第一篇:生化实验报告肝糖原测定
生物化学实验报告
姓
名:
学
号:
专业年级:
组
别:
*** 实验教学中心
第一部分
一、实验目的
掌握程度 实验主要目的1.掌握肝糖原提取、糖原和葡萄糖鉴定与蒽酮比色测定糖原含量的原理和注意事项,掌握其操作方法
2.正确操作使用刻度吸管和可调微量取液器
3.熟练运用溶液混匀的各种方法(试情况而定,采用合适的混匀方法)
4.正确掌握溶液转移的操作
5、正确操作使用分光光度记 二、实验原理
掌握程度 实验内容及原理 实验名称
肝糖原的提取、鉴定与定量
实验时间
*** 实验地点
*** 指导老师
赵***
组员
*** 评分
批改日期
肝糖原的提取与鉴定
糖原储存在细胞内,采用研磨匀浆等方法可使细胞破碎,低浓度的三氯醋酸能使蛋白质变性,破坏肝组织中的酶且沉淀蛋白质,而糖原仍稳定保存于上清液中,从而使用糖原与蛋白质等其他成分分离开来。糖原不溶乙醇而溶于热水,故先用 95%的乙醇将滤液中的糖原沉淀,再溶于热水中。
糖原水溶液呈现乳样光泽,遇碘变红棕色。这是糖原中葡萄糖长链形成的螺旋中,依靠分子间引力吸附碘分子后呈现的颜色。糖原还可被酸水解为葡萄糖,利用呈色反应和葡萄糖的还原性,可判断肝组织中糖原的存在。
CuSO 4 +2NaOH=Na 2 SO 4 +Cu(OH)2 2Cu(OH)2 +C 6 H 12 O 6 =2 CuOH+氧化型葡萄糖+H 2 O 2 CuOH= Cu 2 O(红色)+ H 2 O Cu(OH)2 = CuO(黑色)+ H 2 O
肝糖 原定量测定
糖原在浓酸中可水解为葡萄糖,浓硫酸能使葡萄糖进一步脱水生成糠醛衍生物—5-羟甲基呋喃甲醛,此化合物再与蒽酮脱水缩合生成蓝色化合物。该物质在 620nm 处有最大吸收。糖含量在 10~100ug,溶液颜色的深浅可与可溶性糖含量成正比。利用此反应与同样处理的已知葡萄糖含量标准溶液比色,可得到样品中糖原的含量。糖原在浓碱溶
液中非常稳定,故在显色之前,肝组织先置于浓碱中加热,以破坏其他成分,而保留肝糖原。
一、材料与方法
1、实验材料 样品
鸡肝
试剂
肝糖原的提取与鉴定:95%乙醇,0.31mol/L(5%)三氯醋酸溶液,浓盐酸,NaOH 溶液,碘试剂,班氏试剂。
肝糖原定量测定:30%KOH 溶液,0.5mg/ml 的葡萄糖溶液,蒸馏水,蒽酮显色剂。
仪器和器材
可见光分光光度计,恒温水浴箱,试管架,三支试管,加样枪,加样枪架,普通离心机,研钵,刻度吸量管,白瓷反应器,100ml 容量瓶。
2、实验流程 肝糖原的提取与鉴定:
鸡肝约 1.5 g,剪碎 +5%CCl 3 COOH 1 ml 研磨至乳状 +5%CCl 3 COOH 3 ml 研磨成肝匀浆
全部转入离心管中,离心 3 分钟(4000 r / min)
沉淀(弃去)
上清(取 3 ml)
+3ml 95%乙醇,混匀,静置 10 分钟
离心 5 分钟(4000 r / min)
上清(弃去)
沉淀 +蒸镏水 1 ml 沸水浴 2 分钟,溶解沉淀
白瓷板孔穴中
糖原溶液 1ml +浓 HCl 5 滴 加碘试剂 2 滴
加碘试剂 2 滴
沸水浴 15 分钟,冷却 糖原溶液 2 滴
+50%NaOH 5 滴
呈色对比
糖原水解液 2 滴
糖原水解液 +班氏试剂 4 滴 混匀
沸水浴 2 分钟,观察变化
肝糖原定量测定
鸡肝 0.15 g +30%KOH 1.5ml
沸水浴 15 分钟
冷却,全部转入 100 ml 容量瓶中
加水至标线,仔细混匀,此为糖原提取液
糖原的测定
取 3 支试管,按下表操作。
试剂(ml)
空白管 标准管 样品管 蒸馏水 1.0 — — 标准葡萄糖溶液 — 1.0 — 糖原提取液 — — 1.0 0.2%蒽酮溶液 2.5 2.5 2.5 混匀,沸水浴 10 分钟,冷却c。在分光光度计 620 nm 波长处,用空白管溶液调
零,测定各管溶液的吸光度(A)。
4、注意事项 肝糖原的提取与鉴定 ①在提取肝糖原中,向上清液中加入乙醇后,要充分混匀,可以用玻璃棒搅拌。
②糖原中葡萄糖螺旋链吸附碘产生的颜色与葡萄糖残基的多少有关。肝糖原分支中葡萄糖残基在 20 个以下,吸附碘后呈现红棕色。
肝 糖 原 定 量测定
①肝组织必须在沸水浴中完全溶解,否则影响比色; ②注意要收集全部溶液,用水多次洗试管,一并收入容量瓶中; ③加入蒽酮溶液时要小心操作,将试管放在试管架上进行; ④如果溶液呈浑浊,则因配制蒽酮溶液的硫酸浓度不够所致。
第二部分
一、实验结果与处理
1、实验现象 操作过程 现象图片
(1 1)鸡肝在三氯醋酸中,被研磨成肝匀浆
(2)鸡肝研磨成肝匀浆后转入试管
(3 3)第一次离心后
(4 4)第一次离心后上清液转移到另一试管
(5 5)第二次离心后
(6 6)第二次离心后的沉淀
(7 7)沸水浴使沉淀溶解后
(8 8)糖原水解液
(9 9)班氏试剂与糖原水解液反应:
溶液显蓝色,砖红色不明显
(10)
白瓷板孔穴中糖原与碘反应(左边为碘试剂与肝糖原溶液,右边为碘试剂): :
紫色不明显
(11与)鸡肝与 30% 的H NaOH 溶液混合在沸水浴中加热后: :
呈血红色
(12)糖原溶液装入L 100mL 容量瓶混匀后:刻度线处有些许气泡,混匀过程造成(13)糖原提取后的测定,三支试管水浴后(1 1、2 2、3 3 号试管分别为空白管、标准管、样品管):
三只试管水浴 10min后,标准管颜色最为明显,为绿色,加入的是标准葡萄糖溶液,样品管与空白管颜色依次递减。
2、实验数据记录 在分光光度计 620nm 波长处,测定各管溶液的分光度(A),记录结果如下:
各管吸光值 测定次数
空白
标准
样品 1
0.000
0.350
0.010
0.000
0.351
0.011
0.000
0.353
0.013
3、实验结果
肝糖原的提取与鉴定:
显色反应中,碘液由黄色变为红棕色(不明显),说明所提供材料中含糖原成分,但含量低;加入班氏试剂的溶液无明显的颜色变化;
肝糖原定量测定
(1)鸡肝所取质量:0.15g(2)各管吸光值
各管吸光值 测定次数
空白
标准
样品 1
0.000
0.350
0.010
0.000
0.351
0.011
0.000
0.353
0.013
平均值
0.000
0.351
0.011
标准管吸光度平均值 0.351; 样品管平均吸光度 0.011;
由公式计算:.1 *1000100*g100* 05.0 * 100 / g)
肝组织重(标准样品肝组织)
肝糖原(AAg 注:1.11 为此法测得的葡萄糖含量换算为糖原含量的常数,因为用蒽酮试剂显色时,110ug 糖原与 100ug 葡萄糖显色程度相当。
故经计算最后结果为 0.116(g/100 肝组织)。
4、讨论与分析(1)与碘试剂反应时:加入糖原的孔穴并没有出现明显的红棕色。可能原因如下:
A、是在取糖原沉淀时,沉淀很少,糖原含量也很少; B、碘试剂本身是黄色的,本来现象就不是很明显,这样一来,几乎看不到反应会产生的红棕色了,说明糖原含量极少。
(2)糖原中葡萄糖的鉴定:实验结果也没有如预期中的蓝色溶液沸水浴后变为砖红色。原因如下:
A、沸水浴过程水温没有达到 100 摄氏度,且期间多个小组先后放、取水浴箱中的试管,对反应造成一定影响; B、糖原含量极少,又加过少量酸与碱,浓度更小,现象更不明显,所以观察不到明显的砖红色。
(3)在肝糖原定量测定中,由资料可知饱食鸡肝的肝糖原含量为:2~3g/100g 肝组织。而我们的结果明显偏低,实验中没有出现操作上的失误,讨论分析原因如下:
A、所用鸡肝来源并非饱食鸡的肝,且鸡肝每个部位肝糖原的含量有差异,与其他实验组对比,可能我们组所取鸡肝的部位刚好是肝糖原含量较低的部位; B、查资料得知若肝糖原含量<1%时,蛋白质会干扰蒽酮反应,这可能对实验结果进一步造成降低的影响。
第二篇:无机化学测定实验报告
无机化学测定实验报告
实验名称:室温:气压:
年级组姓名实验室指导教师日期 基本原理(简述):
数据记录和结果处理:
问题和讨论
附注:
指导教师签名
第三篇:物理实验报告《测定三棱镜折射率》
【实验目的】
利用分光计测定玻璃三棱镜的折射率;
【实验仪器】
分光计,玻璃三棱镜,钠光灯。
【实验原理】
最小偏向角法是测定三棱镜折射率的基本方法之一,如图10所示,三角形 abc 表示玻璃三棱镜的横截面,ab和
ac是透光的光学表面,又称折射面,其夹角a称为三棱镜的顶角;bc 为毛玻璃面,称为三棱镜的底面。假设某一波长的光线 ld 入射到棱镜的 ab 面上,经过两次折射后沿 er 方向射出,则入射线 ld 与出射线 er 的夹角
称为偏向角。
图10
三棱镜的折射
由图10中的几何关系,可得偏向角
(3)
因为顶角a满足,则
(4)
对于给定的三棱镜来说,角a是固定的,随
和
而变化。其中
与、、依次相关,因此
实际上是的函数,偏向角
也就仅随
而变化。在实验中可观察到,当
变化时,偏向角
有一极小值,称为最小偏向角。理论上可以证明,当
时,具有最小值。显然这时入射光和出射光的方向相对于三棱镜是对称的,如图11所示。
您正浏览的文章由第一'范文网整理,版权归原作者、原出处所有。
图1
1最小偏向角
若用
表示最小偏向角,将
代入(4)式
得
(5)
或
(6)
因为,所以,又因为,则
(7)
根据折射定律
得,(8)
将式(6)、(7)代入式(8)得:
(9)
由式(9)可知,只要测出入射光线的最小偏向角
及三棱镜的顶角,即可求出该三棱镜对该波长入射光的折射率n
.【实验内容与步骤】
1.调节分光计
按实验24一1中的要求与步骤调整好分光计。
2.调整平行光管
(1)去掉双面反射镜,打开钠光灯光源。
(2)打开狭缝,松开狭缝锁紧螺丝3。从望远镜中观察,同时前后移动狭缝装置2,直至狭缝成像清晰为止。然后调整狭缝宽度为1毫米左右(用狭缝宽度调节手轮 1 调节)。
(3)调节平行光管的倾斜度。将狭缝转至水平,调节平行光管光轴仰角调节螺丝29,使狭缝像与望远镜分划板的中心横线重合。然后将狭缝转至竖直方向,使之与分划板十字刻度线的竖线重合,并无视差。最后锁紧狭缝装置锁紧螺丝3。此时平行光管出射平行光,并且平行光管光轴与望远镜光轴重合。至此分光计调整完毕。
3.测三棱镜的折射率
(1)将三棱镜置于载物台上,并使玻璃三棱镜折射面的法线与平行光管轴线夹角约为 60度。
(2)观察偏向角的变化。用光源照亮狭缝,根据折射定律判断折射光的出射方向。先用眼睛(不在望远镜内)在此方向观察,可看到几条平行的彩色谱线,然后慢慢转动载物台,同时注意谱线的移动情况,观察偏向角的变化。顺着偏向角减小的方向,缓慢转动载物台,使偏向角继续减小,直至看到谱线移至某一位置后将反向移动。这说明偏向角存在一个最小值(逆转点)。谱线移动方向发生逆转时的偏向角就是最小偏向角。
按
计算最小偏向角
(取绝对值)。
重复步骤 1~6,可分别测出汞灯光谱中各谱线的最小偏向角。
按式(9)计算出三棱镜对各波长谱线的折射率。计算折射率 n 的数据表格3。
【数据记录及处理】
表3
测量最小偏向角
钠光波长(å)
第四篇:标准稠度用水量测定实验报告
土木工程材料实验报告
专业:组号:试验日期:
组长:组员:
实验名称:标准稠度用水量测定
实验目的:测量水泥净浆达到标准稠度的用水量,以作为水泥凝结时间和安定性实验是所需
水量的标准。
实验仪器:
1、标准稠度和凝结时间测定仪
2、水泥净浆搅拌机器
3、工业天平
4、量筒
实验原理:试锥下沉深度来确定水泥稠度是否达到标准,从而得出水泥净浆时的用水量。
实验步骤:
1、称取水泥式样500g ,水142.5ml。用湿布将实验的用具抹湿,然后将是水泥到
入拌料筒内。
2、置拌料筒于搅拌机上,开动机器,同时徐徐加入式样和水慢速搅拌120s,停
拌15s,接着快速搅拌120s,停机。
3、搅拌完毕后立即浆净浆一次装入锥模筒内,用小刀插捣并振动数次,刮去多
余净浆,迅速放在试锥下面固定位置上,并将试锥放下,使锥尖和净浆表面接
触,拧紧螺钉,然后突然松开螺钉,让试锥自由沉入净浆中,到30s时,拧紧
螺钉,记录试锥下沉深度。如用调整用水量法时,以试锥下沉深度为26~30~m
m时的拌合水量为标准稠度用水量。如超过或不足26~30mm时,需另称式样,调整用水量重新实验,直到满足上述要求为止。
原始数据与处理结果:
第五篇:物理实验报告测定三棱镜折射率
物理实验报告测定三棱镜折射率
【实验目的】
利用分光计测定玻璃三棱镜的折射率;
【实验仪器】
分光计,玻璃三棱镜,钠光灯。
【实验原理】
最小偏向角法是测定三棱镜折射率的基本方法之一,如图10所示,三角形 ABC 表示玻璃三棱镜的横截面,AB和 AC是透光的光学表面,又称折射面,其夹角a称为三棱镜的顶角;BC 为毛玻璃面,称为三棱镜的底面。假设某一波长的光线 LD 入射到棱镜的 AB 面上,经过两次折射后沿 ER 方向射出,则入射线 LD 与出射线 ER 的夹角称为偏向角。
图10 三棱镜的折射
由图10中的几何关系,可得偏向角
(3)
因为顶角a满足,则
(4)
对于给定的三棱镜来说,角a是固定的,随 和 而变化。其中 与、、依次相关,因此 实际上是 的函数,偏向角 也就仅随 而变化。在实验中可观察到,当 变化时,偏向角 有一极小值,称为最小偏向角。理论上可以证明,当 时,具有最小值。显然这时入射光和出射光的方向相对于三棱镜是对称的,如图11所示。
图11 最小偏向角
若用 表示最小偏向角,将 代入(4)式 得
(5)
或
(6)
因为,所以,又因为,则
(7)
根据折射定律 得,(8)
将式(6)、(7)代入式(8)得:
(9)
由式(9)可知,只要测出入射光线的最小偏向角 及三棱镜的顶角,即可求出该三棱镜对该波长入射光的折射率n.【实验内容与步骤】
1.调节分光计
按实验24一1中的要求与步骤调整好分光计。
2.调整平行光管
(1)去掉双面反射镜,打开钠光灯光源。
(2)打开狭缝,松开狭缝锁紧螺丝3。从望远镜中观察,同时前后移动狭缝装置2,直至狭缝成像清晰为止。然后调整狭缝宽度为1毫米左右(用狭缝宽度调节手轮 1 调节)。
(3)调节平行光管的倾斜度。将狭缝转至水平,调节平行光管光轴仰角调节螺丝29,使狭缝像与望远镜分划板的中心横线重合。然后将狭缝转至竖直方向,使之与分划板十字刻度线的竖线重合,并无视差。最后锁紧狭缝装置锁紧螺丝3。此时平行光管出射平行光,并且平行光管光轴与望远镜光轴重合。至此分光计调整完毕。
3.测三棱镜的折射率
(1)将三棱镜置于载物台上,并使玻璃三棱镜折射面的法线与平行光管轴线夹角约为 60度。
(2)观察偏向角的变化。用光源照亮狭缝,根据折射定律判断折射光的出射方向。先用眼睛(不在望远镜内)在此方向观察,可看到几条平行的彩色谱线,然后慢慢转动载物台,同时注意谱线的移动情况,观察偏向角的变化。顺着偏向角减小的方向,缓慢转动载物台,使偏向角继续减小,直至看到谱线移至某一位置后将反向移动。这说明偏向角存在一个最小值(逆转点)。谱线移动方向发生逆转时的偏向角就是最小偏向角。用望远镜观察谱线。在细心转动载物台时,使望远镜一直跟踪谱线,并注意观察某一波长谱线的移动情况(各波长谱线的逆转点不同)。在该谱线逆转移动时,拧紧游标盘制动螺丝 27,调节游标盘微调螺丝 26,准确找到最小偏向角的位置。测量最小偏向角位置。转动望远镜支架 15,使谱线位于分划板的中央,旋紧望远镜支架制动螺丝 21,调节望远镜微调螺丝 18,使望远镜内的分划板十字刻度线的中央竖线对准该谱线中央,从游标 1 和游标 2 读出该谱线折射光线的角度和。测定入射光方向。移去三棱镜,松开望远镜制动螺丝 21,移动望远镜支架 15,将望远镜对准平行光管,微调望远镜,将狭缝像准确地位于分划板的中央竖直刻度线上,从两游标分别读出入射光线的角度和。按 计算最小偏向角(取绝对值)。重复步骤 1~6,可分别测出汞灯光谱中各谱线的最小偏向角。按式(9)计算出三棱镜对各波长谱线的折射率。计算折射率 n 的数据表格3。
【数据记录及处理】
表3 测量最小偏向角
钠光波长(Å)次数 游标1 游标2