第一篇:解一元一次方程课件
一元一次方程是数学中的基础概念,下面就是小编为您收集整理的解一元一次方程课件的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!
解一元一次方程课件
一、教学目标:
1、知识目标:了解一元一次方程的概念,掌握含括号的一元一次方程的解法。
2、能力目标:培养学生的运算能力与解题思路。
3、情感目标:通过主动探索,合作学习,相互交流,体会数学的严谨,感受数学的魅力,增加学习数学的兴趣。
二、教学的重点与难点:
1、重点:了解一元一次方程的概念,解含有括号的一元一次方程的解法。
2、难点:括号前面是负号时,去括号时忘记变号。移项法则的灵活运用。
三、教学方法:
1、教 法:讲课结合法
2、学 法:看中学,讲中学,做中学
3、教学活动:讲授
四、课 型:新授课
五、课 时:第一课时
六、教学用具:彩色粉笔,小黑板,多媒体
七、教学过程
1、创设情景:
今天让我们一起做个小小的游戏,这个游戏的名字叫:猜猜你心中的她
心里想一个数
将这个数+
2将所得结果
最后+7
将所得的结果告诉老师
(抽一个同学,让他把他计算的结果告诉老师,由老师通过计算得到他最开始所想的数字。)
老师:同学们知道老师是怎样猜到的吗?
同学:不知道。
老师:那同学们想知道老师是怎样猜到的吗?这就是我们今天所要学习的内容解一元一次方程。
2、探究新知:
一元一次方程的概念:
前面我们遇到的一些方程,例如
3老师:大家观察这些方程,它们有什么共同特征?
(提示:观察未知数的个数和未知数的次数)
(抽同学起来回答,然后再由老师概括)
只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是l,像这样的方程叫做一元一次方程
老师:同学们从这个概念中,能找出关键的字吗?能用它来判断一个式子是否是一元一次方程吗?
再次强调特征:
(1)只含一个未知数;
(2)未知数的次数为1;
(3)是一个整式。
(注意:这几个特征必须同时满足,缺一不可)
3、例题讲解:
例1判断如下的式子是一元一次方程吗?
(写在小黑板上,让学生判断,并分别抽同学起来回答,如果不是,要说出理由)
① ② ③
④ ⑤⑥
准确答案:①③
下面我们再一起来解几个一元一次方程。
例
2、解方程
(1)
解法一:解法二:
提醒:去括号的时候,如果括号外面是负号,去括号时,括号里面要变号
(提示第二种解法:先移项,再去括号。即是把 看成整体的一元一次方程的求解。)
(2)
解:
提示
1)在我们前面学过的知识中,什么知识是关于有括号的、2)复习乘法分配律:,强调去括号时把括号外的因数分别乘以括号内的每一项,若括号前面是—号,注意去掉括号,要改变括号内的每一项的符号。
3)问同学们能不能运用这个知识来去掉这个括号,如果能该怎么去呢?抽一个同学起来回答。
4)问:去了括号的式子,又该做什么呢?我们前面见过此类的方程的,引出移项,并强调移项时注意符号的变化。此处运用了等式的性质。
5)一起回顾合并同类项的法则:未知数的系数相加。
6)系数化为1,运用了等式的性质。
(求解的每一步的时候,抽同学起来回答,该怎么进行,运用了什么知识,同学叙述,老师写,同学说完后,老师在点评,最后归纳解含括号的一元一次方程的步骤,并强 调解题格式、)
方程(1)该怎样解?由学生独立探索解法,并互相交流。
解一元一次方程的步骤:
去括号,移项,合并同类项,系数化为1。
4、巩固练习
(1)解方程(2)当y为何值时,2(3y+4)的值比5(2y—7)的值大3?解5(x+2)=2(5x—1)
(巩固练习,抽两个同学上黑板去完成,其余的同学在演草纸上完成,待同学们完成后给予点评。)
5、小结:和同学们一起回顾我们这节课学习了什么?
第二篇:《解一元一次方程》课件(xiexiebang推荐)
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。下面,小编为大家分享《解一元一次方程》课件,希望对大家有所帮助!
一、教学目标
①经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型.②学会合并(同类项),会解“ax+bx=c”类型的一元一次方程.③能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程.④初步体会一元一次方程的应用价值,感受数学文化.二、教学难点
重点:建立方程解决实际问题,会解 “ax+bx=c”类型的一元一次方程.难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程.三、教学过程
(一)设置情境,提出问题
(出示背景资料)约公元825年,中亚细亚数学家阿尔一花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?通过下面几节课的学习讨论,相信同学们一定能回答这个问题.出示教科书76页问题1:某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买的数量又是去年的2倍。前年这个学校购买了多少台计算机?
(二)探索分析,解决问题
引导学生回忆:
实际问题——设未知数列方程——一元一次方程
设问1:如何列方程?分哪些步骤?
师生讨论分析:
① 设未知数:前年购买计算机x台
② 找相等关系:前年购买量+去年购买量+今年购买量=140台
③ 列方程:x+2x+4x=140
设问2:怎样解这个方程?如何将这个方程转化为x=a的形式?学生观察、思考:
根据分配律,可以把含 x的项合并,即x+2x+4x=(1+2+4)x=7x.老师板演解方程过程:
x+2x+4x=140
合并同类项,得
7x=140
系数化为1,得
x=20
设问3:以上解方程“合并”起了什么作用?每一步的根据是什么?
学生讨论、回答,师生共同整理:
“合并”是一种恒等变形,它使方程变得简单,更接近x=a的形式。
(三)例题讲解
例1 解方程7x-2.5x+3x-1.5x=-15×4-6×3.解:合并同类项,得
6x=-78.系数化为1,得
x=-13.(四)课堂练习
教科书第89页练习
(五)拓广探索比较分析
对于问题1还有不同的未知数的设法吗?
学生思考回答:若设去年购买计算机x台,得方程
x÷2+x+2x=140
若设今年购买计算机x台,得方程
x÷4+x÷2+x=140
(六)综合应用巩固提高
一个黑白足球的表面一共有32个皮块,其中有若干块黑色五边形和白色六边形,黑、白皮块的数目之比为3:5,问黑色皮块有多少?
学生思考、讨论出多种解法,师生共同讲评。
(七)课堂小结
提问:
1、你今天学习的解方程有哪些步骤,每一步依据是什么?
2、今天讨论的问题中的相等关系有何共同特点?
学生思考后回答、整理:
① 解方程的步骤及依据分别是:合并和系数化为1.② 总量=各部分量的和
(八)课后作业
教科书第93页习题3.2中1、3①②、4、6.
第三篇:解一元一次方程数学课件
一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式。下面是关于解一元一次方程数学课件的内容,欢迎阅读!
教学目的:
理解一元一次方程解简单应用题的方法和步骤;并会列一元一次方程解简单应用题。
重点、难点
1、重点:弄清应用题题意列出方程。
2、难点:弄清应用题题意列出方程。
教学过程:
一、复习
1、什么叫一元一次方程?
2、解一元一次方程的理论根据是什么?
二、新授。
例
1、如图(课本第10页)天平的两个盘内分别盛有51克,45克食盐,问应该从盘A内拿出多少盐放到月盘内,才能两盘所盛的盐的质量相等?
先让学生思考,引导学生结合填表,体会解决实际问题,重在学会探索:已知量和未知量的关系,主要的等量关系,建立方程,转化为数学问题。
分析:设应从A盘内拿出盐x,可列表帮助分析。
等量关系;A盘现有盐=B盘现有盐
完成后,可让学生反思,检验所求出的解是否合理。
(盘A现有盐为5l-3=48,盘B现有盐为45+3=48。)
培养学生自觉反思求解过程和自觉检验方程的解是否正确的良好习惯。
例2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?
引导学生弄清题意,疏理已知量和未知量:
1.题目中有哪些已知量?
(1)参加搬砖的初一同学和其他年级同学共65名。
(2)初一同学每人搬6块,其他年级同学每人搬8块。
(3)初一和其他年级同学一共搬了400块。
2.求什么?
初一同学有多少人参加搬砖?
3.等量关系是什么?
初一同学搬砖的块数十其他年级同学的搬砖数=400
如果设初一同学有工人参加搬砖,那么由已知量(1)可得,其他年级同学有(65-x)人参加搬砖;再由已知量(2)和等量关系可列出方程
6x+8(65-x)=400
也可以按照教科书上的列表法分析
三、巩固练习
教科书第12页练习1、2、3第l题:可引导学生画线图分析
等量关系是:AC十CB=400
若设小刚在冲刺阶段花了x秒,即t1=x秒,则t2(65-x)秒,再
由等量关系就可列出方程:
6(65-x)+8x=400
四、小结
本节课我们学习了用一元一次方程解答实际问题,列方程解应用题的关键在于抓住能表示问题含意的一个主要等量关系,对于这个等量关系中涉及的量,哪些是已知的,哪些是未知的,用字母表示适当的未知数(设元),再将其余未知量用这个字母的代数式表示,最后根据等量关系,得到方程,解这个方程求得未知数的值,并检验是否合理。最后写出答案。
五、作业
第四篇:解一元一次方程去分母课件
一、教学目标
1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;
3、培养学生获取信息,分析问题,处理问题的能力。
二、教学难点、知识重点
1、重点:建立一元一次方程的概念。
2、难点:理解用方程来描述和刻画事物间的相等关系。
三、教学方法
讲练结合、注重师生互动。
四、教学准备
课件
五、教学过程(师生活动)
(一)情境引入
教师提出教科收第79页的问题,并用多媒体直观演示。
问题1:从视频中你能获得哪些信息?(必要时可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。)
教师可以在学生回答的基础上做回顾小结
问题2:你会用算术方法求出王家庄到翠湖的距离吗·(当学生列出不同算式时,应让他们说明每个式子的含义)
教师可以在学生回答的基础上做回顾小结:
1、问题涉及的三个基本物理量及其关系;
2、从知的信息中可以求出汽车的速度;
3、从路程的角度可以列出不同的算式:
问题3:能否用方程的知识来解决这个问题呢?
(二)学习新知
1、教师引导学生设未知数,并用含未知数的字母表示有关的数量.
如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米.
2、教师引导学生寻找相等关系,列出方程.
问题1:题目中的“汽车匀速行驶”是什么意思?
问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗? 问题3:根据车速相等,你能列出方程吗?
教师根据学生的回答情况进行分析,如:
依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:
依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:
3、给出方程的概念,介绍等式、等式的左边、等式的右边等概念.
4、归纳列方程解决实际问题的两个步骤:
(1)用字母表示问题中的未知数(通常用x,y,z等字母);
(2)根据问题中的相等关系,列出方程.
(三)举一反三讨论交流
1、比较列算式和列方程两种方法的特点.建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两种方法的优缺点,也可以每个小组同时讨论两种方法的优缺点,然后向全班汇报.
列算式:只用已知数,表示计算程序,依据是间题中的数量关系;
列方程:可用未知数,表示相等关系,依据是问题中的等量关系。
2、思考:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?、建议按以下的顺序进行:!
(1)学生独立思考;
(2)小组合作交流;
(3)全班交流.
如果直接设元,还可列方程:
如果设王家庄到青山的路程为x千米,那么可以列方程:
依据各路段的车速相等,也可以先求出汽车到达翠湖的时刻:,再列出方程 =60
说明:要求出王家庄到翠湖的路程,只要解出方程中的x即可,我们在以后几节课中再来学习.
(四)初步应用、课堂练习
1、例题(补充):根据下列条件,列出关于x的方程:
(1)x与18的和等于54;(2)27与x的差的一半等于x的4倍.
建议:本例题可以先让学生尝试解答,然后教师点评.
解:(1)x+18=54;(2)(27-x)=4x.列出方程后教师说明:“4x"表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面.
2、练习(补充):
(1)列式表示:
① 比a小9的数; ② x的2倍与3的和;
③ 5与y的差的一半; ④ a与b的7倍的和.
(2)根据下列条件,列出关于x的方程:
(1)12与x的差等于x的2倍;
(2)x的三分之一与5的和等于6.(五)课堂小结
可以采用师生问答的方式或先让学归纳,补充,然后教师补充的方式进行,主要围绕以下问题:
1、本节课我们学了什么知识?
2、你有什么收获?
说明方程解决许多实际问题的工具。
(六)本课作业
1、必做题:第84--85页习题3.1第1,5题。
2、选做题:根据下列条件,用式表示问题的结果:
(1)一打铅笔有12支,m打铅笔有多少支?
(2)某班有a名学生,要求平均每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票?
(3)根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。
第五篇:一元一次方程简单课件
一元一次方程简单课件
教学内容:
人教版七年级上册3.1.1一元一次方程
教学目标:
知识与技能:
1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:
在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用
新知识解决实际问题的能力。
情感态度和价值观:
让学生体会到从算式到方程是数学的进步,体现数学和日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学生学习数学的热情。
教学重点:
建立一元一次方程的概念,寻找相等关系,列出方程。
教学难点:
根据具体问题中的相等关系,列出方程。
教学准备:
多媒体教室,配套课件。
教学过程:
设计理念:
数学教学要从学生的经验和已有的知识出发,创设有助于学生自主学习的问题情景,在数学教学活动中要创造性地使用数学教材。课程标准的建议要求教师不再是“教教材”而是“用教材”。本节课在抓住主要目标,用活教材,针对学生实际、激活学生学习热情等方面做了有益的探索,现就几个教学片断进行探讨。
一、游戏导入,设置悬念
师:同学们,老师学会了一个魔术,情你们配合表演。请看大屏幕,这是2006年10月的日历,请你用正方形任意框出四个日期,并告诉老师这四个数字的和,老师马上就告诉你这四个数字。
生1:24,师:2,3,9,10生2:84师:17,18,24,2
5师:同学们想学会这个魔术吗?生:想!
师:通过这节课的学习,同学们一定能学会!
【一些教师常用教材的章前图或者行程问题情景导入,但章前图过于平淡且较难,不易激发学生兴趣,本次课用游戏导入激发学生的求知欲,其实质是列一元一次方程x+(x+1)+(x+7)+(x+8)=任意框出的四个日期的和,x是第一个日期,这是本次课的第一个变化。】
二、突出主题,突出主体
1、师:看大屏幕,独立思考下列问题,根据条件列出式子。
(1)x的2倍与3的差是5,(2)长方形的的长为a,宽比长少5,周长为36,则=36
(3)A、B两地相距180千米,甲乙两车分别从A、B两地出发,相向而行,甲车每小时行驶30千米,乙车得速度是甲车速度的1.5倍,经过t小时相遇,则=180
生:(1)2x-3=5(2)2(a+a-5)=36(3)30t+1.5(30t)=180
师:这些式子小学学习过,它们是()?生:方程。
师:对,含有未知数的等式叫做方程,等号的两边分别叫做方程的左边和右边。(现实,学生齐读)
【这又是一个变化,从小学已有知识出发,提前给出方程的概念,避免课堂中的逻辑矛盾,同时为学习列方程打下基础。】
2、师:小学我们学过简易方程,并用简易方程解决应用题,对于比较复杂的实际应用题,用方程解答起来更加方便。请自己阅读课本P/79—81,(课本内容略)并把课本空空填写完整,不懂的和你的同学交流。还要回答下列问题:
(1)你是如何理解“列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出含有未知数的等式——方程”?
(2)什么叫一元一次方程?
(3)什么是的解?你找到验证的方法吗?
师:在阅读P/80例题1时老师做出友情提示:
(1)选择一个未知数x
(2)对于这三个问题,分别考虑:
用含x的未知数分别表示正方形的边长;
用含x的未知数表示这台计算机的检修时间;
用含x的未知数分别表示男、女生人数。
(3)找一个问题中的相等关系列出方程
学生讨论出上述答案后
师:大屏幕显示上述问题的答案
【以前我在上这节课时,总是犯了和大多数老师一样的毛病,担心内容多,学生自己不会弄懂,满堂灌,结果我讲的筋疲力尽,学生还是糊里糊涂;这次我放开手,让学生自主学习,带着问题学习,和同学合作学习,结果学生情绪高涨,问题迎刃而解,重点内容也都清晰化。这一变化,把我彻底从课堂解放出来,再不是学生心中“喋喋不休”的数学老师了,真正做到了学生学得愉快,老师教得轻松!】
三、体现新时代教师是学生学习的合作者
在大多数学生完成课本阅读和解答好课本问题、上述问题的基础上,请几名代表学生汇报所列方程,并解释方程等号左右两边式子的含义。
师:(强调)
(1)方程两边表示的是同一个数;
(2)左右两边表示的方法不同。
【这一小小的点拨,有画龙点睛之作用,突出方程的实质性含义,为以后列出更复杂的方程打下基础】
四、给学生一个展示自己精彩的舞台
师:本节知识也学完了,你能解释课前老师魔术中的几多秘密?
设任意框出的四个数字的第一个为x,则:
生1:x+(x+1)+(x+7)+(x+8)=24;
生2:x+(x+1)+(x+7)+(x+8)=8
4师:很好!如何算出x的值,是我们下一节课要探讨的问题(继续设疑,激发学生的学习兴趣),但老师想当堂检测一下谁掌握的最多,最好,请看大屏幕。
【题目略,题目设计主要是列方程,并要求学生划出列方程的一个相等关系;检验一个数值是不是方程的解。这次的舞台大展示,教师仍然改掉以前的在学生旁边指手画脚的坏毛病,让学生一口气做完,让他们胆大地出错,暴露问题,然后师生一起纠正答案,效果比以前好了N倍!】
五、我的课堂,我做主,我来说
生1我掌握方程的概念:含有未知数的等式叫方程,即①有未知数②是等式;
生2:我掌握一元一次方程的概念:等式两边只含有一个未知数,并且未知数的次数都是1;
生3:我会检查一个数值是不是方程的解;
生4:我知道列方程的关键是找一个包含题目意思的相等关系并且等式左右两边是同一个量的两种不同种表达方式!
生5:我觉得用方程解决实际应用问题比以前小学的算术法来得简单!
师:谢谢你们精彩的发言,你们的发言是“五语道破其他人”!
【课堂小结一改教师全盘包办,学生没心没肺的听,心里还盼望着下课,盼望着游戏的课间。学生的课堂,让学生自己说,让学生把掌握的数学知识用自己的语言说出来,也可以训练他们把符号语言转化为文字语言,为以后学习几何学知识打下深厚的基础!】
六、课后反思:
数学课堂中的阅读和其它学科中的阅读一样重要,在课堂中我们要指导学生对概念性的东西进行阅读,帮助他们从句子中提炼出概念的内涵和外延,让他们能把书中的语言文字转化成自己的思想。所以我在教“一元一次方程的概念”的时候,要求学生自己读教材,然后和同学相互讨论,以便引起思维的碰撞。只有学生在充分读书的基础上,学生才能明白关健词的含义:只含有一个未知数,并且未知数的最高次数是1的等式才是一元一次方程。只有使等式两边相等的未知数的值才是该方程的解。俗话说得好:书读百遍,其义自现。在数学课堂中,阅读对学生来说至关重要,它比起老师的“苦口婆心”的说教有效得多。