(a≠0)
除以小于
1的数,商大于被除数:
a÷b=c
当
b<1
时,c>a
(a≠0
b≠0)
除以等于
1的数,商等于被除数:
a÷b=c
当
b=1
时,c=a
(三)分数混合运算:同整数。
(四)分数除法应用题
1、分数乘除法应用题的对比
①
已知单位“
”的量用乘法。例:甲是乙的,乙是
25,求甲是多少?
即:甲=乙
×
—
→
25×
=15
②
未知单位“
”的量用除法(或方程)。例
:
甲是乙的,甲是
15,求乙是多少?
即:甲=乙
×
—
→
÷
=
(建议列方程答)
x
=
2、分数应用题基本数量关系
(1)
甲是乙的几分之几?
甲
=乙
×
几分之几
乙=甲
÷
几分之几
几分之几=
甲
÷
乙
(2)甲比乙多(少)几分之几?
A.方法
:差
÷
乙=
(例:
比
少几分之几?(15
-
9)
÷
=
=
=)
B.方法
:先求甲是乙的几分之几,再与
相比。
①
多几分之几是:
-
(例:
比
多几分之几?
÷
=
-
=
-
=)
②
少几分之几是:
-
(例:
比
少几分之几?
-
÷
=
-
=
-
=)
(3)甲比乙多(少)几分之几,求乙是多少?
乙
=
甲
÷
(1
+)
例
:
比乙少,求乙是多少?
÷
(1
-)
=
÷
=
例
:
比乙多,求乙是多少?
÷
(1
+)
=
÷
=
◆画线段图:
(1)找出单位“
”的量,先画出单位“
”,标出已知和未知。
(2)分析数量关系。
(3)找等量关系。
(4)列方程。
两个量的关系画两条线段图,部分和整体的关系画一条线段图。
第四单元
比
(一)比的意义:
两个数的比表示两个数相除。
1、比式中,比号(∶)前面的数叫比的前项,比号后面的项叫做比的后项,比号相当于除号,比的前项除以后项的商叫做
比值。
◆连比如:
:
:
读作:
比
比
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:
∶
=
=
÷
=
=
0.6
∶
读作:
比
3、区分比和比值:
(1)比值是
一个数,通常用分数表示,也可以是整数、小数。
(2)比是
一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
4、比和除法、分数的区别:
除法
被除数
除号
除数(不能为
0)
商不变性质
是一种运算
分数
分子
分数线
分母(不能为
0)
基本性质
是一个数
比
前项
比号
后项(不能为
0)
基本性质
两个数的关系
(二)比的基本性质:
比的前项和后项同时乘或除以相同的数(0
除外),比值不变。
(三)化简比:
化简之后结果还是一个比,不是一个数。
1、根据比的基本性质,可以把比化成最简单的整数比。
2、方法:
(1)整数比:用比的前项和后项同时除以它们的最大公约数。
(2)分数比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
(3)小数比:向右移动小数点的位置,把小数比先化成整数比,再化简。
◆也可以先求出比的比值,再将结果写成比的形式。
(四)按比例分配:
把一个量按一定的比分配的方法叫做按比例分配。
例如:已知甲是
21,甲、乙的比
∶
5,求乙是多少?
方法一:
21÷3
=
乙:
×
=
方法二:甲乙的和
21÷
=
乙:
56×
=
方法三:甲
÷
乙
=
乙
=甲
÷
=
÷
=
第五单元
圆
(一)圆的认识
1、定义:圆是平面内
封闭曲线
围成的平面图形。
2、相关概念:
(1)圆心
O
:
圆中心的点叫做
圆心
。圆心一般用字母
O
表示。圆多次对折之后,折痕的相交于圆的中心即圆心。
圆心确定圆的位置。
(2)半径
r
:
连接圆心到圆上任意一点的线段叫做
半径
。在同一个圆里,有无数条半径,且所有的半径都相等。
半径确定圆的大小。
(3)直径
d:
通过圆心且两端都在圆上的线段叫做
直径
。在同一个圆里,有无数条直径,且所有的直径都相等。
直径是圆内最长的线段。
(4)等圆:半径相等的圆叫做等圆,等圆通过平移可以完全重合。
(5)同心圆:圆心重合、半径不等的两个圆叫做同心圆。
3、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
◆有
条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角
有
条对称轴的图形:长方形
有
条对称轴的图形:等边三角形
有
条对称轴的图形:正方形
有无数条对称轴的图形:圆,圆环
4、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
(二)圆的周长
:
围成圆的曲线的长度叫做圆的周长,周长用字母
C
表示。
1、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母
π
表示。
即:圆周率
π
=
=周长
÷
直径
≈3.14
所以,圆的周长
(c)=
直径
(d)
×
圆周率
(π)
——
周长公式:
C
=
πd
或
C
=
2πr
◆
圆周率
π
是一个无限不循环小数,3.14
是近似值,π
>
3.14。
2、周长的变化的规律
:半径扩大多少倍,直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
如果
r
∶
r
∶
r
=
d
∶
d
∶
d
=
C
∶
C
∶
C
3、半圆周长=圆周长一半
+
直径=
×
πr
=
πr
+
d
(三)圆的面积
1、圆的面积=π×圆的半径(r)的平方
S
圆
=π
r
×
r
=
π
r
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,蒙古包、篮子、盘子等做成圆形。
3、圆面积的变化的规律
:半径扩大多少倍,直径、周长也同时扩大多少倍;圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
如果
:
r
∶
r
∶
r
=
d
∶
d
∶
d
=
C
∶
C
∶
C
=
∶
∶
则:
S
∶
S
∶
S
=
∶
∶
4、环形面积
=
大圆面积-小圆面积=
π
r
大
-π
r
小
=
π(R
大
r
小
2)
(四)扇形
1、定义:
圆上任意两点(如点
A、B)之间的部分叫做
弧
(读作弧
AB),一条弧和经过这条弧两端的两条半径所围成的图形叫做
扇形。
2、圆心角
:
顶点在圆心的角叫做圆心角
。(在同一圆内,扇形的大小与圆心角的大小有关)
3、扇形面积
=
π
r
×
(n
表示扇形圆心角的度数)
特殊扇形的面积(90
︒、180
︒):
S
=
π
r
S
=
π
r
(五)圆周长与圆面积的实际应用
1、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:
2×
π
×
跑道宽度。
2、任意一个正方形的内切圆的直径是正方形的边长,它们的面积比是
∶
π即
∶
3.14。
3、外方内圆的间隙面积=正方形的面积-圆的面积
S
=
0.86
r
外圆内方的间隙面积=圆的面积-正方形的面积
S
=
1.14
r
4、常用数据
π=
3.14
π=
6.28
π=
9.42
π=
12.56
π=
15.7
π=
18.84
π=
21.98
π=
25.12
π=
28.26
π=
3.14
π=
12.56
π=
28.26
π=
50.24
π=
78.5
π=
113.04
π=
153.86
π=
200.96
π=
254.34
至
10的平方数
²
=1
²
=4
²
=9
²
=16
²
=25
²
=36
²
=49
²
=64
²
=81
²
=100
²
=121
²
=144
第六单元、百分数
(一)百分数的意义
:
表示一个数是另一个数的百分之几。
◆
百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比,所以,百分数又叫百分比或百分率,百分数不能带单位。
1、百分数和分数的区别和联系:
(1)联系:都可以用来表示两个量的倍比关系。
(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。
百分数的分子可以是小数,分数的分子只以是整数。
2、小数、分数、百分数之间的互化
(1)百分数化小数:小数点向左移动两位,去掉“
%
”。
(2)小数化百分数:小数点向右移动两位,添上“
%
”。
(3)百分数化分数:先把百分数写成分母是
100的分数,然后再化简成最简分数。
(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。
(5)小数化分数:把小数成分母是10、100、1000
等的分数再化简。
(6)分数化小数:分子除以分母。
(二)百分数应用题
1、求常见的百分率
如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。
◆
由于求率的特殊要求,不要忘记在算式后面
“
×
100%”
2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。
◆
方法同求一个数比另一个数多(少)几分之几,只不过结果用百分数表示而已。
求甲比乙多百分之几
(甲-乙)÷乙
求乙比甲少百分之几
(甲-乙)÷甲
3、求一个数的百分之几是多少
一个数(单位“
”)
×百分率
4、已知一个数的百分之几是多少,求这个数
对应量÷百分率=一个数(单位“
”)
5、百分数应用题型分类
(1)一个数是另一个数的百分之几
①
甲是
50,乙是
40,甲是乙的百分之几?(50
是
40的百分之几?)
50÷40
=
125%
②
甲是
50,甲是乙的125%,乙数是多少?(一个数的125%
是
50,这个数是多少?)
50÷125%
=
(2)一个数比另一个数多(少)百分之几
①
甲是
50,乙是
40,甲比乙多百分之几?(50
比
多百分之几?)
(50-40)÷40
=
25%
②
乙比甲少
20%,少
10,乙是多少?
10÷20%-10
=
(3)比一个数多(少)百分之几的数
①
乙是
40,甲比乙多
25%,甲数是多少?(什么数比
多
25%
?)
40×
(1+25%)=
②
甲是
50,比乙多
25%,乙数是多少?(50
比什么数多
25%
?)
40÷
(1+25%)=
分数、百分数、小数的互化
=0.5
=50%
=0.25=25%
=0.75=75%
=0.2=20%
=0.4=40%
=0.6=60%
=0.8=80%
=0.125=12.5%
=0.375=37.5%
=0.625=62.5%
=0.875=87.5%
=0.1=10%
=0.3=30%
=0.7=70%
=0.9=90%
=0.05-=5%
=0.04=4%
第七单元、扇形统计图
1、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图。
2、常用统计图的优点:
(1)条形统计图直观显示每个数量的多少。
(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少。
(3)扇形统计图直观显示部分和总量的关系(显示部分占总量的百分比)。
各类公式
达标率=
×
100%
发芽率=
×
%
命中率
=
×
%
xx
率
=
×
%
(计算公式)
折扣公式:
折数
=
现价
÷
原价
×100%
现价
=
原价×折数
便宜(少用)的钱
=
原价×
(1
-
折数)
税率公式:
缴纳税款
=
营业额×税率
缴纳税款
=
应纳税额×税率
储蓄公式:
(1)利息的计算公式
=
本金
×
利率
×
时间
税后利息
=
本金
×
利率
×
时间
×
(1
-税率)
(2)不缴纳利息所得税:本金
=
利息
÷
时间
÷
利率
缴纳利息所得税:本金
=
税后利息
÷
时间
÷
利率
÷
(1
-税率)