专题:高等数学13函数极限
-
高等数学函数极限练习题
设f(x)2x1x,求f(x)的定义域及值域。 设f(x)对一切实数x1,x2成立f(x1x2)f(x1)f(x2),且f(0)0,fa,求f(0)及f(n).(n为正整数) 定义函数I(x)表示不超过x的最大整数叫做x的取整函数,若
-
高等数学函数极限连续练习题及解析
数学任务——启动——习题1一、 选择题: 函数yxarccosx1的定义域是 2(A) x1;(B) 3x1(C) 3,1(D) xx1x3x1函数yxcosxsinx是(A)偶函数(B)奇函数(C)非奇非偶函数(D)奇
-
高等数学第一章函数与极限教案[大全]
高等数学教案 课程的性质与任务 高等数学是计算机科学与技术;信息管理与信息系统两个专业的一门重要的基础理论课,通过本课程的学习,也是该专业的核心课程。要使学生获得“向量
-
高等数学-极限
《高等数学》极限运算技巧 (2009-06-02 22:29:52) 转载▼ 标签: 分类: 数学问题解答 杂谈 知识/探索 【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊
-
高等数学第一章 函数、极限与连续[全文5篇]
高等数学教学备课系统 高等数学 教学备课系统 与《高等数学多媒体教学系统(经济类)》配套使用 教师姓名:________________________ 教学班级:________________________ 2004
-
函数极限
习题
1.按定义证明下列极限:
limx6x5=6 ; lim(x2-6x+10)=2; x2x
x251 ; lim lim2xx1x2
limcos x = cos x0 xx04x2=0;
2.根据定义2叙述limf (x) ≠ A. xx0 -
函数极限
《数学分析》教案第三章 函数极限 xbl 第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些
-
函数极限
数学之美2006年7月第1期函数极限的综合分析与理解经济学院 财政学 任银涛 0511666数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际
-
高等数学极限复习题
高等数学复习资料二 川汽院专升本极限复习题 一 极限计算 二 两个重要极限 三 用无穷小量和等价
-
高等数学极限总结
我的高等数学 学我所学,想我所想 【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学
-
高等数学极限总结[最终定稿]
【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基
-
2018考研高等数学基本定理:函数与极限部分
凯程考研辅导班,中国最权威的考研辅导机构 2018考研高等数学基本定理:函数与极限部分 在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要
-
高等数学 第一章函数与极限教案(共5篇)
第一章 函数与极限 §1.1 映射与函数 1.直积或笛卡儿乘积: 设A,B是任意两个集合, AB{(x , y)xA且yB}. 2.两个闭区间的直积表示xOy平面上的矩形区域. 例如 [a , b][c , d]{(x ,
-
函数极限证明
函数极限证明记g(x)=lim^(1/n),n趋于正无穷;下面证明limg(x)=max{a1,...am},x趋于正无穷。把max{a1,...am}记作a。不妨设f1(x)趋于a;作b>a>=0,M>1;那么存在N1,当x>N1,有a/MN2
-
1-2函数极限
高等数学教案§1.2函数极限教学目标:1. 掌握各种情形下的函数极限的基本概念和性质。2. 掌握极限存在性的判定及应用。3. 熟练掌握求函数极限的基本方法。教学重难点:函数极限
-
函数极限概念
一. 函数极限的概念
1.x趋于时函数的极限
设函数f定义在,上,类似于数列情形,我们研究当自变量x趋于+时,对应的函数值能否无线地接近于某个定数A.例如,对于函数fx=,从图象上可见,当 -
2.3函数极限
高三极限同步练习3(函数的极限)
求第一类函数的极限
例1、讨论下列函数当x,x,x时的极限:
1(1)f(x)1 2
(2)f(x)x1 x1
(x0)2(3)h(x)x2 x0)x1求函数的左右极限
例2、讨论下列函数在点x1处的 -
北大版高等数学第一章 函数及极限答案习题1.6
习题1.6
1.证明:任一奇数次实系数多项式至少有一实根.
证设P(x)是一奇数次实系数多项式,不妨设首项系数是正数,则limP(x),
x
limP(x),存在A,B,AB,P(A)0,P(B)0,P在[A,B]连续,