专题:等比数列求和导学案

  • 等比数列导学案

    时间:2019-05-14 13:26:17 作者:会员上传

    《等比数列》导学案 学习目标:理解等比数列的概念;了解等比数列通项公式的推导过程;掌握等比数列通项公式;能应用等比数列通项公式求基本量 自主学习: 1.观察以下几个数列具有什

  • 《等比数列求和》教案

    时间:2019-05-12 23:02:32 作者:会员上传

    等比数列的前n项和(第一课时教案) 一、教材分析 1.从在教材中的地位与作用来看 《等比数列的前n项和》是数列这一章中的一个重要内容,从教材的编写顺序上来看,等比数列的前n项和

  • 等比数列求和教案

    时间:2019-05-12 21:53:21 作者:会员上传

    《等比数列的前n项和》教学设计 教材:人教版必修五§2.5.1 教学目标:(1)知识目标:理解等比数列的前n项和公式的推导方法;掌握等比数列的前n项和公式并能运用公式解决一些简单问题

  • 2012年瓦窑中学一轮复习导学案---等比数列求和公式(5篇材料)

    时间:2019-05-14 18:38:14 作者:会员上传

    第5课时等比数列求和公式
    一、[要点梳理]:
    1、等比数列的前n项和公式:2、等比数列的前n项和的性质 二、基础练习:
    1、等比数列an中,已知a14,q1则s10=__________________; 2、等比

  • 《等比数列》学案

    时间:2019-05-14 18:38:19 作者:会员上传

    2.4等比数列(一)
    一、学习目标
    1.理解等比数列的概念,并会根据定义判断等比数列;探索并掌握等比数列的通项公式。 2.通过类比等差数列来学习等比数列的相关内容。
    二、学习实施

  • 等比数列求和作业5篇范文

    时间:2019-05-14 18:38:05 作者:会员上传

    2.5《等比数列前n项和》(第二课时)作业
    1、 在等比数列中,a1a2a36,a2a3a43, 则a3a4a5a6a7 A. 11
    8B.1916C.98D.34
    2、在等比数列an中,a15,S555,则公比q等于
    A.4B. 2C.2D.2或4
    3、

  • 山东省等比数列求和教案

    时间:2019-05-12 18:15:43 作者:会员上传

    等比数列的前n项和 1.知识与技能目标: 1)掌握等比数列求和公式,并能用之解决简单的问题。 2)通过对公式的推导,对学生渗透分类讨论思想以。 2过程与方法目标: 通过对公式的推

  • 等比数列求和教学设计

    时间:2019-05-12 21:53:21 作者:会员上传

    等比数列的前n项和 甘天威 一:教学背景 1.面向学生: 中学 学科: 数学 2.课时: 2个课时 3.学生课前准备: (1)预习书本内容 (2)收集等比数列求和相关实际问题。 二:教学课题 教养方面: 1

  • 导学案编写要求和使用说明[最终定稿]

    时间:2019-05-13 01:32:49 作者:会员上传

    导学案编写要求和使用说明 为了切实体现“减负提质十项要求”的精神,打造盘龙中学“卓越课堂”,加快学校教育教学改革又好又快发展的步伐,提高学校教育教学质量,推进教改工作规

  • 等比数列学案(推荐五篇)

    时间:2019-05-14 18:38:16 作者:会员上传

    §3.1等比数列一.学习目标1.理解等比数列的概念,掌握等比数列的通项公式,并会根据它进行有关计算;2.会求等比数列的通项公式,等比数列的判定方法,并能简单应用;3.掌握等比数列的性

  • 6.2在实践中追求和发展真理导学案

    时间:2019-05-14 13:59:01 作者:会员上传

    第六课第二框《在实践中追求和发展真理》导学案
    【学习目标】
    1.识记真理的含义;理解真理最基本属性是客观性;理解真理是有条件的、具体的;理解认识具有反复性、无限性,在实践中

  • 讲等比数列性质学案doc

    时间:2019-05-14 18:38:06 作者:会员上传

    2.4等比数列性质学习目标:1、理解等比数列的主要性质, 能推导证明有关性质; 2、能运用有关性质进行计算和证明. 【温故知新】1.已知数列{an}的前4项为2,6,18,54,则它的一个通项

  • 2.3.1等比数列(学案8)(大全)

    时间:2019-05-14 18:38:15 作者:会员上传

    2.3.1等比数列的性质(学案8)
    一.知识梳理 1.等比数列定义 等比中项 2.通项公式 3.等比数列性质
    (1)若mnpq2t,则(2)若数列an是等比数列,则
    数列ak,akm,ak2m,……成等比,公比为
    (3)若数列an是

  • 等差数列、等比数列的证明及数列求和5篇

    时间:2019-05-13 09:02:17 作者:会员上传

    等差数列、等比数列的证明1.已知数列an满足a11,an3an12n3n2, (Ⅰ)求证:数列ann是等比数列;(Ⅱ)求数列an的通项公式。2.已知数列an满足a15,an12an3nnN*, (Ⅰ)求证:数列an3n是等比数列;(Ⅱ)求数

  • 导学案

    时间:2019-05-14 17:08:34 作者:会员上传

    14《邮票齿孔的故事》学案设计 一、我会读,我会填 撕( sī) 裁( ) 敦( ) 仍( )齿( ) 二、我知道 1、这篇课文写了关于 的故事。我知道了阿切尔在酒店被一个人用 的举动吸引了,并从中得到

  • 导学案

    时间:2019-05-14 17:12:15 作者:会员上传

    《在山的那边》导学案 曹斌锋 教师寄语:理想是指路明灯。没有理想,没有坚定的方向;没有方向,没有生活。 【学习目标】 1.知识目标:了解朗读诗歌的基本要求,做到读音准确,停顿恰当,能

  • 导学案 文档

    时间:2019-05-14 22:13:57 作者:会员上传

    《罗布泊,消逝的仙湖》导学案
    教学目标:
    1.培养学生搜集资料和筛选信息的能力。
    2.感受并理解作者强烈的忧患意识。
    3.培养科学理性精神和人文情怀。
    教学重点、难点
    1.学习对比和

  • 导学案

    时间:2019-05-14 19:37:36 作者:会员上传

    赤峰学院附中高二英语校本课程导学案 编号:4 制作时间:2016.5.3. 使用时间: 2016. 5.7. 编制人: 侯思齐 姓名:English Speech and Technique 2.What is the purpose of Nick’