专题:2002年江西数学理科
-
2008年高考理科数学试题(江西卷)(范文大全)
桑 园 镇 初 级 中 学 创 建 文 明 校 园 实 施 方 案 为了进一步贯彻落实西教发(2008)32号、桑发(2008)40号文件精神,落实《中学生守则》和《中学生日常行为规范》,深入开展“创
-
2014年高考理科数学江西卷答案及解析(抢鲜版)
江西省数学(理)小题解析 名师解读,权威剖析,独家奉献,打造不一样的高考! 1 名师解读,权威剖析,独家奉献,打造不一样的高考! 2 名师解读,权威剖析,独家奉献,打造不一样的高考!
-
高三理科数学工作总结
2016年高考总结与感想 高三数学备课组 王丽宏 三年说长不长,说短不短,却足够一个人去成长,从我参加工作来,第一个完整的教学环节在高考分数下来了,几家欢乐几家愁的氛围中宣告结
-
总结2011数学理科全国卷
数学(文科)点评嘉宾:昆十中数学骨干教师钱见宝
整体难度稳中有降
今年是云南省大纲教材最后一年高考,数学全国试卷(文科)的整体难度稳中有降,无偏、难、怪题出现,本套题所用知识和方 -
高三理科复习计划数学
高三理科复习计划
数学
你把重点放在基础题上吧,况且高考的数学有80%是基础题,能克服基础题的粗心毛病,把他做好也是不易的,但却是可以通过翌年的时间作好的。
给你一些具体方法 -
2014年江西高考理科数学试题及答案(精华整理版)
2014年普通高等学校招生全国统一考试(江西卷) 理科数学(含参考答案) 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至2页,第II卷第3至第4页。满分150分,考试时间120分钟。
-
2006年高考江西卷理科数学试题及参考答案
Unit 8 B卷
I.词组英汉互译(10分)
1.干家务 ________2.洗餐具______3.整理床铺__________4.打扫客厅__________
5.一个重要会议__________6.Feed dogs and cats_________
7.No -
高二数学备课组计划理科
2015—2016学年度第二学期高二数学备课组工作计划 一、指导思想 以提高教育教学质量为核心,以课堂有效教学和让学生学会学习实验研究为重点,创新教研工作方式,提高数学教研工作
-
《高三理科数学教研工作计划》
2009~2010学年度第一学期
教研工作总结
数学组齐风燕
一个学期结束了,高三年级面临新课改后的第一次高考,结合所教两个理科班的现状,现对本学期教研工作总结如下:
1、坚持以《新 -
理科数学要学的课本
高中理科数学共学习11本书,其中必修5本,选修6本。必修课本为必修1、2、3、4、5,选修课本为选修2-1,2-2,2-3,4-1(几何证明选讲),4-4(坐标系与参数方程),4-5(不等式选讲)。
高考范围为必修1 -
高二理科数学期末复习计划
高二理科数学期末复习计划
时间:
从第十六周周四(5月24日)开始到期末考试(6月29日)结束,共28个课时。 内容:
(一)统计与统计案例(计划2课时)
1.随机抽样、用样本估计总体(1)(负责人:高建 )
2. -
2013高三数学理科备课组工作计划
2013高三数学理科备课组工作计划
一、指导思想和要求
贯彻学校有关教育教学计划,在学校和年级组的直接领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务。教学的 -
高二期中考试理科数学总结
高二期中考试理科数学总结一、高二期中考试理科数学成绩整体的分析:1、总平均分91.26;模块平均分73,均比预期略低.2、高分群体比较单薄,120分以上仅55人,高分暂时看不到优势:其中
-
高二理科数学备课组工作计划
高二理科数学备课组工作计划一、指导思想
“师者,传道授业解惑也。”教育的兴衰维系国家之兴衰,孩子的进步与徘徊事观家庭的喜怒和哀乐!数学这一科有着冰冻三尺非一日之寒的学 -
高三理科数学教学工作总结
2013-2014学年高三理科数学教学工作总结一、突出各阶段复习重点,循序渐进有效复习第一轮复习以知识复习为主线,注重基础知识、基本方法的再现。经过集体讨论,精选一本资料《导
-
广东2014年理科数学[5篇范文]
2014年普通高等学校招生全国统一考试(广东卷)数学理一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M{1,0,1},N{0,1,
-
11--湖北卷数学(理科)
2013年普通高等学校招生全国统一考试(湖北卷)数学(理科)一. 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中只有一项是符合题目要求的。12.已知全集为R,集合A=X(
-
高二理科数学期中考试复习提纲
期中考试复习提纲
***导数及其应用
(一)求导数
(二)导数的物理意义和几何意义:切线问题,瞬时速度;
(三)导数与单调性
(1)求单调区间;(2)已知单调性求参数范围
(四)极值与最值
(1)求极值(最值);(2)已