五年级数学教学设计(热门5篇)

2022-11-04 09:05:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了这篇《五年级数学教学设计(热门5篇)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《五年级数学教学设计(热门5篇)》。

篇1:小学五年级数学教学设计

教学目标

1.使学生初步学会 这一类简易方程的解法.

2.知道计算这类方程的道理.

教学重点

掌握解 这一类方程的解法.

教学难点

理解这一类方程的算理.

教学过程

一、复习引入

(一)解下列方程

(二)乘法分配律的意义是什么?用字母怎样表示?

二、教学新授

(一)教学例5

例5.一个工地用汽车运土,每辆车运 吨,一天上午运了4车,下午运了3车.这一天共运土多少吨?

1.读题,理解题意.

2.出示图片:示意图

3.教师提问:通过观察这幅图,你都知道了什么?

教师板书:

上午

下午

一天

4.教师说明:这个式子中含有两个未知数 ,这就是今天要学习的解简易方程.

板书课题:解简易方程.

5.学生分组讨论计算方法.

(1) 表示4个 , 表示3个 , 一共是(4+3)个 ,也就是 .

(2) 可以根据乘法分配律把4和3相加,就是(4+3)个 , .

6.教师说明:两种思考方法既有联系又有区别,最后的结果都是正确的.

教师板书:

=(4+3) =

答:这一天共运土 吨.

7.思考:上午比下午多运的吨数是多少?怎样列式?

教师提示:1个 ,可以写成 .“1”可以省略不写.

8.教师小结

一个式子中如果含有两个 的加减法,可以根据乘法分配律和式子所表示的意义,将 前面的因数相加或相减,再乘 ,计算出结果.

9.练习

(二)教学例6

例6.解方程

1.教师提问

(1)这个方程有什么特点?

(2)应该怎样解答?

2.学生独立解答.

教师板书:

解:

检验:把 代入原方程.

左边=7×5+9×5=80,右边=80,

左边=右边

所以 是原方的解.

3.练习

解方程 3.6 -0.9 =5.4(要写出检验过程)

三、课堂小结

今天这节课你学到了哪些知识?解这类方程时要注意什么?

四、巩固练习

(一)填空.

1. 表示( )加( ),一共是( )个 ,得( ).

2. 表示( )减( ),是( )个 ,得( ).

3. ( ).

(二)直接写得数.

(三)判断正误,对的画“√”,错的画“×”.

1. ( )

2. ( )

3. ( )

(四)用线段把下面每个方程与它的解连起来.

+13=33

=0

3 - =80

=10

1.8 =54

=20

6.7 -60.3=6.7

=30

9 + =0

=40

五、布置作业

(一)解方程.(第一行两小题要写出检验过程)

篇2:小学五年级数学教学设计

学习内容:

第9页的例4、例5、及“试一试”、“练一练”练习二中相关题。

学习目标:

1、经历操作、观察、填表、讨论、归纳等数学活动,探索并掌握三角形的面积公式,能正确地计算三角形的面积,并应用公式解决简单的实际问题。

2、进一步体会转化方法的价值,培养应用已有知识解决新问题的能力,发展空间观念和初步的推理能力。

学习重点:

理解并掌握三角形面积的计算公式

学习难点:

理解三角形面积公式的推导过程

学习过程:

一、先学探究

■先学提纲(另见《补充习题》、《当堂反馈》相关练习,有记号标明)

1、出示一个底是4分米,高是3分米的平行四边形。

这是一个什么图形?它的面积如何计算?

■学情预判:学生对三角形面积公式的推导过程可能有点困惑,这一点要加强教学。

二.交流共享

■后教预设:出示二个板块的挂图,通过讨论交流,解决问题。

【板块一】学习例4:

仔细观察这3个平行四边形,请说出如何求每个涂色的三角形的面积?

先自己想,随后在小组中交流。

你是怎样求出每个涂色的三角形的面积?

三角形与平行四边形究竟有怎样的关系?

三角形的面积应当如何计算?

【板块二】学习例5:

(1)出示例5:

用例5中提供的三角形拼成平行四边形。(注意:组内所选的三角形都要齐全)

(2)小组交流:

你认为拼成一个平行四边形所需要的两个三角形有什么特点?

(3)测量数据计算拼成的平行四边形的面积和一个三角形的面积并填表。

小组交流:如何计算一个三角形的面积?

从表中可以看出三角形与拼成的平行四边形还有怎样的关系?

得出以下结论:

这两个 的三角形,无论是直角、锐角,还是钝角三角形,都可以拼成这个平行四边形的底等于 这个平行四边形的高等于因为每个三角形的面积等于拼成的平行四边形面积的所以三角形的面积=

(4)用字母表示三角形面积公式:

三、反馈完善

1、完成试一试:

2、完成练一练:

(1)先回忆拼得过程,再回答。(2)你是如何想的。

3.判断。

(1)两个形状一样的三角形,可以拼成一个平行四边形.……

(2)平行四边形面积一定比三角形面积大.……

(3)一个平行四边形与一个三角形等底等高,那么平行四边形的面积一定是三角形的2倍.………

(4)底和高都是0.2厘米的三角形,面积是0.2平方厘米…….

4.完成课本第17页第6题。

5、拓展练习

量出你的三角板(两个任选一个)的底和高,然后算出它的面积。

6、课外延伸:阅读第16页“你知道吗”

四、总结回顾:

通过今天的学习,你有什么收获?想要提醒大家注意什么?

篇3:小学五年级数学教学设计

教学目标:

1、通过设计“跑向北京”的象征性长跑的活动方案,累计数学活动经验,感受数学在日常生活中的应用。

2、经历设计活动方案的过程,提高手机数据与处理数据的能力。

3、在收集数据、设计方案、交流等活动中,学会合理地评价活动过程和设计方案等,发展自我反思能力。

教学重难点:

1、利用数的计算、收集和处理等知识进行综合运用,解决一些实际问题。

2、培养学生用数学的眼光观察生活、解决问题的能力、

教学过程:

一、谈话导入

师:同学们在愉快的学习中,保证良好的锻炼是非常必要的,下面我们就来研究一下“象征性”长跑问题。

二、探究活动

师:为增强体质,培养锻炼身体的好习惯,月亮湾小学准备组织五年级学生开展“跑向北京”的象征性长跑活动,学习向同学们征集活动方案,如果你是其中的一员,会怎样设计?

1、确定主题。

2、要设计长跑方案,需要解决哪些问题?

(1)调查学校所在城市到北京的距离大约有多少千米?

(2)调查学校所在城市到北京途径的主要城市和城市之间的路程。

(3)确定每人每天跑的路程,如果全班用接力方式跑完全程,怎样设计方案?

(4)向大家征集活动主题,确定一个最受欢迎的。

三、知识的运用

1、分组收集数据,根据数据设计象征性长跑的方案。

2、小组合作,完成设计方案。

四、总结与布置作业

这节课我们设计了一个象征性长跑方案,同学们真了不起!

教学反思:

长跑,教学,日常生活,数学好玩,活动方案

篇4:五年级上册数学教学设计

教学目标

1.使学生掌握求相遇时间应用题的结构特点,并能正确解答求相遇时间的应用题。

2.提高学生分析问题,解决问题的能力。

3.培养学生大胆尝试,勇于探索的精神。

教学重点

1.找到与求路程应用题的内在联系。

2.正确分析解答求相遇时间的应用题。

教学难点

掌握求相遇时间应用题的解题思路。

教学过程

一、复习引入

(一)出示复习题

小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?

1.画图,列式解答.

2.订正答案

3.小组讨论:试着改编一道求相遇时间应用题。

二、探究新知

例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?

1.讨论:复习题的线段图该怎样改一改.并试着画一画。

2.联系复习题的解法,尝试解答

3.订正思路

想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇。

想法二:根据复习题速度和相遇时间=路程,依据乘法的因积关系可得:

相遇时间=路程速度和。

三、反馈调节

两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?

1.学生独立分析解答。

2.订正答案。

3.质疑:对于求相遇时间应用题还有什么问题?

4.教师提问

(1)要求相遇时间题目中需告诉我们哪些条件?

(2)例4与复习题之间有什么联系?又有什么区别?

四、巩固练习

(一)从北京到沈阳的铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?

(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?

教师提问:怎样验证结果是否正确?

(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?

(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?

五、课后小结

我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?

篇5:五年级上册数学教学设计

教学内容:

教科书58页例1。

教学目标:

1、结合图例,根据等式不变的性质,学会解简易方程。

2、掌握解方程的书写格式,并能用代入法进行检验。

3、提高学生的分析、理解能力,同时渗透函数的思想。

教学重点:

掌握解方程的方法和书写格式。

教学重点:

掌握解方程的方法。

教具准备:

可见、平台

教学过程:

一、复习。

1、提问:什么是方程?

2、判断下面各式哪些是方程?

3、后面括号中哪个x的值是方程的解?

(1)X +42=98 (X =57,X =135)

(2)5.2- X =0.7 (X =4.5,X =8.8)

4、等式的性质是什么?(方程两边同时加减或乘除同一个数(0除外),左右两边仍然相等)

5、导入:今天,我们就利用等式的性质来解方程。

板书课题:解方程

二、新课学习。

1、出示例1的图

(1)问:你们猜盒子里装的是什么?(皮球)问:从图中你获取了哪些信息?

(盒子里有X个皮球和外面3个皮球等于9个皮球)

(2)请学生根据关系列出式子。

板书:X +3=9

(3)问:怎样解这个方程呢?(出示课件)

(4)师:我们可以用天平保持平衡的道理来帮助解方程。

(5)看课件演示

问:要使天平左边只剩下“X”而还能保持平衡,该怎么办呢?

(6)学生思考后回答。

(7)演示课件

教师一边演示一边在黑板写出:X +3-3=9-3

(8)师生小结:方程两边同时减去同一个数(3)

(9)问:为什么要减3,减2可以吗?学生回答

(10)天平两边同时减去同一个数,天平两边还平衡吗?

出示课件,学生回答:平衡

师板书:左右两边仍然相等

(11)那么天平左边剩下X右边剩下6个球,X =6是不是正确的答案呢?我们来验算一下(师在黑板板演验算过程)

2、小结:今天,我们利用了什么知识来解方程?(等式的性质)在解方程

的过程中我们还要注意些什么呢?(我们要注意书写格式,等号要对齐,注意:x=6表示一个数值,后面不能带单位,解方程要用代入法检验一下方程的解是否正确。)

3、质疑:看书58页,还有什么不明白的地方?

(通过练习测试学生的掌握程度)

下载五年级数学教学设计(热门5篇)word格式文档
下载五年级数学教学设计(热门5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    五年级数学教学设计

    三角形面积的计算 沙坎小学教师:施乐果 教学内容:三角形面积计算公式的推导 教学目标:1、探索并掌握三角形面积公式,能正确计算三角形的面积,并能应用公式解决简单的实际问题......

    五年级数学教学设计

    五年级数学教学设计1 教学内容:3的倍数的特征(P19及P20题4~5)教学目标:① 使学生通过操作自己发现3的倍数的特征,并归纳出3的倍数的特征。② 能应用3的倍数的特征,会判断一个数是......

    五年级数学教学设计

    五年级数学教学设计 五年级数学教学设计1 教学内容:小学数学五年级上册第39页的例2。教学目标:1、通过观察两个简单立体图形组合的活动,使学生学会辨认从不同方向观察到的两个......

    五年级数学教学设计

    五年级数学教学设计 五年级数学教学设计1 教材分析《组合图形的面积》是第五单元的第一课。学生在三年级已学习了长方形和正方形的面积计算,在教材第二单元又学习了平行四边......

    五年级数学平行四边形教学设计

    五年级数学教案上册《平行四边形面积》教学设计 一、教学内容:义务教育课程标准试验教科书五年级上册第五单元《平行四边形的面积》 二、教材分析:(1)教材呈现了一幅校园门口街......

    五年级数学《数字编码》教学设计

    五年级数学《数字编码》教学设计 《数字编码》教学设计【教学目标】1、初步了解身份证号码中蕴含的一些简单信息和编码的含义,探索数字编码的简单方法,尝试用数学的方法解决实......

    五年级数学《众数》教学设计

    五年级数学《众数》教学设计 ————教师:孔维 一教学内容 教材第122 、123 页的内容及第124 、125 页练习二十四的第1-3题。 二教学目标 1 .使学生理解众数的含义,学会求一组......

    五年级数学倒数教学设计

    《倒数》教学设计 教材依据: 北师大版小学数学第10册第3单元第1课时《倒数》 指导思想: 本着用教材而不是教教材的指导思想,以内容定学法,以学法定教法,以教法导学法。 设计理念:......