轴对称数学教学课件

时间:2019-05-11 20:57:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《轴对称数学教学课件》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《轴对称数学教学课件》。

第一篇:轴对称数学教学课件

我们要学会欣赏现实生活中的轴对称,体会轴对称在现实生活中的广泛应用和它的丰富文化价值.接下来小编为你带来轴对称数学教学课件,希望对你有帮助。

教学目的1.使学生们对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。

2.通过例题和练习,使学生们能较好地运用本章知识和技能解决有关问题。

重点、难点

判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。

教学过程

一、知识回顾

问题1:轴对称图形的定义是什么?

它是判断图形是否是轴对称图形的依据。

问题2:是否会画轴对称图形的对称轴?

找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。

问题3:轴对称图形对称点的连线与对称轴有什么关系?

轴对称图形对称点的连线被对称轴垂直平分。

问题4:线段垂直平分线、角平分线具有什么性质?

线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。

问题5:等腰三角形有什么性质?

等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60。

问题6:如何判断三角形是等腰三角形?等边三角形?

如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60的三角形是等边三角形,有一个角是60的等腰三角形是等边三角形。

二、例题

1.下列图案是轴对称图形的有()

A.1个 D.2个 C.3个 D.4个

2.如右图所示,已知,OC平分AOB,D是OC上一点,DEOA,DFOB,垂足为E、F点,那么

(1)DEF与DFE相等吗?为什么?

(2)OE与OF相等吗?为什么?

三、巩固练习

如右图所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,A=491454.求△BCD的周长和DBC度数。

四、课堂小结

通过本节课复习,同学们应掌握本章知识和技能,并运用所学知识和技能解决问题,

第二篇:数学轴对称图形课件

数学轴对称图形课件

1教学目标:

1、在观察、操作、交流中认识轴对称图形的一些基本特征,能辨认轴对称图形,找出轴对称图形的对称轴。

2、通过观察、操作活动发展学生的空间观念,培养学生的观察能力和动手操作能力。

3、充分感受数学中的对称美,体会数学与生活的紧密联系。

教学重点:认识轴对称图形的基本特征。

教学难点:掌握辨别轴对称图形的方法。

教学准备:

教具:多媒体课件、两架飞机模型、卡纸、剪刀

教学过程:

一、课题游戏,感知对称

教师教学生做动作把题目倒过来(手掌横放,向上翻转180度,边说“翻上去”)。教师规范“称”的读音,有三个,这里读chen,领读轴对称、轴对称图形。

二、认识轴对称图形

(一)初步感知对称图形

1.老师在黑板上先画出半个花瓶,说轴对称图形都非常漂亮。师有意画坏另外半个花瓶。学生跺脚,教师追问,为什么你认为不漂亮?学生初步感知轴对称图形要两边一样。这个花瓶是不对称的。

2.师提问,引起思考:怎样一次得到一个完整的轴对称图形呢?

(1)将纸对折(2)在折纸处画一半花瓶(3)打开

教师按上述方法操作,把剪好的花瓶贴在黑板上。

3.教师:如果这两个花瓶有一个是轴对称图形,你认为是哪个,为什么?

4.小结:像这样对折后,两边能完全重合的图形,叫做轴对称图形。(板书:完全重合)

5.练习:判断是不是轴对称图形

小乌龟会做操

(二)理解认识对称轴

师:每个轴对称图形都有一条对称轴,你认为剪出的这个花瓶的对称轴在哪?

师小结:对称图形,对折后能完全重合的这条折痕,我们就把它叫“对称轴”。这些图形就叫“轴对称图形”.三、趣味练习,强化新知

1.判断是不是轴对称图形,指出对称轴

实物图、交通标志(变换方向)

教师小结:轴对称图形与方向和位置无关,只与图形有关。

2.古文字(通过对比,进一步认识轴对称)

3、红点与哪个点对应(渗透高年级轴对称,找对应点)

【设计意图:通过巩固练习,强化学生对轴对称图形的全面认识,帮助学生更加准确的判断轴对称图形。】

4.拓展延伸:

除了轴对称其实还有中心对称,太极阴阳图就是中心对称,围绕中心点通过旋转对称。课件演示:通过旋转,完全重合。

5.为什么学轴对称

演示飞机利用轴对称设计,利用平衡原理平稳飞行。

教师拿模型飞行演示对称和不对称飞行状态

四、动手创造

布置学生课后动手做轴对称图形,可以利用折纸的方法,也可以用电脑复制翻转功能设计轴对称图形,来创造美。

【设计意图:通过欣赏、制作轴对称图形,让学生充分感受数学中的对称美,体会数学知识来源于生活。】

数学轴对称图形课件

2【教材分析】:

轴对称图形是北师大版小学数学第六册的内容,本单元初步教学对称现象和轴对称图形。轴对称图形是日常生活中的常见图形,人们装饰、布置生活环境时也经常利用这些图形。通过轴对称图形的学习,学生既可以了解轴对称现象的普遍性,又提高数学欣赏能力与空间想象能力。教材的编写意图是要抽象出生活中轴对称现象的共同特征,使学生能从整体上去认识轴对称现象。教材联系学生的生活实际,精心选择学生熟悉和感兴趣的材料,以丰富多彩的操作和探究活动让学生感悟轴对称图形的特征,并提供大量生活中的新鲜素材引导学生感受对称美,培养积极健康的审美情趣。

【目标预设】:

1.联系生活中的具体事物,通过观察和思考,初步体会生活中的对称现象,认识对称图形的一些基本特征。

2.根据轴对称图形的一些基本特征的认识,能在一组实物图案或简单平面图形中识别出轴对称图形。

3.能用不同的方法做出一些轴对称图形。

4.在认识、制作、欣赏轴对称图形的过程中,感受物体或图形的对称美,拓宽知识视野,激发学生数学学习的积极情感,享受数学学习的快乐。

【重点、难点】

重点:理解轴对称图形的特征。

难点:掌握判别轴对称图形的方法。

【设计理念】:

数学来源于生活并服务于生活,课堂不仅是学生获取知识的地方,更是满足学生情感需求,重建精神生活,让学生享受快乐,享受成功的殿堂。本课的教学设计,紧密结合生活实际,以学生的参与活动和自主探究学习为主,通过学生的亲身体验,认识轴对称图形的特征,感知轴对称的美,培养学生的抽象思维和空间想象力,这样的设计体现了“从生活中来,到生活中去”的教学理念。

【设计思路】:

创设情境,感知对称——自主探索,理解概念——动手实践,体会运用——欣赏总结,升华知识。

【教学过程】:

一、感知

1、教师利用多媒体给学生播放了《千手观音》的片段。

师:同学们对这个画面熟悉吗?这些画面中舞蹈演员的动作造型美吗?真棒,给他们掌声。实在是美,是内容和形式的完美统一,这些造型都体现一种艺术的对称美。

2、教师继续利用多媒体出示天安门、飞机、奖杯的画面。

(1)师:请同学仔细观察这些物体,它们的形状一样吗?他们的大小呢?但它们的外形有没有共同的地方呢?

(2)师:你是怎样理解对称的呢?

(3)师:像这样两边形状、大小相同的物体,我们就说它是对称的。(板书:对称)

(4)师:像这样对称的物体,在我们的生活中你看到过吗?谁来说说看?

〔说明:选择了学生熟悉和感兴趣的素材,让学生在欣赏舞蹈演员表演过程中显示出来的动作的对称美的同时,人格受到震撼。既激发了学生主动参与学习活动的热情,又让学生初步感知人体的对称美。在通过对天安门、飞机、奖杯三个物体的观察,发现这些物体或是左右两边,或是上下两边,或是前后两边的形状、结构、大小都完全相同,从而接受这些“物体是对称的”这个概念,并带着这样的概念到身边去寻找对称的物体。〕

二、探索新知

1、认识对称图形

(1)师:这些对称的物体我们把它们画下来,就能得到这样的一些平面图形(多媒体出示天安门、飞机、奖杯的图形。)这些图形还是对称的吗?

(2)师:同学们真聪明,一眼就看出了这些图形都是对称的,像这样的图形我们就叫做对称图形,(板书:对称图形)

(3)师:是不是所有的图形都是对称的呢?它们又是怎样对称的?怎样来证明它们是不是对称图形?这就是这节课我们要研究的问题。为了更好地研究这些问题,老师还带来了一些平面图形,(多媒体继续添加:五角星、钥匙的图形)这些图形都是对称图形吗?

(4)师:老师想请同学们来分一分,哪些是对称图形?哪些不是对称图形?每个小组拿出①号信封,里面有这些图形,大家一起分一分,比一比哪个组分得快?

(5)教师组织汇报交流。

(6)师:你们是怎么知道这些图形是对称图形呢?有什么办法来证明吗?(生:折)

折是个很好的方法,到底怎样折呢?你能不能折给大家看一看?

(7)师:刚才这位同学用对折的方法(教师板书:对折)证明了这个图形是对称图形。那我们也来试一试,运用这个方法把对称图形都来折一折,每人折其中的一个,看看有什么发现,把你的发现在小组里说一说。

(8)师:哪位同学愿意带着你折好的图形说说你的发现?(结合学生的回答,教师板书:重合)

(9)师:每个小组再折一折不是对称的图形,看看这次你又有什么发现?

(10)师:这样的图形对折后只能部分重合,所以它们不是轴对称图形,而轴对称图形对折以后能完全重合(板书:完全重合),完全重合是对称图形的一个重要特征。

2、认识对称轴

(1)师:刚才我们把这些对称图形对折后,中间都留下了一条什么?(折痕)(拿一张天安门的图形)老师也想折一折(横着折),也得到了一条折痕,这样得到的折痕与你们折出来的折痕有什么不同?

(2)师:在对称图形中,对折后能让两边完全重合的这条折痕,在数学上称为“对称轴”,对称轴一般用点画线来表示。(多媒体在天安门的图形上显示点画线与对称轴的字样),你能说说其它三个对称图形的对称轴在哪吗?

(3)师:同学们,这些图形,通过对折,发现它们能完全重合,我们就把它们叫做“轴对称图形”。(同时板书“轴对称图形”,并将“对折、完全重合、轴对称图形”用箭头相连)

3、判断

(1)完成课本上的试一试

①师:老师今天还给大家带来了我们熟悉的平面图形(多媒体依次出现:等腰三角形、等腰梯形、正五边形、平行四边形),在这些图形中有没有我们今天所认识的轴对称图形呢?我们来一个一个地判断,如果认为它是轴对称图形的,就起立,如果认为它不是轴对称图形的,就坐着不动。

②多媒体依次出现等腰三角形、等腰梯形、正五边形让学生判断。(如有争议的就让学生拿出②号信封里的相应的图形进行验证)

③(出现平行四边形)师:还有刚才那样肯定吗?那到它底是不是轴对称图形呢?还是让事实来说话吧!请拿出②号信封里的平行四边形,以小组为单位去研究研究。

④组织学生汇报交流,注意引导学生进一步理解轴对称图形的概念,并强调对折与剪开是不同的。

⑤师:通过刚才的活动,你们觉得判断一个图形是不是轴对称图形,最关键的是什么?(随着学生的回答,在对折和完全重合的字下面加重点符号)

(2)完成想想做做的第2题

①师:老师今天还给大家带来了一组字母图形,你能判断出它们是不是轴对称图形吗?

②多媒体依次出现A、C、T、M、N、S、X、Z让学生判断。

(3)完成想想做做的第5题

师:2008年,我国北京将迎来第29届奥运会,这是第28届奥运会金牌榜排名前5名的国家(多媒体依次出现美国、中国、俄罗斯、澳大利亚、日本的国旗),哪些国家的国旗是轴对称图形呢?

〔说明:从对称的物体抽象出轴对称图形,是一个知识的抽象化的过程,这个过程,需要学生去动手实践,因此,教师在教学中,给予了学生这样一个机会。从课堂上的折对称的图形和不对称的图形,发现对称完全重合的特征;再到猜一猜,运用特征来验证。一系列的过程,既是学生动手操作,动脑思考的过程,更是知识的内化过程,在这一过程中,学生对知识的理解由原来的表面深入到了内部,从而为升华作出了准备。我们的教学不只是要教会学生书本上已有的知识,更是要让学生学会思考,因此,在这一环节中,教师重视了知识延伸与拓展,在扶的过程中逐步放开,让学生自己去判断,去寻求最简单有效地方法去验证自己的猜测。重视和培养了学生良好的数学学习方法——猜测、验证、推理、总结〕

三、巩固练习

1、创造轴对称图形

(1)师:老师课前让同学准备了剪刀、水彩笔、彩纸、白纸等一些材料与工具,老师想请同学们自己动手做一个美丽的轴对称图形。先想一想你打算选择哪些材料与工具,怎样去做一个轴对称图形。想好的同学就开始吧!

(2)教师巡视并引导学生欣赏自己的作品。

2、画一画

完成想想做做第3题。强调关键是根据对称轴找到已知顶点的对称点。

3、连一连

完成想想做做第4题。

[说明:这是这节课上第三次让学生自己动手,这个操作环节的目的就是让学生体会可以用对折的方法来制作轴对称图形。这一次的动手操作是让学生在原有的认识、运用的基础上,进入体会和运用的层面,是一次体会创造的过程。]

四、欣赏

1、引导学生欣赏著名的建筑图片

(1)师:同学们,对称产生美!古今中外,有许多著名的建筑也是对称的,让我们一起来欣赏并感受它们的奇妙和美丽吧!

(2)(多媒体依次出示课本61页的建筑图片)师:同学们,这些图片都体现了对称的美。

2、引导学生欣赏剪纸的民间艺术

师:同学们,剪纸是我国宝贵的民间艺术(多媒体依次出示双喜、蝴蝶、老虎的剪纸图形),你们看多精致呀!你们知道它们是利用什么特点剪出来的?

3、总结:同学们,轴对称图形以其独有的对称美,装扮了我们的生活,只要我们注意观察就能发现对称在我们生活中、大自然中无处不在。

【教学反思】:

一、创设生动的问题情境,激发学生学习的热情和探究的欲望。古人云:“学起于思,思起于疑”,有疑问才能思考和探究。课堂上教师是教学活动的组织者,教师只有精心设计贴近学生生活、有意义和富有挑战性的问题情境,让学生在心里产生一种悬念,进而达到以疑激学的目的。

二、搭建体验探索的平台,开展有序、有效的实践活动。《数学课程标准》指出:“有效的数学活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方法”。本节课我在课堂上展开了观察对称图形——发现特点——动手剪对称图形——欣赏与应用等一系列有序的学习活动。例如:活动一:观察对称现象,感知对称图形。活动二:动手剪对称图形,在活动中加深体验。“剪一剪”的活动,让学生先自己探索剪对称图形的方法,并尝试着剪一剪。这一活动的开展,激起了学生动手操作的兴趣和欲望。

三、联系生活实际,感受数学乐趣。

数学与生活紧密联系,教学中,要让学生带着数学走出课堂,走进生活去理解生活中的数学,去体验数学的价值。因此根据对称的物体给人一种匀称、均衡的感觉,一种美感。我抓住对称图形的特点,精心设计:大红的中国结、美丽的蝴蝶、蜻蜓、中国的京剧脸谱、天安门等图片,师生一起欣赏生活中一幅副精美的对称图片,给学生带来美的感受。接着,引导学生从生活中寻找对称图形,讲述生活中哪些东西是对称的,判断生活中的具体事物是否是对称图形,从而感受身边的对称图形。

不足: 我感觉教学中语言不够精炼,对学生的评价不及时,同时在认识平面图形中谁是轴对称图形,有几条对称轴这一环节该在展台上展示一下。在以后的教学中我将再接再厉继续努力,提高自己的教学水平。

第三篇:《轴对称图形》课件

生活中有那么多轴对称图形和具有轴对称性质的物体,是因为轴对称图形本身就是一种美。下面是小编收集整理的《轴对称图形》课件,希望对您有所帮助!

教学目标:

1、联系生活中的具体事物,通过观察和动手操作初步体会生活中的轴对称现象,认识轴对称图形的基本特征。

2、会用动手或观察等方法辨别轴对称图形,能利用身边的工具制作轴对称图形,并在认识、制作和欣赏轴对称图形的过程中,感受到物体图形的对称美,激发学生良好的数学情感。

3、在对知识的探究过程中,培养学生的合作能力,动手能力、空间思维能力和良好的学习情感。

教学重点:

理解轴对称图形的特征。

教学难点:

掌握并能准确辨别较为复杂的轴对称图形。

教学过程:

一、活动导入

谈话:同学们,老师今天带来了一个美丽的朋友,大家看!

(出示只有一个触角的蝴蝶的图片。)

提问:仔细观察这张图片,你有什么发现和感受,还应该怎么做才好看?

学生回答。

教师:今天我们要研究的问题和这只美丽的蝴蝶也有一定的关系。

板书课题:轴对称图形,同时引导学生看了课题你想研究哪些问题?(请学生提出自己赶兴趣的问题)

二、识轴对称图形

1、课件出示天安门、飞机、奖杯图片。引导学生观察图片上的物体,说说它们有什么共同特征。

教师:同学们请拿出你们自己手中的这些平面图形,折一折、比一比,和同组的同学交流一下你们发现了什么?

(先小组讨论,再汇报)

引导学生用手摸一摸对折后的两边,说说有什么样的感觉。得出结论:这些图形对折后“两部分完全重合”。

介绍:我们把这些对折后能完全重合的图形称为“轴对称图形”。(板书轴对称图形定义)。中间这条折痕就是轴对称图形的对称轴。(板书:对称轴)

谈话:我们生活中还有哪些常见物体的平面图形也是轴对称图形呢?

(学生交流并回答)

2、试一试

谈话:同学们你们的学具袋中有几种不同的多边形,它们是轴对称图形吗?

引导学生参照轴对称图形的定义,动手折一折、比一比,看看这些常见的图形哪些是轴对称图形?

汇报时引导学生用“完全重合”等词语来描述和判断是否是轴对称图形。

3、判断轴对称图形

谈话:下面我们一起到“轴对称图形博物馆”去看看。

小组派代表汇报合作过程中发现的问题和解决的方法以及判断的结果及理由。

4、摆对称的姿势

谈话:同学们有些累了吧。下面跟老师一起来做个身体对称的游戏吧。指名学生上台摆一个有轴对称性质的姿势。

(注意强调要左右两边的动作幅度要相同,否则就不对称了)

三、制作轴对称图形

1、谈话:刚才同学们学会了用身体做轴对称图形的游戏了,你们还想用别的工具做轴对称图形吗?

引导学生小组自主合作,选择钉子板、剪纸、方格纸等工具和材料制作轴对称图形。(展示学生的作品)

学生画好后,请画得快的学生介绍自己的方法。

教师介绍:为了快速的画出图形的另一半使它成为轴对称图形,可以先找出对称点,在连接对称点就好了。

四、感受轴对称美

谈话:生活中有那么多轴对称图形和具有轴对称性质的物体,是因为轴对称图形本身就是一种美。

电脑播放一组世界著名的具有轴对称性质的建筑物。

谈话:类似的建筑在我们的身边也有许多,你们想看吗?。

电脑播放一组合肥市具有轴对称性质的建筑物。

五、小结

谈话:同学们看你们今天学的那么带劲,谁能说说自己今天有什么收获?你认为谁今天表现的最有进步呢?(学生之间评价推选)

谈话:现在老师要送他一件小礼物,可是老师还没来得及完工,谁能帮我把它修剪好呢?出示一张边缘不齐的贺卡。请学生说说修剪的办法和依据并修剪。打开贺卡,出示其中具有轴对称性质的的剪纸图案,让学生感受轴对称图形的广泛,轴对称图形的美.

第四篇:轴对称讲评课课件

[教学目标]

1、让学生在活动中进一步认识轴对称图形及其对称轴。

2、能通过折、画的方法找出轴对称图形的对称轴。

3、培养学生动手操作能力、分析推理能力和语言表达能力。

4、通过观察、讨论、创作,使学生充分感知数学美,激发学生爱数学的情感。

[教学准备] 纸质材料等

[教学过程]

一、复习导入,揭示课题。

师:同学们,今天老师和你们进一步学习有关图形的知识。请看下面几幅图,并观察它们有什么共同特征:(出示物体的平面图)

学生观察交流(预设:都是轴对称图形)。

师:对,它们都是轴对称图形。那么,什么是轴对称图形?你还知道轴对称图形的哪些知识?(对称轴)

(在三年级的学习中,我们已经知道了把一个图形对折,折痕两边完全重合的图形是轴对称图形,中间的一条折痕所在的直线就是对称轴。今天这节课我们继续研究轴对称图形,重点研究轴对称图形的对称轴。)

揭示课题,并板书课题

二、体会对称轴的意义

(一)认识长方形的对称轴

1、找对称轴

我们以前认识了很多轴对称图形,比如长方形、正方形等都是轴对称图形,(课件出示长方形)那么你能找出长方形的对称轴吗?猜一猜:它有几条对称轴?

请同学们拿出一张长方形纸折一折,找一找它的对称轴在哪里。

学生动手操作,全班交流,展示两种折法,得到两条对称轴。

2、画对称轴

我们已经找到了对称轴,那你们知道对称轴是怎么画的吗?通常我们是用点划线来表示对称轴。老师示范画点划线。

(板书:———— 点划线)

现在你能在长方形纸上画出刚才折出的对称轴吗?试试看。

画好后展示点评。

刚才我们用折纸的办法找到了长方形的对称轴,如果是画在黑板上的长方形能对折吗?要画出它的对称轴你有什么办法?

在小组里讨论。班内交流画法。

(课件出示画法)小结画法:先量出长方形对边的中点再分别连线,因为对称轴是折痕所在的直线,所以可以让对称轴延伸到图形外。

请同学们把课本翻到第62页,画出例题中长方形的对称轴,注意对称轴一般应画成点划线。画好后同桌互相检查。

师:长方形有几条对称轴?(课件出示:长方形有2条对称轴。)

(二)认识正方形的对称轴

下面我们研究正方形的对称轴。请拿出一张正方形纸,先通过折纸研究它有几条对称轴,并在正方形纸上画出对称轴。

然后在课本62页试一试中画出正方形的对称轴。可以先独立完成,如果有困难可以和同桌商量,也可以在小组里研究。

学生练习,交流展示,小结画法。

师:正方形有几条对称轴?(课件出示:正方形有4条对称轴。)

师小结:看来,有的轴对称图形的对称轴不止一条,不同的轴对称图形对称轴的条数也可能不一样。

三、教学想想做做

1、完成第一题。

同学们,刚才我们研究了长方形和正方形的对称轴,我们还学过一些基本图形和简单图形,它们中哪些是轴对称图形?如果是,有几条对称轴呢?下面我们一起运用今天所学的知识来探索解决新问题。

(出示想想做做第1题)这道题让我们先做什么,再做什么,最后做什么?请同学们按题目要求操作。

学生活动,先拿出准备好的图形折一折,再画一画,最后同桌交流。

汇报:图形的名称,是不是轴对称图形?它有几条对称轴?在哪里?(展示给大家看)你是怎么找到的?大家同意他们的研究成果吗?

2、完成第二题。

下面老师给大家看一些非常美丽的图形,(课件出示想想做做第2题)这些图形都是轴对称图形吗?你能画出轴对称图形的对称轴吗?

(1)先师生共同完成第一幅图,再独立完成其它几幅图。

师:这个图形是轴对称图形吗?有几条对称轴?猜一猜。

(2)交流:是轴对称图形吗?有几条对称轴?跟你画的一样吗?

第四幅图为什么不是轴对称图形?

教具演示:对折后不能完全重合。

3、完成第三题。

刚才同学们练习了判断轴对称图形和画出轴对称图形的对称轴,如果已经知道了对称轴,比如像这样(课件出示想想做做第3题)它是轴对称图形的一半,这是对称轴,你能猜出它的另一半是什么样子吗?(用手比划一下。)

你会画出它的另一半吗?

同桌互说:你准备怎么画?

全班交流:你是怎么画的?(1)确定关键点,并在对称轴的另一侧描出对应点;(2)依次连线。

试一试,独立完成。展示作品。

4、完成第四题。

(课件出示想想做做第4题)仔细观察题中的图形各是什么图形,是不是轴对称图形?(分别是等边三角形又叫正三角形、正方形、正五边形、正六边形,它们都是轴对称图形)

下面请同学们在数学书63页第4题上,先画出每个图形的对称轴,再在小组里交流:每个图形各画了几条对称轴,你发现了什么?

学生练习讨论,交流汇报。

师小结:各边相等,各内角也相等的图形是正几边形,它的对称轴的条数和它的边数相等。

四、欣赏设计

1、轴对称在我们的现实生活中到处存在,只要我们留心观察一定会有发现。下面我们来欣赏几幅人们设计的轴对称图形,说说它的对称轴在哪里。

(出示一些具有轴对称特性的图案。)

2、刚才我们欣赏了许多轴对称图形,那么你能运用学过的知识,创作一幅轴对称图形吗?

展开你丰富的想象,画一幅吧。

自由设计与创作,并将好的作品展示。

五、课堂小结

第五篇:轴对称图形的课件

教材简析:

本课的教学对象是小学三年级的学生,在此之前学生已经学过一些平面图形的特征,形成了一定的空间观念,自然界和生活中具有轴对称性质的事物很多,也为学生奠定了感性基础。他们的思维特点是以具体形象思维为主,同时具有初步的抽象思维能力,对于具体、直观的内容有较大的依赖性。所以,本课尽量营造一种轻松愉悦的氛围,让学生在玩中学,在观察、操作中探索研究,以多媒体课件为学习媒体,让学生自主探索,在探索中发现,在探索中学习。在教学中,我通过让学生找生活中的对称物体,欣赏图片,加强了知识与生活之间的联系。同时,学生通过动手、折一折、画一画、猜一猜、剪一剪等活动,建立起了轴对称图形的概念,探索出了轴对称图形的特征以及判断轴对称图形的方法。

教学目标:

1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。

2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。激发对数学学习的积极情感。

教学重点:

使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。

教学难点:

引导学生自己发现和认识轴对称图形的一些基本特征。

教学准备:

多媒体课件一套,每小组有不同的图形一套,小剪刀等。

教学过程:

一、创设情境,引入新课

情境导入:昆虫家族今天开了个舞会,它们正欢快的飞舞着。看!它们向这儿飞来了,不过只有它们的半个身影。它们说:“只要你猜对我们是谁,我们就会出现。”

1、请你猜一猜,他们分别是什么?

2、提问:你们怎么猜得这么准啊?(它们的两边都是一模一样的。)

小结:像这些昆虫的两边是一模一样,我们就说它是对称的。

【设计意图:从学生熟悉的事物入手,根据学生的感知规律,创设了有趣的“猜一猜”情境,不但激发了学生的学习兴趣,同时昆虫图形的介入为学生感知轴对称图形的特征作了铺垫。】

师:老师这还带来了一组对称物体的照片,请大家来观察,看看这些照片有什么共同之处。

生:左右两边一模一样。

二、合作交流,感悟新知

1、初步感知

过渡:刚才同学们的观察都很准确。生活中还有哪些物体是对称的?

生:蝴蝶,裤子,鞋子,七星瓢虫等。

师:日常生活中,我们不但可以经常看到一些对称的物体,还能看到很多对称的图形。今天老师也要给你们露一手,看看我要表演什么啊?(剪纸)嗯,不过,你能猜出我剪的是什么吗?

学生回答:(剪一棵松树)。

提问:那么仔细观察这两个图形,看看它们有什么相同的地方?

引导学生,让他们说出:这两个图形的两边是一模一样的,它们是对称的,中间有一条折痕。

继续提问:(出示提前准备好的一张音符图)那这个图形的两边也是一模一样的,中间也有一条折痕,那它和上面两个图形有什么不同的地方?请你们把它们对折后想一想。

引导:音符图对折后只上半部分重叠在一起,下半部分不重叠。像这样只有一部分重合在一起,我们就称为是部分重合。(板书:部分重合)而松树图和爱心图对折后能全都重合在一起。

小结:对折后能全都重合在一起,我们称为是完全重合。(板书:完全重合)像这样对折后能完全重合的图形我们叫它轴对称图形。这条折痕就是对称轴,我们用点划线来表示。

揭题:这就是我们这节课要学习的内容轴对称图形。(板书:轴对称图形)

同桌互相说一说什么是轴对称图形。

【设计意图:通过折音符图形,得出音符图形只有部分重合,在与松树、爱心图形的比较中,感受部分重合与完全重合的区别,学生对“完全重合”的认知已经非常地清晰,从而深刻理解轴对称图形的特征。】

2、加深理解

过渡:同学们说的真好。这里有三张照片,是我对同一只杯子从不同的角度拍的。

(1)出示这是从杯子的正面拍的。这个图形是轴对称图形吗?对称轴在哪?

(2)出示这是从杯子的上面拍的。这个图形是轴对称图形吗?对称轴在哪?

小结:对称轴可以有不同的方向。

(3)出示这是从杯子的侧面拍的。这个图形是轴对称图形吗?那你有办法把它变成轴对称图形吗?(添柄、去柄)

小结:同一只杯子由于观察的角度不一样,看到的图形有时是轴对称图形,有时不是轴对称图形。

【设计意图:通过不同角度的杯子照片,让学生明白可以横着画对称轴,也可以竖着画对称轴,也可以斜着画对称轴,对称轴可以有不同的方向。】

三、动手操作,巩固新知

1、折一折

过渡:今天我给大家带来了一些老朋友,你还认识它们吗?那我们就一起说出它们的名字。

(1)下面请你们用对折的方法,看看哪些是轴对称图形,哪些不是轴对称图形?

(2)生折交流汇报。

平行四边形不是轴对称图形。为什么不是,你是如何证明的?(对折后不能完全重合)

能不能折一次就好了?

小结:我们要判断一个图形是不是轴对称图形,要看它对折后能否完全重合。

(3)那其他四个图形都是轴对称图形吗?你是怎样判断的?

生演示并说明理由

等腰三角形、等腰梯形有一种对折方法,长方形有两种对折方法,圆有无数种对折方法。

小结:这些图形不管只有一种对折方法还是很多种对折方法,只要对折后能完全重合的图形,就是轴对称图形。

2、判断

过渡:刚才同学们都用对折的方法来判断是不是轴对称图形。现在,不对折,你能用眼睛看出来吗?真的?现在就考考你们。

出图生判断,说说对称轴在哪?

【设计意图:练习设计体现生活化、多样化、层次分明,同时也让学生再一次感受到数学与生活的密切联系。即让学生巩固理解轴对称图形的特征,同时又突出轴对称图形的重要性。】

四、再次探索,掌握画图方法

过渡:刚才我们是根据一半的图形猜出另一半,那如果告诉你轴对称图形的一半,你能画出它的另一半吗?

(1)生尝试画一个,汇报交流

你是如何画的?你为什么要和这个点连起来?这两个点为什么不用找?

(2)方法小结:第一步找对称点,第二步依次连线。

说明在找对称点的时候,如果图形的顶点在对称轴上,那么这个点的对称点就是它自己,就不用找了。

(3)用这种方法完成其他两幅图并汇报交流。

五、全课总结,分享收获

今天,我们学习了轴对称图形,你有哪些收获呢?

六、欣赏图片,拓展知识

留心我们的生活,你会发现轴对称图形、对称现象的物体无时无刻都在美化我们的生活。蝴蝶、蜻蜓等因为有了对称的翅膀,才能自由飞翔;我们的服装因为对称才显得大方、典雅;古今中外,有许多著名的建筑也是对称的,多么神奇,多么美丽。我们只要用心思考,就会感到对称的力量。

[资料链接]脸谱是我国的国粹,京剧脸谱是我国戏剧中独有的化妆艺术,具有很高的欣赏价值,从数学角度看,这些脸谱在设计绘画中采用的就是轴对称的方式。还有造型奇巧的剪纸艺术作品都是我们民间艺术家利用轴对称的原理制作的。另外,在标志建筑,服装、国旗、体育、运输、航天等很多地方都设计应用了对称方式。

下载轴对称数学教学课件word格式文档
下载轴对称数学教学课件.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    四年级轴对称图形课件

    授课内容: 四年级 下 册教学目标:1.进一步认识轴对称图形,探索轴对称图形的本质特征。2.在方格纸上补全轴对称图形,初步学会运用对称的方法在方格纸上设计图案。3.在欣赏图形变换所......

    平移旋转和轴对称课件

    一、教学目标【知识与技能】通过观察、比较,掌握什么是平移以及图形平移的方法,能在方格纸上将简单图形进行平移。【过程与方法】通过观察、比较、分析等数学活动,增强操作能力......

    认识轴对称图形课件

    教学内容:西师版小学数学第六册第118页例1、例2及相关练习题。教学目标:1、在观察、操作、交流中认识轴对称图形的一些基本特征,能辨认轴对称图形,找出轴对称图形的对称轴。2、......

    轴对称做一做课件

    课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。下面是关于轴对称做一做课件的内容,欢迎阅读!轴对称(第二课......

    五年级下册轴对称课件

    导语:如果一个平面形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个形叫做轴对称形(a figure has reflectional symmetry),这条直线叫做对称轴(axis of symmetry)。以下是......

    三年级轴对称课件(推荐五篇)

    一、学习目标:1、理解并掌握等边三角形的定义,探索等边三角形的性质和判定方法2、能够用等边三角形的知识解决相应的数学问题二、重点难点学习重点:等边三角形判定定理的发现与......

    五年级轴对称图形课件

    姓名年级5学科数学时间教学课题信息窗1--轴对称图形教材分析学生在三年级已初步认识了简单的轴对称现象,会判断简单的图形是否是轴对称图形并找出其一条对称轴。在此基础上教......

    八年级数学《轴对称》教学设计(推荐)

    八年级数学《轴对称》教学设计 教学课题:新课标八年级人教版数学《轴对称》 一、教材分析: 本节课的内容是轴对称。轴对称是对称中非常重要的一种,小学时期就已经对此有所了解......