接释放出来;项目组通过前期研究发现。烘箱法测定的滤棒含水率中约有一半来源于三乙酸甘油酯的挥发。
卡尔费休法作为经典的水分定量方法,能够准确测定样品真实的水分含量,但其大批量样品的检测效率不高;最为关键是其只能测量液体或可溶解固体。滤棒是由丝束、胶和纸张组成的多元复合物,并不能完全溶解在有机溶剂中,因此无法通过卡尔费休法测定。
气相色谱法测定水分已经在行业内得到广泛推广和应用,例如卷烟总粒相物中水分的测定和烟草及烟草制品中水分的测定均采用气相色谱法。基于以上原因,项目组选择以气相色谱法测定滤棒中的含水率。项目组参考卷烟总粒相物中水分测定和烟草及烟草制品水分测定标准,根据滤棒的独有特性,对方法的各个细节进行调整和验证(如:取样规则、前处理方法、萃取溶剂、萃取时间、进样量、色谱柱类型和分离条件、内标物、检测限和定量限等),使检测结果真实反 1 应滤棒含水率。
1.2 项目承担单位、协作单位及主要分工
项目承担单位有浙江中烟工业有限责任公司和南通烟滤嘴有限责任公司,协作单位为国家烟草质量监督检验中心,江苏中烟工业有限责任公司,中国烟草标准化研究中心,广西中烟工业有限责任公司,福建中烟工业有限责任公司,云南中烟工业有限责任公司。其中中国烟草标准化研究中心,广西中烟工业有限责任公司,福建中烟工业有限责任公司,云南中烟工业有限责任公司为项目开展过程中根据项目工作需要,申请增加的协作单位。
浙江中烟工业有限责任公司承担标准的方法研究及文本起草工作;南通烟滤嘴有限责任公司,国家烟草质量监督检验中心,江苏中烟工业有限责任公司,中国烟草标准化研究中心,广西中烟工业有限责任公司,福建中烟工业有限责任公司,云南中烟工业有限责任公司负责辅助方法开发和方法的验证工作;南通烟滤嘴有限责任公司提供共同实验样品。1.3 主要工作过程
截至目前为止,本标准的主要工作有文献调研、方法研究、实验比对、形成征求意见稿等几个步骤。1.3.1 文献调研
项目组对滤棒的性质、特点及水分检测方法进行了资料收集整理。滤棒是构成卷烟的重要组成部分,对卷烟烟气和感官质量有较大影响。滤棒水分(含水率)本身也是其物理性能的一个重要指标,国标《烟草及烟草制品 醋酸纤维滤棒》和《烟草及烟草制品 聚丙烯丝束滤棒》对滤棒含水率的限量要求分别是<8%和<2%;这是因为滤棒水分含量过高会在储存过程中易发生霉变,并可能影响搭口处热熔胶性能,导致爆口。
国标(GB/T 22838.8-2009)《卷烟和滤棒物理性能的测定 第8部分:含水率》规定了卷烟滤棒水分测定方法,通过检测 10支滤棒在100±2 ℃的烘箱中干燥2 h后的失重百分比来确定滤棒的含水率,属于物理性检测方法。这种检测方法易于操作,但从任务提出背景中可以看出,由于滤棒中其它物质的分解或挥发,烘箱法可能存在以下问题:即无法真实反映滤棒含水率,检测值高于实际值,从而无法反应滤棒的真实质量水平;甚至在检验工作中造成误判。
早在20世纪70年代,就有气相色谱法测定有机溶剂苯、甲苯中的微量水分的报道,经过研究发展,被广泛应用于有机溶剂、涂料等基质中水分的测定。
GB 18582-2008《室内装饰装修材料 内墙涂料中有害物质限量》的研究过程中提出采用气相色谱法检测水性涂料的水分,方便、快捷、干扰因素少,准确性高,能满足生产监控和新产品开发研究的要求。
气相色谱法测定水分含量已广泛应用于烟草行业,已发布的国际标准ISO 16632:2003 《Tobacco and tobacco products-Determination of water content-Gas-chromatographic method》、CORESTA推荐的方法(NO.57:2002)《Determination of water in tobacco and tobacco products by Gas chromatographic analysis》国家标准GB/T 23203.1-2013《卷烟 总粒相物中水分的测定 第1部分:气相色谱法》、烟草行业标准YC/T 345-2010《烟草及烟草制品 水分的测定 气相色谱法》均推荐使用气相色谱分析方法。1.3.2 方法研究
根据文献调研,项目组决定参考各个烟草行业水分测量方法,根据滤棒样品独有特点,研究滤棒中水分含量气相色谱测定的行业标准方法,实现对GB/T 22838.8-2009烘箱法的有效补充。
在检测方法的研究过程中,项目组根据滤棒的样品特点,对取样规则、前处理方法、萃取溶剂、萃取时间、进样量、色谱柱类型和分离条件、内标物进行了详细的实验,根据实验结果确定了关键参数,并通过回收率、重现性等实验数据建立了滤棒含水率的气相色谱初步检测方法。1.3.3 方法初稿起草
在大量试验的基础上撰写了项目试验研究报告,完成了标准方法初稿的起草工作,将标准方法初稿及项目试验研究报告提交给项目协作单位的相关成员进行审阅,根据反馈意见对标准方法初稿进行进一步的修改和完善。1.3.4 共同实验
2017年6月23月,项目组在浙江杭州召开了项目组讨论会以及共同实验会议,对方法初稿以及项目试验报告进行了讨论;会议结束后,分别在浙江中烟工业有限责任公司,国家烟草质量监督检验中心,中国烟草标准化研究中心,南通烟滤嘴有限责任公司,江苏中烟工业有限责任公司,广西中烟工业有限责任公司,3 福建中烟工业有限责任公司,云南中烟工业有限责任公司等8个实验室进行了方法的验证比对实验,数据比对良好。1.3.5 征求意见
项目组根据项目组成员反馈的意见及实验比对情况,于2017年8月完成了标准征求意见初稿,同时在行业内进行意见征集。1.4 标准主要起草人员及其所做工作
主要起草人有:朱书秀、王雨凝、盛培秀、边照阳、夏骏、陆明华、蒋锦锋、蒋佳磊、许高燕、斯文、朱怀远、刘泽春、曹传华、范忠、张建平、段海波、朱鲜艳、陈晓水、陆扬等。
朱书秀:项目负责人,负责总体技术工作,主持所有环节的工作。包括试验方案制定,试验过程观察讨论,试验结果审阅,标准及说明编制,征求意见及项目审查答辩,标准材料修改等。
边照阳、盛培秀、陆明华:主要实施项目指导、方案确定和标准征求意见初稿的审阅。
王雨凝、许高燕、蒋佳磊、斯文、陆扬、夏骏、陈晓水:参与试验及结果讨论。
朱书秀、王雨凝、盛培秀、边照阳、夏骏、陆明华、蒋锦锋、蒋佳磊、许高燕、斯文、朱怀远、刘泽春、曹传华、范忠、张建平、段海波、朱鲜艳、陈晓水、陆扬等等人参与了实验比对工作。
2、相关领域国、内外标准研究和制修订情况
经检索目前未见滤棒中水分的气相色谱检测方法的报道。
3、标准编制原则及主要内容确定依据 3.1 标准适用范围
本标准规定了滤棒含水率的气相色谱测定方法。本标准适用于滤棒含水率的测定。
3.2 标准编制原则
达到国际标准先进水平,同时考虑国内实际情况,在不影响方法准确性和先进性前提下,简化操作,提高效率。3.3 标准主要内容确定依据
标准主要内容包括:1 范围;2 规范性引用文件;3 原理;4 试剂和材料;5 仪器;6 抽样及样品保存;7分析步骤,8 结果表述;9 回收率、检出限、定量限;10 试验报告。
标准参考了国际及国内相关方面最新文献,按照《化学类标准制修订方法补充规定》要求,结合烟草目前实际情况进行编制。主要内容为滤棒中水分的测定方法—气相色谱法,适用于滤棒中水分测定。项目组根据选定的检测方法,按预定实验方案,对检测方法中涉及的各相关条件实验及方法回收率、精密度、检出限等指标进行了严谨细致的试验,并在多家烟草行业实验室考察了方法再现性。数据表明,该方法稳定性和重复性好、准确性和精确性高,且简便、快捷,可应用于烟草行业内滤棒中水分的测定。
具体情况详见项目试验研究报告。
4、标准预期产生的社会、经济效益
本标准的制定为滤棒中水分测定提供技术支撑,对滤棒质量的判别提供准确依据,提高滤棒质量控制水平,减少供需双方矛盾。同时,可延伸使用至抽吸后卷烟滤嘴中水分测定,为相关技术研究提供数据支撑。
5、采用国际标准和国外先进标准的情况
经文献查询,目前无滤棒中含水率的气相色谱测定方法相关标准。
6、与有关现行法律、法规和强制性标准关系
本标准符合现行有关法律、法规和强制性标准要求。
7、重大分歧意见的处理经过和依据
本标准在制定过程中未出现重大意见分歧。
8、作为强制性标准或推荐性标准的建议及主要依据
鉴于目前烟草行业内检测手段、仪器设备以及相关技术现实情况,本标准方法较烘箱法更为准确可靠,且所需设备较为常见,同时操作简便,建议作为推荐性行业标准,提供给滤棒生产企业、卷烟企业、烟草质检系统及相关研究部门。
9、标准宣贯的要求和措施建议
本标准发布后,建议由国家烟草专卖局牵头组织标准宣贯,在烟草企业、烟草质检系统进行标准宣贯培训,要求具备一定理论基础的技术人员或检验人员参 5 加,以授课形式即可推广。
10、废止现行有关标准的建议
本标准是烟草行业标准制订项目,不涉及废止现行有关标准的问题。
11、其他应予以说明的事项
项目组在讨论中发现国标GB/T5605《醋酸纤维滤棒》中滤棒水分含量是以含水率来命名,为了和国家标准配套一致,项目组把原标准项目合同中的标准名称《滤棒中水分的测定 气相色谱法》修改为《滤棒 含水率的测定 气相色谱法》。
《滤棒中水分的测定 气相色谱法》项目组
2017-8-25
第四篇:20110559朱花气相色谱法在食品中的应用
班级:11应用化学(1)班(含职教本科)姓名:朱花 学号:20110559
气相色谱法在食品中的应用
摘要:气相色谱法是二十世纪五十年代出现的一项重大科学技术成就,随着它的发展气相色谱法在分析方面的应用领域已经涉及到食品行业的农药残留分析、香精香料分析、添加剂分析、脂肪酸甲酯分析、食品包装材料分析等。关键字:气相色谱法专业知识 食品 应用
一、气相色谱专业知识 1.气相色谱
气相色谱是一种以气体为流动相的柱色谱法,根据所用固定相状态的不同可分为气-固色谱(GSC)和气-液色谱(GLC)。2.气相色谱原理
气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。3.气相色谱仪在使用中应注意以下几方面因素:
(1)环境条件 气相色谱仪对环境温度要求并不苛刻,一般在5~35℃的室温条件下即可正常操作。但对于环境湿度一般要求在20%~85%为宜。在高度潮湿的地区,使用某些型号仪器的氢火焰离子化检测器时,会因湿度大而导致放大器绝缘性能下降,若在高灵敏度挡上操作,响应值会下降。
(2)气体纯度 气相色谱仪所用气源纯度要求在99.99%以上。目前,许多操作者对于不同检测器要求不同气源纯度的问题没有引起足够的重视,使用中,有可能因气源纯度不够而导致检测器检测限高且基线不稳定。如果载气纯度不高,义含有微量氧时,将会影响毛细管柱的寿命。
(3)流比例的选择 对下氢火焰离子化检测器,需要N2-H2-Air焰,点燃后应为富氧焰,即空气应过量,以保证氢气完全燃烧,3种气体的最佳比例为N2:H2=1:(0.85~1),Air:H2=(6~8):1或空气量更大。在此条件下,检测器灵敏度高、稳定性好,作出的定量校正因子可靠。二.食品工业中气相色谱法的应用 1.快速筛选食物
一些油炸和烧烤的淀粉类食品,如油炸薯条、薯片和面包中含有丙烯酰胺。因为淀粉类食品在高温(>120℃时)烹调下容易产生丙烯酰胺。
丙烯酰胺具有潜在的致癌性、神经毒性、遗传毒性和生殖毒性。人体可通过消化道、呼吸道、皮肤黏膜等多种途径接触丙烯酰胺,其中以经消化道吸收最快。丙烯酰胺还可通过胎盘和乳汁进入胎儿和婴幼儿体内。进入体内后,丙烯酰胺在细胞色素P450的作用下,生成活性环氧丙酰胺。这种物质比丙烯酰胺更容易与DNA结合,形成加合物,导致细胞内遗传物质损伤和基因突变,从而发挥致癌作用。
大量动物试验表明,丙烯酰胺可致动物多脏器肿瘤,包括乳腺、甲状腺、睾丸、肾上腺、中枢神经、口腔、子宫、脑下垂体等。1994年,国际癌症研究中心对丙烯酰胺的致癌性进行了评价,将其列为二类致癌物,即人类可疑致癌物。
2.食品安全检验
食品中无机成分的检验在食品安全检验中占有相当重要的地位。汞的测定一直是一个被政府和民众特别关注的检验项目。因为汞容易在生物体中传递,可以被水体蓄积,汞进入人体内,特别是进入人脑后几乎不能够被排出,蓄积到一定程度就会引起中毒,损害中枢神经!汞的分析一般由原子吸收或原子荧光光谱法完成。有机成分的分析一般由气相色谱法以及分子光谱法完成。相关检验中"特别是农药残留,如有机氯苯并芘,拟除虫菊制脂、有机磷等的测定得到普遍的关注。色谱法是分离混合物和鉴定化合物的一种十分有效的方法,既能鉴定化合物又能准确测定含量,操作也相对方便。具有分离效能高、分析速度快、灵敏度高、定量结果准确和易于自动化等特点。3.测定食品中防腐剂含量
防腐剂是在食品生产、加工、保藏等过程中为了阻止微生物的繁殖和食品保质的需要而加人的少量化学合成物质。防腐剂除具有保持食品营养、防止腐败变质作用外,有些对人体具有一定的毒性。因此,我国对一些防腐剂的使用量和残留量都有严格的规定。我国目前普遍使用的防腐剂主要有三类;苯甲酸与苯甲酸钠、山梨酸与山梨酸钾和对经基苯甲酸醋类。山梨酸、苯甲酸类应用较广,一般在PHZ.5一5.0以下使用抗菌防腐能力最强,可用于酱油、水果汁、汽水、蜜饯等,最大使用量为0.2一1.09/kg;对经基苯甲酸醋类一般使用范围为PH4一8,用于酱油、醋中,最大使用量分别为0.25和0.109瓜g。测定食品中防腐剂含量的方法有多种,但比较方便准确的当属气相色谱法。
结语:气相色谱法:
1、气相色谱法是一项非常重大的科学技术成就;
2、气相色谱法是一个分析速度快和分离效率高的分离分析方法;
3、气相色谱法在食品中的应用广泛,而且与我们的生活息息相关。另外,也认识到了仪器分析这门课的重要性,尤其是对往后的就业前景充满了信心。俗话说:“民以食为天”。人民生活离开不了食品,食品安全与质量是人民的健康保障。参考文献: 〔1〕陈尊庆.气相色谱法与气液平衡研究(天津大学出版社,1990一12.)〔2〕中华人民共和国国家标准一一食品添加剂使用卫生标准,GB2760一1996
第五篇:气相色谱培训教材
气相色谱仪培训教材
第一章
气相色谱简介
气相色谱仪的组成2
气相色谱仪的原理
基本术语
常用概念
气相色谱应用的领域
气相色谱仪的组成1.气体
载气:用于传送样品通过整个系统的气体。
检测器气体:某些检测器所需要的支持气体。
2.进样系统
将样品蒸汽引入载气
3.色谱柱
实现样品组分的分离
4.检测器
对流出柱的样品组分进行识别和响应
5.数据系统
将检测器的信号转换为色谱图,并进行定性、6.气相色谱的原理
在色谱法中存在.两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。
7.气相色谱的原理
色谱法的分离原理:.就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。使用外力使含有样品的流动相(气体、液体)通过与流动相互不相溶的固定相表面。当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。按顺序离开色谱柱进入检测器,产生离子流信号经放大后,在工作站中描绘出各组分的色谱峰。
8.基本术语
保留时间(Retention
time):.组分从进样到出现最大值所需要的时间;
峰面积(Peak
Area):从峰的最大值到峰底的距离;
峰高(Peak
Heigh):峰与峰底之间包围的面积;
9.基本术语
分离度(resolution):又称分辨率,两个相邻峰的分离程度,两个组分保留时间之差与其平均半峰宽值比值。
R=2(tR2-tR1)/(W1+W2)
固定相、柱温及载气的选择是气相色谱分离条件选择的三个主要方面,用于提高相邻两组分的分离度,在作定量分析时,为了能获得较好的精密度与准确度,应使R≥1.5。
10.常用概念
噪声:由于各种原.因引起的基线波动,称为基线噪声。无论在无组分流出还是有组分流出时,这种波动均存在。它是一种背景信号。噪声分短期和长期噪声二类。
漂移:基线随时间单方向的缓慢变化,称基线漂移。
响应值:组分通过检测器产生的信号。该值取决于组分的性质和浓度。气相色谱分析是用各组分的响应值(峰面积或峰高)来定量的。为此,必须掌握各组分在不同检测器上的响应特征。
相对响应因子:又称相对响应值(s)就是表明组分响应特征的指标。它是指某一组分与相同量参比物质,两者响应值之比。
灵敏度:指通过检测器物质的量变化时,该物质响应值的变化率。
.检测限:将产生两倍噪声信号时,单位体积的载气或单位时间内进入检测器的组分量
称为检测限。
线性:不同类型检测器的响应值与进入检测器组分浓度、质量或质量流量之间的关系。
线性范围:进入检测器的组分量与其响应值保持线性关系,或是灵敏度保持恒定所覆
盖的区间。
11.气相色谱应用的领域
GC是一种极为广泛.和重要的分析方法,范围从石油化工、环境保护,到食品分析、医疗卫生等
第二章
气相色谱仪的主要组成部分
气路部分
进样口
色谱柱
检测器
1.气路
气体:载气(用于.传送样品通过整个系统的气体)和检测器气体(部分检测器所需要的支持气体)。
载气纯度要求99.999%以上
气体的选择
根据检测器类型而选择.(不同检测器使用载气不同效果不同,FPD
和ECD可以选择氮气、氦气及氩气做载气,但是氮气效果更好)
惰性(所使用的气体不能和样品发生反应)
纯净(气体的纯度可避免背景因素的影响)
干燥
捕集阱
脱水管:用来脱去气体中微量的水分。
烃类捕集阱:用于捕集气源中少量烃类。起源中的烃类会提高检测器本底输出,增大噪声。
脱氧管:用来脱去气体中微量的氧气。微量的氧气会破坏色谱柱,特别是毛细管柱,同时,氧气也会降低电子捕获检测器的性能。
捕集阱的安装
安装捕集阱尽量靠近仪器位置。
安装之前先将管路吹扫干净防止没必要的消耗。
安装顺序先脱水再脱烃后脱氧(脱烃和脱氧管可以捕集水份,成本比脱水管高,且难再生),定期更换
减压阀压力:推荐0.4MPa
1kPa=0.145psi=0.01bar
管路的选择
使用铜管和不锈钢管连接管路。
管路使用前应用溶剂冲洗并使用载气干燥。
定期对外加接头检漏。
塑料管不能用于管路连接(会渗透氧气及其他污染物,同时会对检测组分有干扰)
2.进样口
进样口类型
进样口:使样品以一种可重复的方式注入的装置
填充进样口
分流/不分流进样口
程序升温气化进样口
挥发进样口
冷柱头进样
2.1
分流/不分流进样口——分流模式
分流模式用于含量较高组分分析
载气进入进样口后经总流量阀控制分两部分,一部分通过隔垫表面吹扫流出,另一部分经进样口进入衬管,在衬管中与样品气体混合后小部分进入色谱柱,大部分经分流出口放空,分流是通过分流平板的凹槽流出的。分流比为分流流量与柱流量的比值。
优点
防止柱污染
适用范围广
灵活性大
分流比可调
分流歧视
在分流比一定条件下,不同样品组分实际的分流比是不同的,这样就会造成进入色谱柱的样品组成不同于原来的样品组成,从而影响定量分析的准确度。
造成分流歧视的原因有:
.不均匀汽化
.不同样品组分在载气中的扩散速度不同
.分流比的大小
.注意色谱柱的初始温度,防止样品发生部分冷凝
.还要保证色谱柱安装时柱入口端超过分流点。
分流进样口参数设置
.温度:接近或等于组分中最重组分的沸点,保证组分快速汽化
.载气流速:氮气20-40cm/s
.分流比:20:1-200:1
分流比小分流歧视效应小,溶剂峰变宽,分流比大溶剂峰窄分流歧视效应大
衬管的选择
分流进样口可采用多种衬管,用于分流进样的衬管大都不是直通的,常见的管内都填充玻璃毛。
填充玻璃毛主要为了:
.增大与样品接触的比表面积,保证样品完全汽化。
.减小分流歧视。
.防止固体颗粒和不挥发组分进入色谱柱。
2.2
分流/不分流进样口——不分流模式
不分流模式用于痕量组分分析
不分流进样和分流进样采用同一个进样口,将分流气路的电磁阀关闭,使样品全部进入色谱柱。不分流进样不仅可以提高分析灵敏度,而且可以消除分流歧视。然而,在实际工作中,不分流进样应用远没有分流进样普遍,只有在分流进样不能满足分析要求时(主要是灵敏度要求),才考虑使用不分流进样。
这就要引入溶剂效应的概念。
溶剂效应
样品汽化后的体积相对于柱内载气流量太大,汽化的样品中溶剂是大量的,不可能瞬间进入色谱柱,结果溶剂峰就会严重拖尾,使早流出组分的峰被掩盖在溶剂溶剂拖尾峰中,加大分析难度,这一现象被称为溶剂效应。
为了消除溶剂效应,可以采用瞬间不分流技术,在进样开始时关闭分流阀,使系统处于不分流状态,待大部分样品在衬管中汽化进入色谱柱后,在某指定时间开启分流阀,使系统处于分流状态,这样,将衬管中剩余的蒸汽吹扫出衬管。就可以很大程度消除进样体积大和柱流量小引起的溶剂拖尾。所以说不分流进样不是绝对的不分流,而是分流与不分流的结合。
瞬间不分流时间的确定
这里,确定一个从进样到开启分流阀的时间是很关键的。这一时间(称瞬间不分流时间或分流延迟时间、溶剂吹扫时间)应足够长,以保证绝大部分样品进入色谱柱,避免分流歧视影响;同时又要尽可能短,以最大限度地消除溶剂拖尾,使早流出峰的分析更为准确。在实际工作中,常常是根据待测组分沸点和浓度等来确定一个优化的折中点。大多采用0.75分钟(即从进样到开启分流阀的时间为0.75分钟),通常能保证95%以上的样品进入色谱柱。
衬管的选择
选择直通式衬管,以保证样品在衬管中尽可能少地稀释。
对于相对“脏”的样品,为保证分析的重现性和保护色谱柱不被污染则需填充玻璃毛。但由于不分流进样时样品在衬管中滞留的时间比分流进样长,热不稳定化合物的分解可能性大,玻璃毛必须经过硅烷化处理,且及时清洗更换。
溶剂的选择
由于进样口温度、色谱柱初温、溶剂吹扫时间和进样体积都与溶剂沸点有关,所以不分流进样对样品溶剂有严格要求,一般来讲,使用高沸点溶剂比低沸点溶剂有利,因为溶剂沸点高时,容易实现溶剂聚焦,且可使用较高的色谱柱初始温度,还可以降低针尖歧视及衬管的压力突变。另外,溶剂的极性一定要与样品的极性相匹配,且要保证溶剂在所有被测组分之前出峰,溶剂还要与固定相匹配,才能实现有效的溶剂聚焦。
溶剂聚焦
.主要使溶剂峰变窄
.峰型美观
.不会脱尾及变宽
.影响分离效果
.不分流进样是分析高沸点痕量组分的首选方法。
不分流进样口参数设置
.温度:可以比分流进样稍低,但要保证待测组分瞬间完全汽化。温度过低会造成高沸点组分损失,温度过高会造成样品分解。
.载气流速:流速应高一点,分流出口的流量一般为30
至60ml/min
.溶剂吹扫时间:0.75分钟。
分流/不分流进样口——维护
.定期更换进样垫。
.更换或清洗衬管。
.更换O型环。
.清洗分流平板。
.清洗更换进样针
3.色谱柱
填充柱以一些材料.填充来吸附或吸收,由铜、不锈钢或硅酸硼玻璃制成,内径大约2-4mm,长度为0.5-10m。
.毛细管柱内壁覆盖一种吸附或吸收材料,由熔融石英制成,内径细0.05-0.75mm,长度最长可达150m。
.气相色谱中,固定相是一种固体材料,称为气固色谱法,用于永久气体和低分子量的烃类分析。固定相是粘性液体时(一般是聚合物),称为气液色谱法,气液色谱法占整个气相色谱分析应用的90%左右。
.通过样品在固定相的分配或不同溶解度实现分离.组分基于不同的极性而分离(偶极力的作用),固定相可由其化学结构不同而引起的不同极性排序。
.通常遵循“相似相溶”或同极性相互作用。
.色谱柱越长分离效果越好。
.分离指标
.柱效:色谱柱形成尖锐峰的能力
.分离度:色谱柱将两个峰彼此分开的能力
.选择性:色谱柱确认两个峰化学或物理性质差别的能力
.影响分离指标的因素
.柱内径
.长度
.柱流量
.炉箱温度
.柱子固定相类型。
.确保所分析组分与柱子的固定相有相互作用的能力。
.理论塔板:分离理论假定色谱柱被分为一些板,简单理解为组分与固定相之间有相互作用的时刻
.如何提高柱效
.使用内径更小的色谱柱。
.减小固定相百分组成。
.减小固定相液膜厚度。
.减小进样量。
.选用更长的色谱柱。
.使用程序升温改善后流出组分峰形。
.长度:色谱柱的柱效与色谱柱的长度成正比,分辨率是色谱柱长度的平方根,保留时间与长度称正比。
.直径:色谱柱的直径越小,效率越高,可加快分析速度;色谱柱的直径越大,可容纳的样品量越大,但效率会下降。
.液膜厚度:液膜厚度影响分离的质量,膜厚越厚,色谱柱样品的容量越大,保留时间越长,峰越宽,效率越低,柱流失越大。
柱温操作
.恒温
在整个分析过程中,柱箱温度保持恒定,升温速率为零,导致后流出的峰展宽。
.程序升温
针对组分有较宽的沸点范围时使用,减少分析时间并使峰变窄,可设定多阶程序升温,导致增加了柱流失,引起基线漂移。
.保存
.色谱柱不使用时要密封保存。
.堵上柱子两端,以保护柱子中固定液不被氧气和其他污染物所污染。
.重新安装色谱柱时注意安装方向,.安装时从柱头截去少许以确保隔垫碎屑不会堵塞在柱子内。
以下情况需老化:
.新柱应老化除去残留的溶剂。
.色谱柱中残留有杂质。
.长期不用的色谱柱应老化去除存放过程中变性的固定相。
.步骤:
.将检测器端色谱柱取下,用接口堵住检测器入口;通入载气,设定程序升温循环老化(最高温度比色谱柱的温度上限低20℃),老化时间为2-3小时。
.设置老化温度及时间时考虑的因素:温度足够高以除去不挥发物质,温度足够低以延长柱寿命和减小柱流失,老化温度越低老化时间应越长。
安装色谱柱
.选择尺寸合适的密封垫材料;
.在色谱柱安装前对柱端口进行切割,保证柱端口清洁平整;
.根据仪器制造厂商的指标,确定色谱柱安装于进样口和检测器时插入适当的距离;
.毛细柱必须固定在柱架上,任何部分都不能接触柱箱壁;
.安装好后确保所有接头不泄露。
3.检测器
气相色谱检测器.是一种能检测气相色谱流出组分及其变化的器件。检测器通常由传感器和检测电路组成。传感器是利用被测物质的各种物理性质、化学性质以及物理化学性质与载气的差异,来感应出被测物质的存在及其量的变化。检测电路是将传感器产生的各种信号转变成电信号的装置。从传感器送出的信号是多种多样的,有电阻、电流、电压、离子流、频率、光波等。检测电路的作用是测定出这些参数的变化,并将其变成可测量的电信号。
常用检测器的工作原理
.热导检测器:把载气流分为两部分,分别流经一对参比热导丝,当样品通过其中一根热导丝时,样品稀释了载气而使热导丝升温,其电阻相对于参比热导丝发生了变化,它对所有与载气的热电导有差异的化合物均有响应。
.氢焰检测器:样品在氢气、空气火焰中燃烧产生离子,离子被收集后转换成电流。氢焰检测器对大多数有机物都有响应,而多数无机物和一些带杂原子的有机物响应很小或没有响应。
.电子捕获检测器:通过Ni63放射源发射的低能电子被阳极收集产生电流,化合物捕获这些电子导致电流降低而产生一个信号。电子捕获检测器对碱金属化合物响应非常灵敏。
.火焰光度检测器:硫、磷化合物在氢气、氧气火焰中燃烧产生光发射。带有滤光片的光电倍增器只选择需要的波长来检测这种发射。火焰光度检测器对农药检测尤其有用。
.氮磷检测器:当燃烧的样品通过氮磷检测器中铷盐珠时,产生离子。氮磷检测器对农药中含N、P的检测非常灵敏。
.质量选择检测器:样品被电子流轰击后产生离子,这些离子按它们的质荷比(M/Z)被分离后,测量器质量数和丰度值。这种检测器可以通过选择适当的质量而使其选择性强。
.响应指标:
.灵敏度:单位含量样品的响应值,组分响应值与含量构成的直线的斜率,直线的最小值定义为最低检出限,响应高灵敏度大。
.选择性:衡量检测器对某些类型化合物是否有响应。检测器区分不同类别组分的能力。FID会识别任何烃的存在,ECD只可检测电负性较大的物质类型,如氟化物、氯化物、溴化物或碘化物等。NPD更具选择性,只可检测出有机氮或磷组分的存在,其他组分被忽略。
.动态范围:检测器提供的能正确定量的样品浓度范围,含量与电子捕获检测器。。
.电子捕获检测器是一种具有高灵敏度的离子化检测器。它的选择性高,仅对其有电负性的物质有信号,电负性越强,灵敏度越高。.当电负性组分进入检测器时,与电子碰撞并捕获电子导致电流改变并产生信号
电子捕获检测器操作注意事项:
.尾吹气不可采用氢气或氦气,一定使用氮气;
.微量的氧气会影响基线稳定性;
.将检测器出口通向室外;
.一旦检测器污染,只能热清洗。
.热清洗步骤:
.关闭炉温,从检测器端取下色谱柱。
.用色谱柱螺母塞住检测器连接口。
.检测器温度设定为350℃-375℃,尾吹气设为60ml/min。
.保持热清洗几小时后将系统冷却至正常操作温度。
火焰光度检测器
.原理
.利用富氢火焰使含硫或磷杂原子的有机物分解,形成激发态分子,当它们回到基态时,发射出一定波长的光,此光强度与被测组分量成正比,所以它是以物质与光的相互关系为机理的检测方法,属于光度法。火焰光度检测器是一种高灵敏度和高选择性的检测器。
.对于硫采用394nm或384nm滤光片,对磷用526nm滤光片,然后经光电倍增管把光强度变成电讯号进行测量
.气体设置
.尾吹气:尾吹气是从色谱柱出口处直接进入检测器的一路气体,又叫辅助气,毛细管柱大都采用尾吹气。.这是因为毛细管柱的柱内载气流量太低(常规柱为1-3ml/min),不能满足检测器的最佳操作条件(一般检测器要求20ml/min的载气流量)。在色谱柱后增加一路载气直接进入检测器,就可保证检测器在高灵敏度状态下工作。尾吹气的另一个重要作用是消除检测器死体积的柱外效应。经分离的化合物流出色谱柱后,可能由于管道体积增大而出现体积膨胀,导致流速缓慢,从而引起谱带展宽,加入尾吹气后就消除了这一问题。
.操作的注意事项
.更换滤光片前,关闭光电倍增管电压;
.最高操作温度严格按照厂商指标设置;
.避免使用腐蚀性强的氯化有机溶剂。
氮磷检测器
.原理
.在一个氢气/空气等离子体环境下,氮磷检测器的铷珠被电加热至600-800℃,形成了催化活性的固体表面,有机氮或有机磷化合物分子被导入到催化活性表面周围,被催化称负离子及电子形成微电流,输出的电流正比与收集到的离子数,用静电计测量并将其转化为数字形式,传输到一个输出设备。
.参数设置
.推荐温度设为325-335℃,设置较高的检测器温度好处:灵敏度有所提高,检测器上端的绝缘环和密封圈的污染减轻,检测器系统包括废气出口保持干净,铷珠可以在较低的电压下激发。
.操作注意事项
.安装新铷珠初期手动调节铷珠电压,选择较小的铷珠电压;
.设置较小的氢气流量;
.溶剂峰通过铷珠时关闭氢气;
.如果检测器长期未使用,先烘烤然后再加电压;
.使用高纯氮气、氢气和空气以确保检测器的正常使用(纯度99.999%以上);
.如果灵敏度异常,不要轻易增加铷珠电压,检测收集极、喷嘴、陶瓷环和金属密封圈是否需要清洗。
第三章
校正与定量
校正
定量
定量的方法
校正
.概念:是利用某个峰的峰高或峰面积来确定其对应组分的浓度或含量。
.必要性:当检测器灵敏度针对不同的组分而变化时需要进行校正。
.检测器对同一组分不同含量响应值发生变化时需要进行校正。
.校正的过程:
.首先准备混合标样,准确知道组分浓度;
.运行混合标样;建立校正表;
.运行待测样品并用校正表分析它;
.需要时进行重新校正。
*
对于需要时进行重新校正可以理解为使用质控样品衡量
.单级校正
.对每个峰只做一次校正。
.单级校正即单点校正,仅有一个浓度的标样。
.单级校正定量结果不准确,但其简单、快速。
.单级校正适用以下情况:
.做简单的粗定量;
.当未知样品的浓度小于且接近于标样浓度时,所得定量结果较准确;
.主要用于检出实验,即不需要准确定量未知样品含量,只关心未知样品是否达标。
.多级校正
.对每个峰需要做至少两次校正。
.多级校正即多点校正,纠正了单级校正的缺点,可以进行准确定量,将标样等梯度稀释,运行每一级稀释好的标样,在每一级上进行校正,先准备一个浓度必须高于未知样品浓度,而且最终标样的浓度范围应包含未知样品浓度。
定量
定量是利用峰面积或峰高来确定样品中化合物的含量。
.定量分析过程
.了解你所分析的化合物;
.建立一个分析的方法;
.运行一个或多个已知浓度的样品,得到相应的响应值;
.分析未知浓度的样品,得到相应的响应值;
.将未知浓度样品的响应值与已知浓度的该样品的响应值进行比较,确定其浓度。
.定量的方法
.百分比法
.归一化法
.外标法
.内标法
.外标百分比法
.内标百分比法
.响应因子
.响应因子与组分的含量及其他组分的存在无关;在分析条件一定的条件下,响应因子为物质的特性;响应因子可以校正检测器响应。
.百分比法
.常用于粗定量,或组分简单、结构相似的混合物分析,并且不需要建立校正表。
.外标法
.当校正样和未知样品在同样的条件下分析时,未知样品的结果与校正样的结果相比较从而计算出未知物的含量,该方法是基本的定量方法,使用该方法时每次运行的进样量必须是一致的。
.使用此法的前提假设是标样中、未知样品中待测组分的响应因子相同。这就要求仪器必须具有良好的稳定性,而且应定期进行重新校正,否则标样的响应因子和未知样品的响应因子不相等,就无法进行准确定量。
外标法优、缺点
.优点:
.可以校正检测器的响应。
.只对欲分析的组分峰做校正。
.无需所有峰都能被检测到。
.缺点:
.进样量必须准确。
.仪器必须有良好的稳定性。
.需定期做重新校正。
.内标法
.内标法是将内标物加到一定量的被分析样品混合物中,然后对含有内标物的样品进行色谱分析。
内标法优、缺点
.优点:
.进样不严格要求。
.只对欲分析的组分峰做校正
.校正检测器的响应
.缺点:
.必须加一个组分进到样品。
内标物的选择
.选择的标准
.样品中不存在该组分。
.可迅速容易得到。
.化学性质和样品相似。
.与样品有相似的响应值(浓度范围)。
.不会与样品发生反应。
.在感兴趣组分附近流出。
.可得到分离良好的峰。
.色谱性质稳定。
外标法与内标法比较
外标法是用标准品.的峰面积或峰高与其对应的浓度做一条标准曲线,测出样品的峰面积或峰高,通过该标准曲线上查对应的浓度,内标法是对应外标法说的,外标法是用样品和标准品对比,但是有时我们很难保证样品和标准品进的体积是一样的,毕竟要有误差,这时候就用内标法,就是在外标法的基础上,在样品和标准品里在加入一种物质,通过加入物质的峰面积或峰高的变化,就可以看出我们标准品和样品进样体积的差别,如果进样体积很难掌握,就用内标法,可以消除进样体积的误差。内标法工作曲线的横、纵坐标分别为含量比和峰面积比;而外标法工作曲线的横、纵坐标分别为含量和峰面积。
定量的方法
.归一化法
.假定
–
所有组分都流出。
–
所有组分都被检测到。
.优点
缺点
进样量不要求严格。
所有组分峰都要流出。
需测量所有的组分。
必须校正所有的峰。
第四章
仪器故障排除
不出峰与灵敏度降低
基线问题
色谱峰问题
分辨率降低
保留时间不重复
不出峰与灵敏度降低
.不出峰故障
.在选定操作条件下,给色谱仪注入规定的样品,在记录的谱图上没有相应的色谱峰出现的现象。
.灵敏度异常故障
.虽然出峰,但大小却与原来的已知谱图相差甚大。
.排除故障步骤
.操作条件重复性检查:核实操作条件是否与原条件接近。
.检查检测器有无反应:检测器响应检查应检测器类型而异。
.进样针及进、取样技术检查:进样针有无泄漏,抽取样品时抽取了空气或抽取样品后没及时进样造成样品挥发。
.载气堵、漏检查。
.进样口安装不当,载气样品流入不合理。
.仪器启动后零点基线的调整检查。
.检测器连线及工作条件检查。
基线问题
基线漂移一般是指基线向单方向持续升高或降低,最常见的原因是色谱柱固定性流失,色谱柱固定相流失是当色谱柱在其使用温度上限时基线的升高。在较低的柱温下如果有色谱峰,噪声过高,基线漂移或基线升高等现象,就不是色谱柱的流失造成的。此类现象主要是由于柱效降低,例如柱污染等引起的。
.基线波动
.基线波动的原因比较多,进样口、色谱柱、检测器、载气问题等都有可能导致基线的波动。
.基线噪声
.基线噪声增加最主要的原因
–
进样口、色谱柱和检测器污染
–
检测器相关部件老化、设置不正确。
色谱峰问题
.色谱峰问题出现的表现
.前伸峰
.拖尾峰
.鬼峰
.分裂峰
.色谱峰大小改变
.拖尾峰
.色谱峰系中最常见的问题
.鬼峰
.气相色谱分析中出现鬼峰,也就是色谱图中的“
额外峰”,一般不是由于柱流失所引起,通常是由于污染引起的。另外在评价鬼峰时考查其峰宽是很重要的。宽的峰,有时候是原先样品中的组分在色谱柱中慢慢洗脱导致的;窄的峰,可能是由于进样口污染等引起的。
分辨率降低
.分辨率与分离度及峰宽有关
保留时间不重复
保留时间的重复性是.指3次或5次进同一样品,其保留时间与它们的平均值的相对偏差值。如果这一相对偏差值超过了可接受的范围,就认为保留时间不重复。
.引起保留时间不重复的最可能原因
.一个是柱温不稳定
.另一个是流速有变化
.其他原因还有
.进样技术不佳
.进样量过大及柱损伤等
.检测器的故障不会造成保留时间的不重复
农残检测技术
有国标法,行标法,我们经常用的是行业标准检测,这里以NY/T761-2008为例。
.试样制备,按GB/T
8855标准抽取样品,取可食部分粉碎后制成待测样,在-20℃—-16
℃条件下保存
.农药标准溶液配制
.单一农药标准溶液:准确称取一定量的农药标准品,用溶剂配制成大浓度的单一标准储备液,储存在-18
℃以下冰箱中,使用时根据各农药在对应检测器上的响应值,稀释成所需的标准
工作液
.农药混合标准溶液:对于多组分农药,可根据各农药在仪器上的响应值,将各组分的单个农药储备液按一定量注入同一容量瓶中,稀释成所需质量浓度的标准工作液。
有机磷类农药的测定
.原理
.试样中有机磷类农药经乙腈提取,提取液经过滤、浓缩、净化后,用丙酮定容,经毛细柱分离,火焰光度检测器磷滤光片检测,通过保留时间定性,外标法定量。
.提取
.经乙腈提取的试样通过高速匀浆后过滤,滤液经分层后,收集一定量的上层乙腈相。
.净化
.将提取的上层乙腈相蒸发近干后,用丙酮多次冲洗并转移后定容,供测定。
.如果定容后的样品溶液过于浑浊,应用0.2μm滤膜过滤后再进行测定。
有机氯及拟除虫菊酯菊酯类农药的检测
.原理
.试样中有机氯、拟除虫菊酯类农药用乙腈提取,提取液经过滤、浓缩后,采用固相萃取柱分离、净化,淋洗液经浓缩后,通过毛细柱分离,电子捕获检测器检测,保留时间定性,外标法定量。
.提取
.试样经乙腈提取,过滤、浓缩后待净化。
.净化
.将待净化溶液通过固相萃取柱(弗罗里矽柱)后收集洗脱液,准确定容,待测。
.固相萃取柱
.活化(使用活化试剂活化萃取柱)、上样(将样品注入)、淋洗(用淋洗液将杂质洗掉)、洗脱(用洗脱液洗脱样品)