专题:高中数学正弦余弦公式
-
《二倍角的正弦和余弦公式》教学反思
《二倍角的正弦和余弦公式》教学反思 高一数学组 王 旭 上周四(6月20日),笔者在学校双语室进行了《二倍角的正弦和余弦公式》(第一课时)的公开教学。为了改进教学,进一步提高课堂
-
高中数学必修5第一章正弦定理
1.1.1正弦定理(一)教学目标1.知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。2.
-
高中数学《3.1.1两角差的余弦公式》教案(合集五篇)
3.1.1 两角差的余弦公式 一、教学目标 掌握用单位圆法和向量方法建立两角差的余弦公式。通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础。 二、
-
高中数学 《正弦定理》教案1 苏教版必修5
第 1 课时:§1.1正弦定理(1)【三维目标】:一、知识与技能1.通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容和推导过程;2.能解决一些简单的三角形度量问题(会运用正弦定
-
高中数学:8.1《正弦定理》学案(湘教版必修4)
正弦定理学案
一、预习问题:
1、在直角三角形中,由三角形内角和定理、勾股定理、锐角三角函数,可以由已知的边和角求出未知的边和角。那么斜三角形怎么办?确定一个直角三角形或 -
高中数学《正弦定理》教案3 苏教版必修5
第3课时正弦定理知识网络判断三角形状正弦定理的应用平面几何中某些问题解的个数的判定学习要求1.掌握正弦定理和三角形面积公式,并能运用这两组公式求解斜三角形; 2.熟记正弦定
-
2016江西教师招聘面试高中数学说课稿正弦定理(范文大全)
2016江西教师招聘面试高中数学说课稿:正弦定理 易公教育 江西教师考试培训第一品牌2016江西教师招聘面试高中数学说课稿:正弦定理 ---易公教育资料平台 一、教材地位与作用本
-
高中数学 2.1.1《正弦定理》学案 北师大版必修5(范文)
正弦定理 学案【预习达标】在ΔABC中,角A、B、C的对边为a、b、c,a=。 sinAa2. 在锐角ΔABC中,过C做CD⊥AB于D,则|CD|==,即,同sinA1.在RtΔABC中,∠C=90, csinA=,csinB=,即0理得,故有a
-
高中数学必修4平面向量复习5正弦定理余弦定理
5.5正弦定理、余弦定理要点透视:1.正弦定理有以下几种变形,解题时要灵活运用其变形公式.(1)a=2RsinA,b=2RsinB,c=2RsinC;abc(2)sinA=,sinB=,sinC=: 2R2R2R(3)sinA:sinB:sinC=a:b:c.可以用来判断三角形的形
-
高中数学《1.1.1 正弦定理》教案 新人教A版必修5 (大全)
1.1.1 正弦定理 ●教学目标 知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。
-
(新)高中数学高考一轮复习:正弦定理和余弦定理复习课教学设计
(新)高中数学高考一轮复习:正弦定理和余弦定理复习课教学设计《正弦定理和余弦定理》复习课教学设计设计意图:学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于
-
正弦定理教案
正弦定理教案教学目标:1.知识目标:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。2. 能
-
正弦定理证明
新课标必修数学5“解三角形”内容分析及教学建议江苏省锡山高级中学杨志文新课程必修数学5的内容主要包括解三角形、数列、不等式。这些内容都是高中数学中的传统内容。其中
-
正弦定理余弦定理[推荐]
正弦定理 余弦定理一、知识概述主要学习了正弦定理、余弦定理的推导及其应用,正弦定理是指在一个三角形中,各边和它所对角的正弦的比相等.即余弦定理是指三角形任何一边的平方
-
正弦定理说课稿
正弦定理说课内容一 教材分析 :本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生
-
原创正弦定理证明
1.直角三角形中:sinA= ,sinB=, sinC=1即c=∴abc, c= ,c=.sinAsinBsinCacbcabc== sinAsinBsinC2.斜三角形中证明一:(等积法)在任意斜△ABC当中S△ABC=absinCacsinBbcsinA两边同除以abc即
-
正弦定理教案[定稿]
1.1 正弦定理和余弦定理 1.1.1 正弦定理从容说课本章内容是处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系有密切的联系,与已知三角形的边和角相等判定
-
正弦信号DSP(★)
基于DSP的正弦信号发生器的设计 1、绪论 1.1 课题背景 数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年