《对数函数的图像与性质》说课稿(最终五篇)

时间:2020-04-19 23:40:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《对数函数的图像与性质》说课稿》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《对数函数的图像与性质》说课稿》。

第一篇:《对数函数的图像与性质》说课稿

作为一名教学工作者,常常需要准备说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。怎样写说课稿才更能起到其作用呢?以下是小编精心整理的《对数函数的图像与性质》说课稿,欢迎大家分享。《对数函数的图像与性质》说课稿1

一、说教材

1、教材的地位和作用

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识.

2、教学目标的确定及依据

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1)知识目标:掌握对数函数的图像与性质;初步学会用

对数函数的性质解决简单的问题.

(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力.

(3)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性.

3、教学重点与难点

重点:对数函数的图像与性质.

难点:对数函数性质中对于在《对数函数的图像与性质》说课稿与《对数函数的图像与性质》说课稿两种情况函数值的不同变化.

二、说教法

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透数形结合、分类讨论等数学思想方法.

(4)用探究性教学、提问式教学和分层教学

2、教学手段:

计算机多媒体辅助教学.

三、说学法

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。

(2)主动式学习:学生自己归纳得出对数函数的图像与性质。

四、说教程

1、温故知新

我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。

设计意图:这与本节内容有密切关系,有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生分析问题的能力.

2、探求新知

研究对数函数的图像与性质.关键是学生自主的对函数《对数函数的图像与性质》说课稿和《对数函数的图像与性质》说课稿的图像分析归纳,引导学生填写表格(该表格一列填有《对数函数的图像与性质》说课稿在《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出《对数函数的图像与性质》说课稿的图像与性质.

在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”.另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识.

设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习.

3、课堂研究,巩固应用

例1主要利用对数函数《对数函数的图像与性质》说课稿的定义域是《对数函数的图像与性质》说课稿来求解.

例2利用对数函数的单调性,比较两个同底对数值的大小.在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数《对数函数的图像与性质》说课稿及《对数函数的图像与性质》说课稿两种情况.

例3 解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。

设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充

分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.

4、巩固练习

使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题.

5、课堂小结

引导学生进行知识回顾,使学生对本节课有一个整体把握.从两方面进行小结:

(1)掌握对数函数的图像与性质,体会数形结合的思想方法;

(2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的解法,体会分类讨论的思想方法.

6、作业:p97习题3,4,5

选做题 6题

《对数函数的图像与性质》说课稿2

一、说教材

1、教材的地位和作用

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.2、教学目标的确定及依据

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用对数函数的性质解决简单的问题.(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力.(3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数学的精确和美妙之处,调动学生学习数学的积极性.3、教学重点与难点

重点:对数函数的意义、图像与性质.难点:对数函数性质中对于在a>1与0

二、说教法

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生实验、观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透类比、数形结合、分类讨论等数学思想方法.2、教学手段:

计算机多媒体辅助教学.三、说学法

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)类比学习:与指数函数类比学习对数函数的图像与性质.(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质.(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,使问题得以圆满解决.

《对数函数的图像与性质》说课稿3

一、说教材:

1。教材的内容、地位及编排依据

[内容、地位]本节教材内容主要研究: ⑴对数函数的图象及其基本性质;⑵利用对数函数的图象及其性质来解决一些与对数有关的问题。这节教学内容是在学生学过函数的基本性质、指数、指数函数以及对数的基础上再来学习的,可以说它是上述内容的延续和发展,同时也为数学在实际应用中提供了一种新的`函数模型。因此本节内容起到了一种承上启下的作用。

[编排依据]主要是从学生获取知识遵循“从特殊到一般,由浅入深,由易到难,循序渐进”的原则出发,符合学生的认知水平和接受能力。

2。教学目标的确定和确定目标的依据

根据对数函数及其相关知识历来在高考中的地位以及新课程标准的要求、学生的认知水平,确定教学目标如下:

(1)知识目标:使学生理解对数函数的定义并了解其图象的特点;

(2)能力目标:培养学生动手操作的能力以及自主探究数学问题的素养;

(3)德育目标:培养学生勇于探索和创新的精神以及优化他们的个性品质;

(4)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流。

3。教学的重点、难点、关键: [重点]掌握对数函数的概念及其图象,使学生能初步自觉地、有意识地利用图象研究对数函数的性质。[难点]理解和掌握对数函数的概念,图象特征,区分01和a1不同条件下的性质。[关键]认识底数a与对数函数图象之间的关系。

二、说教法与学法

教法:1、为了培养学生自主学习的能力以及使得不同层次的学生都能获得相应的满足。因此本节课采用探究性教学、提问式教学和分层教学。2、根据本节课的特点也为了给学生的数学探究与数学思维提供支持,同时也为了培养学生的动手操作能力,所以采用计算机辅助教学,以突出重点和突破难点。

学法:为了发挥学生的主观能动性,提高学生的综合能力,确定了三种学法:

(1)自主性学习法:根据作图的常规方法画出对数函数的图象;

(2)探究性学习法:通过分析、探索得出对数函数的性质;

(3)巩固反馈法:检验知识的应用情况,找出未掌握的内容及其差距。

三、采用教具:

多媒体辅助教学

1通过flash软件直观的呈现出对数函数的图象,使学生对其有丰富的感性认识;

2为学生展现自己的才华提供了平台。

四、说教学程序

1、导入新课:

由2。2。1的例题6(即考古学家是如何估算出土文物或古遗址的年代)引入,让学生利用计算器计算并填写下表。略

【《对数函数的图像与性质》说课稿】相关文章:

1.对数函数及其图像与性质试题

2.对数函数的图像和性质说课稿

3.《对数函数及其性质》说课稿

4.对数函数的图像与性质优秀说课稿模板

5.《对数函数的图像与性质》的说课稿范文

6.《对数函数的图像与性质》教案

7.对数函数性质测试题

8.《对数函数的性质》教学反思

9.对数函数的性质教学反思

第二篇:对数函数的图像与性质教案

对数函数的图象与性质(第一课时)

数学科组 林荣界

一、教学目的:

1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系; 2.会求对数函数的定义域;

3.渗透类比应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力

二、教学重点:对数函数的图象与性质

三、教学难点:对数函数与指数函数间的关系.四、教学过程:

第三篇:指数函数和对数函数性质与图像的练习题解读

指数函数和对数函数性质与图像的练习题

指数函数的性质与图像

一、选择题

1、使x2>x3成立的x的取值范围是()

A.x<1且x≠0 C.x>1

a

b

cB.0<x<1 D.x<1

d

2、若四个幂函数y=x,y=x,y=x,y=x在同一坐标系中的图象如右图,则a、b、c、d的大小关系是()

A.d>c>b>a

B.a>b>c>d C.d>c>a>b

D.a>b>d>c

3、在函数y=

132,y=2x,y=x+x,y=1中,幂函数有()2x

B.1个

xA.0个

C.2个

D.3个

4、如果函数f(x)=(a2-1)在R上是减函数,那么实数a的取值范围是()

A.|a|>1 B.|a|<2

C.|a|>3

D.1<|a|<2

x-

25、函数y=a

+1(a>0,a≠1)的图象必经过点()

B.(1,1)

C.(2,0)

D.(2,2)A.(0,1)

x6、函数y=a在[0,1]上的最大值与最小值和为3,则函数y=3ax-1在[0,1]上的最大值是()

A.6

xB.1

C.3

D.

27、设f(x)=(),x∈R,那么f(x)是()

A.奇函数且在(0,+∞)上是增函数

B.偶函数且在(0,+∞)上是增函数

C.函数且在(0,+∞)上是减函数

D.偶函数且在(0,+∞)上是减函数

8、下列函数中值域为正实数的是()

A.y=512x1

2B.y=()

31x

C.y=()-1 12x

D.y=1-2x

9、函数y= -x+1+2的图象可以由函数y=(1x)的图象经过怎样的平移得到()2A.先向左平移1个单位,再向上平移2个单位 B.先向左平移1个单位,再向下平移2个单位 C.先向右平移1个单位,再向上平移2个单位 D.先向右平移1个单位,再向下平移2个单位

10、在图中,二次函数y=ax2+bx与指数函数y=(bx)的图象只可为()a

11、若-1<x<0,则不等式中成立的是()

A.5<5<0.5xx-xxx x

B.5<0.5<5 D.0.5<5<

5x

-x

xx-xC.5<5-<0.5

x

二、填空题

12、函数y=-2-x的图象一定过____象限.

x-113、函数f(x)=a14、函数y=3-x+3的图象一定过定点P,则P点的坐标是___________.

与__________的图象关于y轴对称.

1x2115、已知函数f(x)=()

3三、解答题

16、已知幂函数f(x)=x,其定义域是____________,值域是___________.

13p2p22(p∈Z)在(0,+∞)上是增函数,且在其定义域内是偶函数,求p的值,并写出相应的函数f(x).

对数函数的性质与图像

一、选择题

1、log5(a)2(a≠0)化简得结果是()

B.a2

12A.-a

C.|a|

D.a

2、log7[log3(log2x)]=0,则x

A.

等于()

C.B.

12312

2D.

133

3、log

n1n(n+1-n)等于()

B.-1

C.2

D.-2 A.1

1)的定义域是()

4、函数f(x)=log1(x- A.(1,+∞)C.(-∞,2)

B.(2,+∞),2] D.(15、函数y=log1(x2-3x+2)的单调递减区间是()A.(-∞,1)C.(-∞,B.(2,+∞)D.(3)

23,+∞)

26、若2lg(x-2y)=lgx+lgy,则

A.4

C.1或4

y的值为()x

1B.1或

D.

47、若定义在区间(-1,0)内的函数f(x)=log2a(x+1)满足f(x)>0,则a的取值范围为()

A.(0,C.(1)

2B.(0,1)21,+∞)

D.(0,+∞)228、函数y=lg(-1)的图象关于()

1-x

A.y轴对称

C.原点对称

B.x轴对称 D.直线y=x对称

二、填空题

9、若logax=logby=-则xy=________.

10、若lg2=a,lg3=b,则log512=________.

11、若3=2,则log38-2log36=__________.

12、已知y=loga(2-ax)在[0,1]上是x的减函数,则a的取值范围是__________.

13、函数f(x)的图象与g(x)=(单调递减区间为______.

14、已知定义域为R的偶函数f(x)在[0,+∞]上是增函数,且f(则不等式f(log4x)的解集是______.

三、解答题

15、求函数y=log1(x2-5x+4)的定义域、值域和单调区间.

31logc2,a,b,c均为不等于1的正数,且x>0,y>0,c=ab,2a

1x)的图象关于直线y=x对称,则f(2x-x2)的31)=0,216、设函数f(x)=23-2x+lg,3x+53+2x

(1)求函数f(x)的定义域;

(2)判断函数f(x)的单调性,并给出证明;

(3)已知函数f(x)的反函数f1(x),问函数y=f1(x)的图象与x轴有交点吗?

若有,求出交点坐标;若无交点,说明理由.

第四篇:对数函数及其性质

对数函数及其性质(说课稿)

2.2对数函数及其性质

各位老师,大家好!今天我说课的内容是人教版必修

(一)对数函数及其性质第一课时,下面,我将从教材分析、教法分析、学法分析、教辅手段、教学过程、板书设计等六个方面对本课时的教学设计进行说明.一、教材分析

1、教材的地位和作用

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的拓展和延伸,也是对函数这一重要数学思想的进一步认识与理解.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.

2、教学目标的确定及依据

结合课程标准的要求,参照教材的安排,考虑到学生已有的认知结构、心理特征,我制定了如下的教学目标:

(1)知识与技能:进一步理解对数函数的意义,掌握对数函数的图像与性质,初步利用对数函数的图像与性质来解决简单的问题。

(2)过程与方法:经历探究对数函数的图像与性质的过程,培养学生观察、分析、归纳的思维能力以及数学交流能力;渗透类比、数形结合、分类讨论等数学思想方法。

(3)情感、态度与价值观:在活动过程中培养学生的数学应用意识,感受获得成功后的喜悦心情,养成积极合作、大胆交流、虚心学习的良好品质。

3、教学重点与难点

重点:对数函数的意义、图像与性质.

难点:对数函数性质中对于在 与 两种情况函数值的不同变化.

二、教法分析

本节课是在前面研究了对数及常用对数、指数函数的基础上,研究的第二类具体初等函数,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习的基础,鉴于这种情况,安排教学时,采用“从特殊到一般”、“从具体到抽象”的方法,并在教学过程中渗透类比、数形结合、分类讨论等数学思想方法。

三、学法分析

本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)类比学习:与指数函数类比学习对数函数的图像与性质.

(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质.

四、教辅手段

以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方法进行教学。

五、教学过程

根据新课标我将本节课分为下列五个环节:创设情境,引入新课;探究新知,加深理解 ;讲解例题,强化应用;归纳小结,巩固双基;布置作业,提高升华。

(一)创设情境,引入新课

本节课我是从在指数函数一节曾经做过的一道习题入手的。这样以旧代新逐层递近,不仅使学生易懂而且还体现了指对函数间的密切关系。我的引题是这样的: 引题:一个细胞由一个分裂成两个,两个分裂成四个„„依此类推,(1)求这样的一个细胞分裂的次数x与细胞个数y之间的函数关系式。(2)256个细胞是这个细胞经过几次分裂得到的?那么要得到1万,10万„个第一问学生很容易得出是指数函数:y=2x。再看第二问,通过思考学生分析出这是个已知细胞个数求分裂次数的问题即:已知y求x的问题,即:x=log2y,紧接着问学生:这是一个函数吗?将知识迁移到函数的定义,即对于任意一个y是否都有唯一的x与之相对应,为了方便学生理解,可以借助指数函数图像加以解释。得出x=log2y是一个函数,但它又和我们平时所见过的函数形式上不一样,我们习惯上用x来表示自变量,y来表示函数,所以可将它改写成y=log2x,这样的函数称为对数函数。这便引出了本节课的课题。

这样设计不仅学生容易接受而且虽然在过程中没有用反函数的概念,但却体现了求指数函数反函数的过程,这为后面学习反函数的概念做了铺垫。由于有了之前学习指数函数的基础,学生很容易就可归纳总结出:对数函数的一般形式:y=logax(a>0且a≠1),并求出定义域(0,+∞)。由于对数函数是形式定义,所以让学生记住这个形式是由为重要的,可以让学生观察解析式的特点并可归纳总结出三条:

1、对数符号前系数为1;

2、底数是不为0的正常数;

3、真数是一个自变量x的形式。为了加深学生的记忆,我这里安排了一道辨析题:判断下列函数是否为对数函数:

这样学生就对对数函数的概念有了更准确的认知与理解。

(二)探究新知,加强理解

得到了对数函数的解析式,学生自然而然就会想到该研究它的图像了。我的想法是这样的:一方面描点法画图是学生需要熟练掌握的一类重要的画图方法,而且学生对自己画出的图像和归纳总结的知识记忆会更加深刻,所以我决定将课堂交给学生让他们自主探究,然后同学间互相讨论,并根据图像归纳出对数函数的性质。另一方面,研究对数函数图像主要是研究底数a对图像的影响,以及底数互为倒数的两个函数图像间的关系。所以我将所研究的问题分为以下3组:第一组:和 第二组: 和 第三组: 和。并且我将全班学生每6人分为一组,由组长负责分配,每个学习小组要把这3组图都画出来,画完后,组内讨论各组图像间的关系或特点并归纳总结出来。这样做的好处是:

1、可以大大节省画图时间,提高课堂效率;

2、这样相当于全班每一位同学,都对对数函数的这三组图像有了初步的感性认识,3、培养了学生团结协作,归纳总结及交流的能力。讨论完后,让几个组的学生代表将本组所画图像及归纳总结的规律用实物投影一一展示,教师将学生归纳总结出的共性的规律提炼出来,并问学生:这是通过具体的对数函数总结出的规律。那么是否适用于一般的情况呢?这时就需要教师用多媒体演示来辅助教学了。我是用几何画板做了一个底数a变化时图像也随着变化的课件。通过底数a的变化,会出现不同的对数函数图像,学生会发现无论a怎样变化,图像的特点与由特殊函数总结出的规律一样,所以可以由特殊推出一般结论。还可以得出对数函数图像其实分为以下两类:a>1和0

a>1 0

定义域

(0,+∞)值域

R 单调性

在 上为增函数

在 上为减函数 奇偶性

非奇非偶函数

至此,对数函数的图像及性质就由教师引导,学生自主探究归纳总结出来。下面 就是应用性质来解题了。

(三)讲解例题,强化应用 在这一部分我安排了2道例题。例1:求下列函数的定义域: 例2:比较下列各组数中的两个值的大小: 例1是对对数型函数定义域的考查。目的是让学生掌握形如:的函数求定义域只需f(x)>0即可。例2是比较两个对数值大小的问题。前两道题是直接利用函数单调性来比较,第3道题是为了让学生注意当底数不确定时,要有分类讨论的意识,第4道题是更上一层,底数真数都不相同时应如何处理,这四道题是层层深入,逐渐加深难度,通过这种变式教学可充分调动学生的解题积极性,调动他们的思维。

(四)归纳小结,巩固双基

归纳小结是巩固新知不可缺少的环节。本节课我让学生自主归纳,目的是培养学生的概括能力、语言表达能力,还能使学生将本节课的知识做简要的回顾。然后教师再将学生的发言做最后的小节。可以总结为:

在知识方面:(1)学习了对数函数的图像及其性质;(2)会应用对数函数的知识求定义域;(3)会利用对数函数单调性比较两个对数的大小。

思想方法方面:体会了类比、由特殊到一般、分类与整合、分类讨论的思想方法。

(五)布置作业,提高升华

最后一个环节是布置作业,这是一节课提高升华的过程,也是检验学生是否掌握了本节课的知识和思想方法的关键。本节课我安排了两个作业。必做题和思考题,其中思考题是让学生思考既然本节课我们一直是通过指数函数来研究对数函数的,那么他们之间有怎样的关系呢?

通过以上各个环节,不仅学生掌握了对数函数的定义与性质,还调动了学生自主探究与人合作的学习积极性,很好地完成了教学任务。

第五篇:《一次函数图像与性质》说课稿

《一次函数的图像与性质》说课稿

尊敬的各位评委、老师:

大家好!我是来自mou学校的moumoumou。今天我说课的内容是人教版八年级上册第一章中的《一次函数的图像与性质》,我将从教材分析、教法分析、学法分析、教学流程四个方面说明我对这节课的理解和设计安排。

一、教材分析

一次函数是学生在中学阶段接触到的最简单、最基本的函数。本节内容安排在正比例函数图像与性质以及一次函数的概念之后,是一次函数的第二课时,它与正比例函数的图像和性质有着紧密联系,是本章的重点内容,主要研究一次函数的图像与性质,它既是正比例函数的图像和性质的拓展,又是继续学习“用函数观点看方程(组)和不等式”的基础。而且探究一次函数图像与性质的方法也为今后学习其他的函数奠定了基础。根据上面的教材分析我将这节课的教学目标定为以下几点:

知识目标:(1)知道一次函数的图像是一条直线

(2)会选取两个适当的点画一次函数的图像

(3)能结合图像理解一次函数的性质

能力目标:(1)通过画函数的图像,培养学生的动手能力

(2)通过结合函数图像揭示性质的教学,培养学生观察、比较、抽象和概括的能力。

(3)培养学生用“数形结合”的思想与方法解决数学问题

(4)通过具体的一次函数图像抽象得到一般形式的一次函数图像特征,进而得到函数的性质,让学生经历从特殊到一般的研究问题的过程,体会从特殊到一般的研究问题的方法。

根据上面的目标,结合本班学生的具体情况我将本节课的教学重点定为通过画函数图像探究得出一次函数的图像与性质,难点定为如何引导学生用数形结合法探究得出一次函数的图像特征与性质以及一次函数与正比例函数的图像之间的关系。

二、教法分析

为了突出教学重点,也为了培养学生的能力,我采用“自主探究式”的教学方法利用学生描点作图经历体验,发现问题,分析问题并进一步归纳总结,为了突破难点,我采取“启发式教学”利用多媒体现代教学手段,把抽象的知识直观地展现在学生面前,逐步将学生的感性认识引领到理性的思考,这样的设计充分体现了以学生为主体,老师为主导的教学理念。

三、学法分析

一堂好的数学课,除了要传授知识给学生,更重要的是要教会学生如何学,因此这节课我将用指导学生应用自主探究、互助合作的学习方法探究得出一次函数的图像特征与性质。

根据以上的分析我将本节课的教学流程设计为七个环节。下面我就从这七个环节具体说一说这节课的设想。第一环节:知识回顾

问题:1.什么叫正比例函数?一次函数?它们之间有什么关系?

2.怎样画函数的图像?

3.正比例函数的图像是什么形状?有哪些性质?

设计意图: 因为这节课将探究一次函数的图像特征与性质,设置这三个问题既是为本节课的自主探究作知识上的准备,也是为引入新课作铺垫。此环节安排用时2分钟。

第二环节:问题导入

问题:既然正比例函数的图像是一条直线,而它又是特殊的一次函数,那么一次函数的图像是什么形状呢?它有哪些性质?一次函数的图像与正比例函数的图像又有什么关系呢?

设计意图:这个问题的设置点明了这节课将要探究的内容,激起了学生的好奇心,引入新课,这个环节只需1分钟。第三环节:合作探究

探究1:在同一直角坐标系中画出下列函数的图像(每小组只做一题)(1)y=-6x

y=-6x+5

(2)y=x+2 y=x y=x-2(3)y=0.5x-1

y=0.5x

(4)y=-2x

y=-2x+1 1.画函数图像:在这个环节出示四组题,分小组按题号选做,同桌合作在事先准备好的坐标纸上画图像,然后全班学生一起交流所画图像的形状,最后师生归纳出一次函数y=kx+b的图像是一条直线。

设计意图:这样的设计既让学生经历了“猜想——画图——观察——归纳”的探究过程,还经历了由“特殊——一般”的认知过程,并在动手画图的过程中从“形”的角度感知一次函数的图像特征。

接着为了突破教学重点和难点,我将利用多媒体课件展示刚才的一组函数图像,引导学生观察并比较这组函数的解析式以及列表中的数据。

2.观察、比较:

议一议:正比例函数y=-6x与一次函数y=-6x+5图象有什么异同点.观察、比较:两个函数的解析式与图像,结合列表中的数据你发现这两个图像之间有什么关系?

这个环节根据以往的教学情况,学生能发现两个图像都是直线而且图像是互相平行的,两个图像与x、y轴的交点不同这些异同点,但很难说明为什么两个图像是平行的理由。因此我又设计了观察、比较这个环节,采用小组讨论的形式让学生尝试探究一次函数与正比例函数图像的关系,这样的引导将激起学生的探究思考,根据提示学生就会发现两个解析式的相同点是比例系数k相同,不同点在于一次函数的解析式比正比例函数多加了个常数5,从而体现在列表中就是取相同自变量时两个函数值就相差5,对应在图像中就是一次函数的位置要向上平移5个单位。

设计意图:激起学生探究思考,引导学生如何探究,指点迷津,引导学生从“数”的角度分析问题,体会数形结合思想的应用,将对两个函数图像的感性认知上升到理性认知。

3.小结、归纳

设计意图:通过小结培养学生归纳概括的能力,促进学生掌握新知,养成良好的学习习惯。

通过探究学习学生们知道了一次函数的图像是与正比例函数的图像平行的直线,因此引导学生解决下面的两个问题。思考:

1.函数y=kx+b的图像是什么形状?它与y=kx有什么关系?

2.怎样简单地画一次函数的图像?

在探究1中学生都经历了画函数的图像,交流了各组的函数图像特征,联想由特殊到一般,相信学生能归纳得出两者之间的关系。对于怎样简便画一次函数图像,由前面的探究学生们有的会说用两点法,也可能有的会说用画正比例函数再平移的方法,对此老师对同学们的发言表示肯定,但从简便的角度一般选用两点法。

设计意图:由于学生亲历了画图、观察、比较的探究过程,由特殊推广到一般,学生就能归纳出一次函数与正比例函数的图像关系,以及简便的画法,这样的设计符合学生对事物的认知过程,并培养了学生的归纳概括能力。

这个环节安排用时5分钟。第四环节:新知运用

例1:①在同一平面直角坐标系中画出y = 2x-1与

y = -0.5x+1的图象。

课本在这里安排这样一道例题的意图,我认为除了要巩固一次函数的图像画法,更重要的是要让学生知道怎样合理地选取自变量的取值描点。我采取的方法是:学生先独立画图,小组交流各自画法,然后集体汇报交流结果,这里我会引导学生还可以选与x轴和y轴的交点,这两个点来描点画图,并且还要考虑计算的简便性原则。最后师生共同归纳一次函数图像的画法及注意问题。然后多媒体展示此题完整的解答过程。

设计意图:巩固两点法画一次函数图像,并拓展学生思维,让学生掌握选择合适的两点画y=kx+b的图像,并养成规范解题的习惯。

②思考:观察这两个函数的图像,类比正比例函数y=kx(k≠0,k为常数)的增减性,探究一次函数y=kx+b(k≠0,k、b为常数)的增减性.方法1:引导学生从两个方面观察,首先从“形”上看两个图像从左向右有什么 变化趋势;再从数的角度分析自变量由小到到大时函数值有什么变化,类比正比例函数的增减性归纳得出一次函数的性质。方法2:按k>0和k<0两种情形,设

x1<x2 在图像上比较y=kx+b分别取这两个值时的函数值的大小。

设计意图:方法1通过学生经历“画图——类比——归纳”的教学活动,再次体会数形结合思想的运用,这种方法学生容易理解也可以自己归纳的出;方法2从不等式的角度,采用分类方法结合图形探究性质,这种方法对于拓展学生的思维深度有帮助,也体现了数形结合思想的运用,因此可以向学生介绍。这个环节用时10分钟。第五环节:当堂检测

一、填空

(1)下列函数中,y的值随x值的增大而增大的函数是________.A.y=-2x

B.y=-2x+1 C.y=x-2

D.y=-x-2(2)直线y=3x-2可由直线y=3x向 _____平移_______ 单位得到.(3)对于函数y=5x+6,y的值随x的值减小而____(4)直线y=x+2可由直线y=x-1向 __________平移 ________ 单位得到.(5)函数y=2x-4与y轴的交点为___________________,与x轴交于______________.二、请你设计一个一次函数y=kx+b要求满足下面的条件: ①函数y的值会随x的增大而减小

②函数图像与坐标轴围成的三角形面积是6.设计意图:这组习题都是围绕巩固落实本节课的知识要点而出的,第一大题比较基础,采取学生独立完成,第二大题是一道开放性的题目,难度有点大,采取小组合作完成,这样的设计既落实了基础,又实现了知识向能力的转化,同时训练学生运用数形结合思想解决问题的意识和能力。

第六环节:课堂总结

谈谈你这节课的收获(可以从学习的知识要点、数学思想、探究问题的方法等方面归纳)

教学活动:先由学生自由发表看法,然后老师进行点评归纳。

设计意图:让学生从整体上对这节课的知识进行回顾,强化对知识的理解和记忆,形成完整的知识体系,还可以培养学生数学语言的表达能力,进一步提高学生的数学素养。安排用时3分钟。第七环节:布置作业

1.阅读作业:复习看书,整理笔记。

2.巩固作业:教科书第35页的第4题和第8题 3.探究作业:教科书第30页的探究

阅读作业的目的是为了培养学生的数学阅读能力,同时养成学生及时复习梳理知识的良好学习习惯。通过巩固作业使学生巩固落实课堂所学知识,探究作业是为了学习下节课的知识做铺垫。

以上的讲述是我个人对这节课的理解和设计安排,由于能力的局限,可能有些地方设计的不是很合理,希望能得到各位专家老师们的指点帮助。

我的说课完毕,谢谢大家!

下载《对数函数的图像与性质》说课稿(最终五篇)word格式文档
下载《对数函数的图像与性质》说课稿(最终五篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《指数函数及其图像与性质》说课稿(最终定稿)

    《指数函数及其图像与性质》 说课稿 一、教材分析: 本节课是“中等职业教育课程改革国家规划新教材”数学基础模块上册第四章第二节的教学内容。第三章刚刚学习了函数的相关......

    【数学】3.2.2《对数函数的图像与性质说课稿》教案(新人教B版必修1)(含5篇)

    知识改变命运,学习成就未来 《对数函数的图像与性质》说课稿 今天我说课的内容是《对数函数的图像与性质》(第一教时). 一、说教材 1、教材的地位和作用 函数是高中数学的核心,而......

    对数函数说课稿(5篇)

    对数函数说课稿 常州西夏墅中学李玉凤 一、说教材 1、地位和作用 本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习.而对数函数作为这一阶段的......

    《图像与眼睛》说课稿

    《图像与眼睛》说课稿 开场白 各位评委老师上午好,我今天说课的课题是《图像与眼睛》这一课题,下面我将从说教材、说教学目标、说教法和学法、说教学过程、说教学评价和反思......

    对数函数及其性质-教学设计

    2.2.2对数函数及其性质(一)三维目标 一、 知识与技能 1.理解对数函数的概念; 2.掌握对数函数的图象与性质.二、 过程与方法 1.培养学生数学交流能力和与他人合作精神; 2.用联系的观点......

    对数函数及其性质教学反思

    《对数函数及其性质》反思后教学 富县高级中学王晓广 前段时间学校组织了这次“同课异构”活动,我接到通知有我后,紧张的撰写教案、制作课件后,我终于完成了前期的准备工作。端......

    对数函数及其性质教学案例

    对数函数及其性质教学案例 朝阳四高 姜明丽 一、教材分析 本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数对数函数及其性质(第一课时),主要内......

    《对数函数及其性质》教学反思

    《对数函数及其性质》教学反思 高亚 (渠县第二中学渠县635200) 本节课在学习了指数函数及其性质以后,学生通过类比学习的方法很容易进入学习探究的状态,因此我采用了知识迁移......