专题:八年级全等三角形证明
-
全等三角形证明
全等三角形的证明1.翻折如图(1),BOC≌EOD,BOC可以看成是由EOD沿直线AO翻折180得到的;旋转如图(2),COD≌BOA,COD可以看成是由BOA绕着点O旋转180得到的;平移如图(3),DEF≌ACB,DEF可以看成是
-
全等三角形证明
全等三角形证明
1、已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。
CA2、已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。
F3、已知,点C是AB的中点,CD∥BE,且CD=BE,问∠D=∠E吗?说明理由 -
八年级简单的全等三角形证明0
八年级简单的全等三角形证明1、如图,在△ABC中,D为BC边的中点,过D点分别作DE∥AB交AC于点E, DF∥AC交AB于点F.(1)证明:△BDF≌△DCE ;AFEBC D(第4 题图)2.如图9,已知∠1 = ∠2,AB = AC.
-
八年级全等三角形经典证明题
三角形全等的判定专题训练题1、 如图(1):AD⊥BC,垂足为D,BD=CD。求证:△ABD≌△ACD。2、 如图(2):AC∥EF,AC=EF,AE=BD。 求证:△ABC≌△EDF。3、 如图(3):DF=CE,AD=BC,∠D=∠C。求证:△AED≌△
-
全等三角形练习题(证明)
全等三角形练习题(8)一、认认真真选,沉着应战!1.下列命题中正确的是A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角的平分线相等 2. 下列
-
第八课 三角形全等证明
第八讲 三角形全等的条件(2)5.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE交CD于F,且AD=DF, 三角形全等条件(3):有两角和它们的夹边对应相等的两个三角形全等.C求证:AC= BF。 如图,在ABC与DEF中
-
初一全等三角形证明
全等三角形1.三角形全等的判定一(SSS)1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?2.如图,C是AB的中点,AD=CE,CD=BE.求证△ACD≌△CBE.3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF. 求证∠A=∠D.4.已知
-
全等三角形的证明
3eud教育网http://50多万教学资源,完全免费,无须注册,天天更新!
全等三角形的证明
1、 已知:(如图)AD∥BC,AD=CB,求证:△ADC≌△CBA。B C
2、已知:如图AD∥BC,AD=CB,AE=CF。求证:△AFD≌△ -
八年级同步辅导专题二:全等三角形证明
八年级同步辅导专题二全等三角形证明专题1.条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题
-
八年级全等三角形证明经典50题(20130920)
八年级全等三角形证明经典50题(20130920) 全等三角形证明经典50题 1. 已知: B D 2. 已知: 2AB 3. 已知:1=∠2 1 4. 已知:∠ 5. 已知: B AB=4,AC=2,D是BC中点,AD是整数,求AD D
-
八年级《全等三角形》教学设计
八年级《全等三角形》教学设计 > >教学环节 >教师活动 >学生活动 >设计意图 >媒体使用及意图描述 >(交互式白板使用功能) >创设情境,导入新课 >1.>观察下列图案(电 >
-
八年级数学全等三角形证明题
中考网 第十三章全等三角形测试卷(测试时间:90分钟总分:100分)班级姓名得分一、选择题(本大题共10题;每小题2分,共20分)1. 对于△ABC与△DEF,已知∠A=∠D,∠B=∠E,则下列条件①AB=DE;②AC
-
刘老师三角形全等的证明专题
三角形全等的证明学案(1)条件充足时直接应用例1 已知:如图1,CE⊥AB于点E,BD⊥AC于点D,ABD、CE交于点O,且AO平分∠BAC.那么图中全等的三角形有___对.EDOBC(2)条件不足,会增加条件用判别方
-
全等三角形证明专题(共5则范文)
1、(10分)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,F是垂足,过B作BD⊥BC交CF的延长线于点D.(1)求证:AE=CD; (2)AC=12cm,求BD的长.F2、(10分)如图,AB=CD,AE⊥BC于E,DF
-
全等三角形证明写理由
全等三角形证明1.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C证明:延长AB到,使AE=,连接DE∵AD平分∠BAC∴∠EAD=∠CAD()∵AE=AC,AD=AD∴△AED≌△ACD()∴∠E=∠C()∵AC=AB+BD∴AE=AB+BD()∵AE=AB+BE∴BD=B
-
浅谈证明三角形全等的一些技巧
浅谈证明三角形全等的一些技巧
娄菊红
【摘要】:正全等三角形是初中平面几何知识的一个重要组成部分,也是中考必考的内容之
一.证明两个三角形全等,一般有边角边(SAS)、角边 -
全等三角形定义与证明
全等三角形能够完全重合的两个图形叫做全等形。能够完全重合的两个三角形叫做全等三角形。把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角
-
2014三角形全等证明20题
探索三角形全等的条件练习题1、已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,问BE=CF吗?说明理由。C2、已知AC=BD,AE=CF,BE=DF,问AE∥CF吗?说明理由。A BC3、已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?说