函数极限理论的归纳与解题方法的总结

时间:2019-05-12 14:49:17下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《函数极限理论的归纳与解题方法的总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《函数极限理论的归纳与解题方法的总结》。

第一篇:函数极限理论的归纳与解题方法的总结

目录

言 ········································································································· 1

一、基本概念与基本理论 ············································································ 2(一)函数极限 ··························································································· 2(二)重要极限 ··························································································· 9(三)函数的上极限与下极限 ·································································· 10(四)Stolz定理的推广定理 ···································································· 11

二、习题类型与其解题方法归纳 ······························································ 11(一)根据定义证明函数正常极限与非正常极限的方法。················· 12(二)根据定义与极限性质证题的方法 ·················································· 14(三)求函数极限方法 ············································································· 15(四)判断函数极限存在与不存在的方法 ·············································· 20 参考文献: ································································································· 24

函数极限理论的归纳与解题方法的总结

薛昌涛

(渤海大学数学系 辽宁 锦州 121000 中国)摘要:宇宙中的任何事物都是不断运动变化、相互联系、相互制约的。“函数”的产生正是为了满足刻划这种关系的需要,函数极限理论可谓函数理论重中之重。极限定义24个,性质60个,习题更是千变万化,看上去似乎很繁杂,但经过深入浅出的分析就会很明了。本文旨在化繁为简、总结规律,启示方法。关键词:函数、极限、方法

The Conclusion of Theory of Function Limit and Methods

Summary(Department of math bohai university liaoning jinzhou 121000)

Xue Changtao Abstract: Everything in the universe is always moving, varying, intergrating or restricting each other.Function emerged for the need of describing this relation.The thory of function limit plays a key role in function theory.There are Twenty – four definitions to limit, sixty qualties, and the exercises are ever changing.It seems complex very much, but it will be clear after delicate analysis.This text aim at changing complex to simple, suming up the regulars, enlightening the methods.Key words: Function Limit

Method

“函数”一词是微积分的创始人之一莱布尼兹(Leibniz)最先使用的,并且把x的函数记为f(x),(x)等,但是,直到19世纪初,人们还是把函数理解为“变量和常数组成的解析表达式”。直到1834年,狄里克莱(Dirichlet)指出,函数y与变量x的关系不但不必用统一的法则在全区间上给出,而且不必用解析式给出。至此,函数才被赋予了单值对应的意义。在整个宇宙中,我们找不出不在运动变化的事物,但各个事物的变化,又绝非彼此孤立隔绝,而是相互联的,相互制约的。“函数”无论在理论研究还是现实的科学探索,都发挥着举足轻重的作用,而极限问题可谓函数问题之重点,所以搞清函数极限的相关问题是尤为重要的。

一、基本概念与基本理论

(一)函数极限

1.函数正常极限与非正常极限定义共4624个,它们的形式是:

xx0xx0xx0xxxlimA(A为有限数)可见函数正常极数定义共6个,非正常极数定义共18个,比数列正常极限定义1个、非正常极限定义3个(两者总共4个)多了20个定义,而此24个定义是整部数学分析的基础。对它们的理解与记忆按下述程序进行:先理解与记忆4个基本定义,再推及其它而总观24个定义。

(1)四个基本定义

定义1(M定义)设f是定义在[a,)上的函数,A是一个确定的数,若0,M0,当xM时,有f(x)A,则称函数f当x时以A为极限,记作limf(x)A,或f(x)A(x),或

xf()A。

此时也称A为f在正无穷远处的极限。

注1 此M定义,是数列极限limxna之N定义的推广,只

n需将N定义中之n换为x,N换为M即可,这是由于,数列是以自然数集为定义域的函数,故n,N均为自然数集的成员,而函数f(x)的定义 域为实数集,因而改为R中之x,m来描述。

注2 定义1是在正无穷远点处函数的极限,现将正无穷远点改为有限点x0处,其函数极限即为下述定义2,即只要将正无穷远邻域的描述xM改为x0的空心邻域的描述0xx0即可,因变量刻划相同。

定义2(双侧极限定义)设函数f在点x0的某个空心邻域U0(x0,)内有定义,A是一个确定的数。若0,0,(),当0xx0时,有f(x)A,则称f当x趋于x0时以A为极限,记作limf(x)A,或f(x)A(xx0)。

xx0问题1 在limf(x)A的定义中,为什么限定xx00(即xx0)?xx0如果把此条件去掉,写作“当xx0时,有f(x)A”是否可以?[3]

答:不可以,极限limf(x)A的意义是:当自变量x趋于x0时,对

xx0应的函数值f(x)无限接近常数A。f(x)在x0的情况,包括f(x)在x0是否有定义,有定义时,f(x0)等于什么都不影响xx0时,f(x)的变化趋势,故应把xx0这一点排除在外。如果把此条件去掉,把limf(x)A的定义

xx0写作“0,0,当xx0时,有f(x)A”,则当xx0时,也有f(x)A,由的任意性,要使此不等式成立,必定有f(x)A,这个条件显然与xx0时,f(x)的变化趋势是不相干的。

定义3(单侧极限定义)设函数f在x0,x0[或x0,x0]内有定义,A是一个确定的数,若0,0(),使当0xx0(或0x0x)时,有f(x)A,则称f在x趋于x0(x0)时以A为右(左)极限,记作limf(x)A,或f(x00)A(limf(x)A或

xx0xx0 3 f(x00)A)。

注3 定义3中右极限(左极限),则xx0xx0;f定义在x0的右侧,对于左极限,f定义在x0的左侧,则xx0x0x,于是定义2是关键,只要考虑到“单侧”这一特点。

定义4(无穷大量G定义)函数f定义在x0的某个空心临域U0(x0,)内,若G0,使当0xx0时,有f(x)G,0(),则称f当x趋于x0时有非正常极限,或称f当x趋于x0时为无穷大量(或发散到无穷大),记作limf(x)或f(x)(xx0)。

xx0(2)由自变量变化趋势刻划六种与因变量变化趋势刻划四种搭配成正常极限与非正常极限共24个定义的方法。

自变量变化趋势及其刻划六种 :

xx0xx0xx0xxx0xx00xx0(0)0x0x xMxM(M0)xM因变量变化趋势及其刻划四种:

f(x)Af(x)f(x)f(x)f(x)A(0)f(x)G f(x)G(G0)f(x)G将自变量与因变量的变化趋势刻划互相搭配,而构成24种,每一种均按前述四个基本定义的标准叙述法叙述,即得24个定义。

2、正常极限性质(共48个或60个)按华东师大教材,每一种类型极限有8个性质来计算,六种类型极限总共有48个性质。再加上重要的“绝对值性”与“单调有界定理”,则共计60个性质。

前面是按照极限类型而言;若按照性质类型而言,对照数列极限性质,函数极限性质总共8种(或10种):存在性、唯一性、局部保号性、局部有界性等等,每一种,按六类极限形式又有六类形式,总计仍是48个或60个性质。无论是48个还是60个性质,看似很多,实际上只要扣住前述自变量变化趋势刻划六种,再将数列极限相应性质移过来,这些性质均不难掌握了。

教材中是就极限类型limf(x)A而给出8个性质,这里,再就极限

xx0xlimf(x)A而给出。

极限limf(x)A的性质:

x(1)存在性——三个存在定理

I两边夹定理 设xa,,均有y(x)f(x)z(x),且xlimz(x)limy(x)A,则limf(x)A

xxII柯西准则

设函数f在[a,)内有定义,则limf(x)存在x0,M0,当x,xM时,有f(x)f(x)。

III单调有界函数定理

设函数f在[a,)内单调且有界,则limf(x)x存在。

注4 单调有界函数定理在有限点x0处为:若函数f(x)在包含x0的某一区间单调有界,则f(x)在x0的左、右极限必存在。

这里是左、右极限存在,但在x0的极限不一定存在,这是与数列单 调有界必收敛定理之区别。

(2)唯一性

若limf(x)存在,则它只有一个极限。

x(3)局部有界性

若limf(x)存在,则M0,在M,内,f有界。

x(4)局部保号性 若limf(x)A0(0),则对任何

x当xM时,有f(x)A0[或f(x)A0]。AA0(AA0),M0,(5)不等式性

若limf(x),limg(x)均存在,且M0,当xM时,xx有f(x)g(x),则limf(x)limg(x)。

xx(6)四则运算法则

若limf(x),limg(x)均存在,则fg,fg,xxf[仅g除法还要求limg(x)0]在x时极限也存在,且有

xxxlim(f(x)g(x))limf(x)limg(x),xxlimf(x)g(x)limf(x)limg(x),xx

f(x)f(x)xlimlimxg(x)limg(x)x(7)归结原则

设函数f在[a,)上有定义,则limf(x)A对任何

xxn[a,),xn,都有limf(xn)A,其中A为有限数。

n推论 设f在[a,)上有定义,则limf(x)存在对任何xn[a,),xxn,limf(xn)均存在。

n注5 归结原则与数列情形之“数列极限与其子列极限关系定理”类似,均是在揭示整体与部分的关系这一意义上而言的。

(8)绝对值性

若limf(x)A,则limf(x)A,且

xxxlimf(x)0limf(x)0

x

3、无穷小量与无穷大量

6(1)无穷小量

若limf(x)0,则称当xx0时f为无穷小量。

xx0无穷小量的四则运算性质:

(i)两个无穷小量之和、差、积仍为无穷小量。(ii)无穷小量与有界变量之积为无穷小量。

(iii)两个无穷小量之商的极限为下述四种情形之一:有限实数a0,0,,不存在,此即无穷小量的阶的比较。

无穷小的阶的比较,是考察它们收敛于零的速度的快慢。设xx0时,f,g均为无穷小量,则

a0,称f与g为同阶无穷小(当xx0时)f(x)0,称f为比g的高阶无穷小(当xx0时)limxx0g(x),称f为比g的低阶无穷小(当xx0时)不存在其中,当a1时,又称f与g为等价无穷小(当xx0时),记作f(x)~g(x)(xx0)。

若limxx0f(x)l0,l为有限数,n0,则称 f为关于基本无穷小gng(x)的n阶无穷小,n通常为正有理数。

注6 在应用极限运算的四则运算法则时,初学者会写出“0,1”等式子。这是不对的。出现这类“错误”的主要原因是将符号“”误认为一个常数,对它施行了数的运算法则。事实上,“”不是一个常数,而是表示绝对值无限增大的变量,记号“”表示两个绝对值无限增大的变量之差,仍是一个变量。同样地,记号“示两个绝对值无限增大的变量之商,仍是一个变量。

”表问题2 下面的极限运算对吗?[3]

limx2sinx011limx2limsin0

x0xx0x1x答:结果正确,表达错误,这是因为limsin不存在,不能利用积的x0极限运算法则,则可以这样表达:因为limx20,sinx011,所以x1limx2sin0。x0x问题3 如果数列an收敛,数列bn发散,那么数列anbn是否一定收敛?如果数列an和bn都发散,那么数列anbn的收敛性又怎样?[3]

答:在两种题设情形下,数列anbn的收敛性都不能肯定,现分析如下:

情形

1、数列an收敛,数列bn发散。

若liman0,则数列anbn必定发散,这是因为若数anbn收敛,且nliman0,则由等式bnxanbn及商的极限运算法则立即可知数列bn收an敛,与假设矛盾。

若liman0,则数列anbn可能收敛,也可能发散。例如,x(1)an,bnn(nN),anbn1(nN),于是数列anbn收敛。

(2)an,bn(1)nn(nN),anbn(1)n(nN),于是数列anbn发散。

情形2 数列an和bn都发散。1n1n若数列an和bn中至少有一个是无穷大,则数列anbn必定发散。这是因为若数列anbn收敛,而数列an为无穷大,从等式bn得limbnlimanbnlimnnanbn便推an10,与假设矛盾。nan若数列an和bn都不是无穷大,则数列anbn可能收敛,例如,(3)anbn(1)n(nN),anbn1(nN),于是数列anbn收敛。

(4)an(1)n,bn1(1)n,(nN),anbn(1)n1(nN),于是数列anbn发散。

4、几个关系

(1)函数极限与数列极限的关系——归结原则(2)单侧极限与极限的关系

xx0limf(x)Alimf(x)与limf(x)均存在相等,均为A。

xx0xx0(3)无穷大量与无穷小量的关系(倒数)(二)重要极限

1sinx1lim1,lim1e,lim1xxe。x0xx0xxx前者为型的未定式的极限,后两式为1型的未定式的极限。问题4 讨论函数极限时,在什么情况下要考虑左、右极限?[3] 答:一般说来,讨论函数f(x)在x0点的极限,都应先看一看单侧极限的情形。如果当xx0时,f(x)在x0两侧的变化趋势一致,那么就不必分开研究;如果f(x)在x0两侧的变化趋势可能有差别就应分别讨论记左、右极限。例如,求分段函数在分段点处的极限时,必须研究左、右00 9 极限;有些三角函数在特殊点的左、右极限不一样。例如,tanx在x2的左右极限不一样;有些反三角函数、指数函数也有类似情形,例如,1arctan,ex在x0处的左、右极限都不一样。

x1(三)函数的上极限与下极限

1、概念

设函数f在x0的某个空心临域U0(x0,)内有定义,则定义xx0limf(x)limsupf(x)M,limf(x)liminff(x)m

0xU0(x0,)xx00xU0(x0,)其中M,m为有限数或或,特别当f在U0(x0,)内有界时,[1] M,m均为有限数。

2、性质(1)上极限性质

设limf(x)M,M为有限数,则(I)0,0,当0xx0时,xx0有f(x)M;(II)0,在x0的每一个空心临域内,必有x,使得f(x)M

(2)下极限性质

设limf(x)m,m为有限数,则(I)0,0,使当0xx0时,xx0有f(x)m;(II)0,在x0的每一空心临域内,必有x,使得f(x)m。

3、函数上(下)极限与函数值数列上(下)极限的关系。

xn为此邻域内的任意定理

设函数f在x0的某空心临域内有定义,点列,xnx0(n),则对应于一切这种点列xn,limf(xn)所成数

n集必有最大值(包括或),limf(xn)所成数集必有最小值

n 10(包括或),f在x0的上(下)极限即为这最大(小)值。

4、上(下)极限与极限的关系。

xx0limf(x)llimf(x)limf(x)l,l为有限数或或。

xx0xx0(四)Stolz定理的推广定理

定理

设(i)函数f,g定义于[a,),且均在[a,)的任意子区间有界。

(ii)对一切x[a,),g(xT)g(x),其中T为一正常数,(iii)limg(x),x(iv)limxf(xT)f(x)f(x)l(有限数或或),则liml。[5]

xg(xT)g(x)g(x)可见,(ii)、(iii)两条是stolz第二定理之“bn”的推广,(iv)是“limanan1l”之推广。

nbbnn1而此stolz定理的推广定理与罗比达法则不同点是:后者为lim型及xf(x)存在,而在这里,f只要定义于[a,),且在[a,)上的任意子g(x)f(xT)f(x)l即可。

g(xT)g(x)区间上有界,g(x)(x),及limx

二、习题类型与其解题方法归纳

关于函数极限的习题类型大致有:

(一)根据定义证明函数正常极限与非正常极限。(二)根据极限定义与极限性质证题。(三)求函数极限。

(四)判断函数极限存在与不存在。此外,还有诸如无穷小(无穷大)的阶的比较等,本文将不涉及。关于上述四种类型习题的解题方法在下文给出。(一)根据定义证明函数正常极限与非正常极限的方法。

这里是指根据24个定义证明函数的正常极限与非正常极限的方法,属根据定义证题术——扣住定义而证,解题思路均是:0(或G0),找0(或M0),使当满足自变量的变化趋势刻划时,有因变量变化趋势之刻划,解题关键是找或M,找法如下。

1、当f以具体形式给出时,扣住 因变量变化趋势之刻划f(x)Gf(x)Gf(x)f(x)f(x)A,f(x)G,分析并对f(x)A,f(x)进行恒等变形或加强不等式,使之变成f(x)Ay(x),f(x)z(x)f(x)zx,其中y为正无穷小量,z为正无穷大量,令y(x),f(x)zx0xx0,xM或z(x)G;再扣住 自变量变化趋势之刻划。0xx0,xM对不

0x0x,xMxx0()等式g(x)或不等式z(x)G,关于xx0解之,解得xx0(),取

x0x()xx(G)()或关于x,解之,解得x(G),取M(G)。

xx(G)2.抽象论证找或找M法

f(x)当f是以抽象形式给出时,与1类似,对f(x)A,f(x)进行恒等变

f(x)

f(x)z(x)形或加强不等式,使之变成f(x)Ay(x),f(x)z(x),其中y为已知

f(x)z(x)正无穷小量,z为已知正无穷大量,利用此y或z确定抽象的或M。确定或M的具体方法与技巧是:(I)根据已知极限或无穷大量确定或M。(II)根据已知极限的性质或无穷大量确定或M。(III)三角不等式及其它。

可见,与数列的此部分方法完全类似,只是比之更复杂些,下面举一些例子。

1、设f在任一有限区间上Riemann可积,且limf(x)A,证明

x1xlimf(t)dtA,(上海交大1987)。xx0x分析

要证:0,M0,当xM时,有If(t)dtA,x01x1x1x1x而If(t)dtAdt(f(t)A)dtf(t)Adt;由f(x)A不x0x0x0x0难联想到已知limf(t)A,于是10,M00当tM0时,有tf(t)A1,而,由于I10(x),则20,M1M0,当xM1时,1x有I12;又由于I11dt1,再考虑要证I,则取12及

2x0取MM1。

证明:0,因limf(t)A,则M00,当tM0时,有

tf(t)A2。

M0因f 任一有限区间上Riemann可积,则

0f(t)Adt为定数,于是1limxx M00f(t)Adt0,因而MM0,当xM时有 1I1xI1M00xf(t)Adt2,x11xM0f(t)AdtdtxM0xM022x2

由此有:当xM时,1x1x1xf(t)dtAf(t)dtAdtx0x0x01x1x(f(t)A)dtf(t)Adt x0x0I1I2221x即limf(t)dtA xx0——抽象法证找M法(利用已知极限分段处理)。(二)根据定义与极限性质证题的方法

这里是指根据24个定义和48个性质等证题,其方法为:遇到正常极限与非正常极限符号,就用,G等语言表达出来;深入分析题目,联想相关性质;再将之有机结合起来而找到证题方法。

例2 设f在0,内满足f(x)f(x2),且有x0limf(x)limf(x)f(1)。

x证明:f(x)f(1),0x。

分析

证明恒等问题,首选反证法,如何找矛盾?扣住已恬f(x)f(x2),不难得到:当x1是,x2(n),当0x1时,x20(n)而找矛盾。nn证明

反正法

假设f(x)f(1),则至少存在一点x00,,使f(x0)f(1),则 f(x0)f(1)或f(x0)f(1),且显然x01,下面只证f(x0)f(1)的情形,f(x)f(1)的情形同理可证。

(I)当x01时,因limf(x)f(1),则对f(1)f(x0)0,10,x0当0x时,有f(x0)f(1)f(x)f(1)

(1),因

ln2nx0(n),则对0,Nlog2lnx0,当nN时,有0x0;2n022,于是由(1)知不妨取n0N1及取xx0,则显然0xx0n0n0f(x0)f(x)f(x2n00)f(x0)矛盾。

x(II)当x01时,因limf(x)f(1),则对f(1)f(x0),M10,当xM时,有f(x0)f(x)f(1)

(2)因xlnMM0,Nlog2lnx02n0(n),则对

,当2n0nN时,有xx0M,不妨取n0N1及取xx盾。2n002n02M,于是由(2)知f(x0)f(x)f(x0)f(x0),矛,则xx0n0综上即得证f(x)f(1),0x。(三)求函数极限方法

1、根据定义证明函数以A为极限,即已求得了函数的极限。

2、用函数极限的四则运算法则、不等式性、绝对值性及无穷大量的四则运算等性质,根据已知极限求极。

3、根据公式与不等式求极限。

4、用两边夹定理求极限。

5、用stolz定理的推广定理求极限。

6、用罗比达法则求极限。

7、用罗比达法则与微积分学基本定理、含参量积分求极限,用牛顿——莱布尼兹公式求极限。

8、用函数的连续性求极限。

9、用泰勒公式、导数定义等求极限。

10、用函数的上、下极限求极限。

11、用左极限与右极限求极限。

12、用归结原则求极限。

13、用函数项级数理论,如函数项级数收敛的必要条件或函数项级数的和函数求极限。

14、其它,诸如反证法、变量代换等等。

下面在罗比达法则和泰勒公式的选用上,微积分学基本定理与罗比达法则的运用上,两边夹定理,stolz定理的推广定理的运用上重点举几例。

f(x0h4)f(x0)例3 设f在x0可导,求Ilim。2h01coshf(x0h4)f(x0)h4解 Ilim 42h0h1cosh4h3f(x0)limh0sinh22h

2f(x0)——用导数定义、罗比达法则、已知极限、极限四则运算法则求极限。

例4 求Ilimxaaanx1x2xn,(ai0,i1,2,n)。1x 16 分析 本题为0型未定式,用罗比达法则试解之。不难发现,用罗比达法则两次之后,所得函数表达式已变得更为复杂,因而用罗比达法则解决不了,需改用它法。考虑到a1,,an为有限个正数,因而必有最大值与最小值,于是联想到用与不等式有关的两边夹定理。

解 令kmaxa1,a2,,an,则

k1nnxkxaaan1x1xxlim1xx1x2xnnknk,1xx1x由于limnnxn01。

因而limkn1xxk,1xxa1xan由两边夹定理知:Ilimxnkmaxa1,,an 例5 设f在A,B上连续,AabB。

b证明:Ilimh0abf(xh)f(x)dxf(b)f(a)

hf(xh)f(x)dxf(b)f(a),只要求出极限值为

h分析 要证limh0af(b)f(a),即已证得,于是归结到求极限问题。显然积分号下不能取极

bb限;而已知f连续,则显然f(x)dx与f(xh)dx均可由其原函数在两端

aa点a,b处的函数值所给出,于是极限问题不难解决。

解 因为f在a,b上连续,则f在a,b上有原函数F,F(x)f(x),由牛顿——莱布尼兹公式知:

bIlimh0af(xh)f(x)dx

hb1blimf(xh)dxf(x)dxh0haa1bF(xh)|baF(x)|ah0hlim[F(bh)F(ah)F(b)F(a)]limh0

F(bh)F(b)F(ah)F(a)limh0h0hhF(b)F(a)f(b)f(a)lim——用原函数存在定理、牛顿——莱布尼兹公式、导数定义等求极限。

1例6 求Ilimex1(中国科技大学)xx2x1分析 令f(x)ex1,分析f(x)之结构,xx2易知当x时,ex0,1,f(x)为0型未定式;

1当x时,ex,10,f(x)为0型未定式,按通常方

x110x法,将其化为型或型去解决,于是有f(x)x0ex2x21xx2,其为

型。(当0x11,x时)或型(当x时)分子之导数为12xln10xx1x比1复杂得多,且求导不易,因而此法不可取;另想别法,只得将11按幂指函数法处理如下。xx21xx2 18 f(x)e1x2ln1xx,只求出limx2ln1x即可,易见

x1x0Lx2ln1x为型未定式,需化为型或型,于是可用罗比达

0x法则解之,当然将ln1展成泰勒公式,也可解之。

解法一 由罗比达法则知

11limx2ln1xlimxxln11xxxx1xln11xlimxx1 11ln1x1xlimx(1)x2x1121xx1(1x)2limx22x31x则Ie1limx2ln1xxxe

12——用幂指数函数处理法与罗比达法则求极限。

y21解法二 令y,由泰勒公式知ln(1y)y(y2),2x则111112ln(1y)0(y)(y0),22y2y2y1limx2ln1xxx因而Iee

12——用幂指数函数处理法与泰勒公式求极限。例6解题方法小结:

1°某些问题,看似用罗比达法则解之,但较麻烦;用泰勒公式解之,甚是方便。

2°幂指数函数处理法:形如f(x)g(x)的函数称为幂指数函数,其中f(x)0。遇见这类问题,一般是将其恒等变形如下形式来处理:f(x)g(x)eg(x)lnf(x),这就是幂指数函数处理法。本例的每种解法中,均用到此法。

(四)判断函数极限存在与不存在的方法

1、判断函数极限存在的方法

(1)求出函数极限,即已断定函数极限存在,因而(三)中各法适用。(2)用函数极限柯西准则。(3)用单调有界函数定理。(4)用归结原则的推论。

(5)证明函数的上极限与下极限相等。(6)反证法、变量代换及它法。

2、判定函数极限不存在的方法

(1)由极限定义而来——极限定义的否命题

对任何实数A,limf(x)A;即对任何实数A,存在某一00,对

xx0任何0,xU0(x0,),使得f(x)A0,则limf(x)不存在。

xx0(2)由柯西准则而来——柯西准则的否命题。

xx0limf(x)不存在存在某一00,对任何0,x,xU0(x0,),使得f(x)f(x)0。

(3)左、右极限关系定理的否命题

左极限与右极限均存在且不等;或左极限与右极限中至少有一个不 20 存在,则极限不存在。

(4)归结原则的否命题

,xna,xna,xna(n),xna(n),存在两个点列xn,xn);或存在一个点列xn,xna,xna(n),但但limf(xn)limf(xnnnnlimf(xn)不存在,则limf(x)不存在。

xa(5)上极限与下极限关系的充要定理的否命题。上极限与下极限不等,则极限不存在。

(6)运算:若limf(x)存在,limg(x)不存在,则lim[f(x)g(x)]不存在。

xx0xx0xx0(7)反证法,变理代换法及其它。

111例8 1)设f于[1,)连续可微,且f(x)2ln(1) xf(x)1x求证:limf(x)存在。(吉林大学)xx0分析

要证limf(x)存在,则f的表达式在题设中没有给出,但题设x中给出了f表达式。

由此表达式,立知f(x)0,则f为递增的,因而联想到单调有界定理去试之,这样只要探究出f的上有界性即可。为此,必须将f与已知的f联系上,由于已知f连续,则由牛顿——莱布尼兹公式知xxf(x)f(t)dtf(1),于是只要证出f(t)dt有上界即可,这就需要对11f(t)加强不等式。

11x11ln1,1xx1x1x证明

因x1,则 21

111于是f(x)2ln10,f(x)1xx则f在[1,)上单调增加,又因

f(x)111111ln1xxx1xx1xx1x11xx1xx1xx11113x2x2x2f连续,由牛顿——莱布尼兹公式知

xx

f(x)f(1)f(t)dt1112t32dt111 x则f(x)1f(1),x[1,)。

因而f在[1,)上单调且有上界,由单调有界定理知limf(x)存在。

x例9 证明limsin不存在。

x01x解法一 点到xn12n2,xn1,n1,2,3,,且xn0,n),由归结原是知limsin0(n),但limf(xn)10limf(xnxnnnx01不存x在。

——用归结原则的否命题证明函数极限不存在。

解法二

分析 用柯西准则的否命题试解之。此时,要证存在某一00,对任何0,x,x,0x,0x,但f(x)f(x“)0。需要找0,x,x由于f(x)sin为三角函数,不妨取特殊的函数值,例如,1xf(x)1,f(x)0则f(x)f(x)111,取0。由于f(x)1,f(x)0,22解得x12n2,x11,则,n1,2,3,为简便起见,取x2nn10xx,令x”,解得n11,则x,x均以找到。,取n0 2211,因而 解法二 0,对任何0,取n0220x12n0211,,及0x2n02n0但f(x)f(x)sin1limsin不存在。x0x111sin10,由柯西准则的否命题知xx2证明函数极限存在或不存在的方法总结:

何种情况下选用何种方法?一般规1证明函数极限存在的方法很多,律是:当函数以抽象形式给出时,多用柯西准则,有时也用归结原则推论。当函数以具体形式给出时,多用单调有界定理或两边夹定理,有时也用柯西准则及其它方法,特别当函数为具体的分段函数时,用左、右有极限解之。当题设中函数关系是以不等式给出时,则用极限不等式性、两边夹定理、上极限与下极限相等诸法中之一试解之。

2证明函数极限不存在的方法也很多,当函数以抽象形式给出时,多用柯西准则的否命题;当函数以具体形式给出时,多用归结原则的否命题,上极限与下极限不等或者运算法则,固然也用柯西准则;特别当函数为具体的分段函数时,宜用左、右极限试解之。参考文献:

[1]黄玉民,李成章,数学分析。北京:科学出版社,1999。

54—76 [2]数学分析,华东师范大学。北京:高等教育出版社,1987。

53—88 [3]高等数学附册学习辅导与习题选解。同济大学应用数学系编,北京:高等教育出版社,2003.1。

10—23 [4]数学分析习题集题解,吉米多维奇、费定晖编,济南:山东科学技术出版社,1999.9。

27—50 [5]刘广云,数学分析选讲,哈尔滨:黑龙江教育出版社,2000。

119—128

第二篇:函数极限题型与解题方法

函数极限题型与解题方法2011/11/3

毕原野 整理

一.极限的证明

1.趋近于无穷 P19 例8(1)

2.趋近于正无穷 P19 例8(2)

3.趋近于负无穷 P19 例8(3)(4)

4.趋近于某一定值 P21 例9(1)(2)(3)

极限的证明说白了就是找两个值,对于趋近于无穷的极限来说是ε和X,而对于趋近于某一定值的极限来说就是ε和δ。因此,证明过程中,无论哪种先得出ε,然后把x用ε表示出来(如果是趋近于某一定值的就是把|x-a|用ε表示出来),这样,就明确了X(δ),之后直接套格式就好了。

关键就在于表示过程,这需要一定的计算和技巧,比如放缩、变形等。由于ε的无限小,可以为其设定任何范围,以简化计算,但是要使原试有意义。

二.求极限

1.趋近于无穷(包括正负无穷)

(1)上下同除高次项 P22 例11(3)

(2)有理化 P25 例3(5)

(3)换元 P25 例13(2)

(4)应用 无穷小×有界=无穷小 P25 例13(3)(4)

2.趋近于某一定值

(1)应用法则直接带入 P22 例11(1)(2)

(2)有理化 P22 例11(4)

(3)等价无穷小定理 P28 例14(1)(2)(3)

(4)变形后应用重要极限

换元 P24 例12(1)(3)

倍角公式 P24 例12(2)

其他变形 P24 例12(4)

通分 P34 23.(9)(10)

3.分段函数

应用1.、2.的方法得出左右极限即可。

书写过程注意格式,写明左右极限。P21 例10 P35 29.函数的极限求法可以类比数列的求法,只是要注意其方向和保证原式的有意义。

三.证明极限存在与否

首先确定是否能求出左右极限。不能,则无极限;能,则进一步看是否相等。不等,则无极限;等,则有极限。P35 30.(2)(3)

四.求参数

应用定理lim f(x)/g(x)=c(c≠0),分子分母中任意一个为0,则另一个也为0。P35 35.通分整理,提出相消的项,令参数与同次项系数互为相反数即可。P35 34.为此稿做过贡献的同学在此依次注明信息吧!~

第三篇:求函数极限方法的若干方法

求函数极限方法的若干方法

摘要: 关键词:

1引言:极限的重要性

极限是数学分析的基础,数学分析中的基本概念来表述,都可以用极限来描述。如函数y=f(x)在x=x0处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。学好极限是从以下两方面着手。1:是考察所给函数是否存在极限。2:若函数否存在极限,则考虑如何计算此极限。本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述。

2极限的概念及性质2.1极限的概念

2.1.1limn→∞

xn=A,任意的正整数N,使得当n>N时就有 xn−A <。

2.1.2limx→∞f x =A↔∀ε>0,任意整数X,使得当 x >时就有 f x −A <。类似可以定义单侧极限limx→+∞f x =A与limx→−∞f(x)。2.2.3类似可定义当,整数,使得当

时有

。,时右极限与左极限:。在此处键入公式。

2.2极限的性质

2.2.1极限的不等式性质:设若若,则,使得当,当

时有

。时有时有,则

。,则

与,使得当

在的某空心邻

时,时有,则。

2.2.1(推论)极限的保号性:设若若,则,使得当,当2.2.2存在极限的函数局部有界性:设存在极限域有

内有界,即3求极限的方法

1、定义法

2、利用极限的四则运算性质求极限,3、利用夹逼性定理求极限

4、利用两个重要极限求极限,5、利用迫敛性求极限,6、利用洛必达法则求极限,7、利用定积分求极限,8、利用无穷小量的性质和无穷小量和无穷大量之间的关系求极限

9、利用变量替换求极限,10、利用递推公式求极限,11、利用等价无穷小量代换求极限,12、利用函数的连续性求极限,13、利用泰勒展开式求极限,14、利用两个准则求极限

15、利用级数收敛的必要条件求极限

16、利用单侧极限求极限

17、利用中值定理求极限 3.1定义法

利用数列极限的定义求出数列的极限.设的,总存在一个正整数

.,当

是一个数列,是实数,如果对任意给定,我们就称是数列

时,都有的极限.记为例1 证明

证 任给,取,则当时有

,所以。

3.2利用极限的四则运算性质求极限 设,,则

。,例1求解 这是求

型极限,用相消法,分子、分母同除以

得。,其中3.3利用夹逼性定理求极限

当极限不易直接求出时, 可考虑将求极限的变量作适当的放大和缩小, 使放大与缩小所得的新变量易于求极限, 且二者的极限值相同, 则原极限存在,且等于公共值。特别是当在连加或连乘的极限里,可通过各项或各因子的放大与缩小来获得所需的不等式。3.3.1(数列情形)若则。,使得当时有,且,3.3.2(函数情形)若,则,使得当。

时有,又

例题

解 :,其中,因此。

3.4利用两个重要极限球极限 两个重要极限是,或。

第一个重要极限可通过等价无穷小来实现。利用这两个重要极限来求函数的极限时要观察所给的函数形式,只有形式符合或经过变化符合这两个重要极限的形式时,才能够运用此方法来求极限。一般常用的方法是换元法和配指数法。例题1解:令t=故 例题23.5利用迫敛性求极限 ,且在某个。

内有,那么

.则sinx=sin(t)=sint, 且当

例 求的极限

解:因为.且 由迫敛性知

所以

3.6利用洛必达法则求极限

假设当自变量和趋近于某一定值(或无穷大)时,函数

满足:的导数不为0的极限都是或都是无穷大都可导,并且存在(或无穷大),则极限也必存在,且等于,即=。利用洛必达法则求极限,可连续进行运算,可简化一些较复杂的函数求极限的过程,但是运用时需注意条件。

例题 求

解 原式=注:运用洛比达法则应注意以下几点:

1、要注意条件,也就是说,在没有化为或时不可求导。

2、应用洛必达法则,要分别求分子、分母的导数,而不是求整个分式的导数。

3、要及时化简极限符号后面的分式,在化简以后检查是否还是未定式,若遇到不是未定式,应立即停止使用洛必达法则,否则会错误。

3.7利用定积分求极限

利用定积分求和式的极限时首先选好恰当的可积函数f(x)。把所求极限的和式表示成f(x)在某区间 例

上的待定分法(一般是等分)的积分和式的极限。

解 原式=,由定积分的定义可知。

3.8利用无穷小量的性质和无穷小量和无穷大量之间的关系求极限 利用无穷小量乘有界变量仍是无穷小量,这一方法在求极限时常用到。在求函数极限过程中,如果此函数是某个无穷小量与所有其他量相乘或相除时, 这个无穷小量可用它的等价无穷小量来代替,从而使计算简单化。例

解 注意时。

3.9利用变量替换求极限

为将未知的极限化简,或转化为已知的极限,可以根据极限式特点,适当的引入新变量,来替换原有变量,使原来的极限过程转化为新的极限过程。最常用的方法就是等价无穷小的代换。

例 已知证 令

试证

则时,于是

当时),故时第二、三项趋于零,现在证明第四项极限也为零。因有界,即,使得

。所以

(当

原式得证。

3.10利用递推公式求极限

用递推公式计算或者证明序列的极限,也是一常见的方法,我们需要首先验证极限的存在性。在极限存在前提下,根据极限唯一性,解出我们所需要的结果,但是验证极限的存在形式是比较困难的,需要利用有关的不等式或实数的一些性质来解决。

例 设,对,定义

。证明 时,解 对推出递推公式解得,,因为,因此,序列

中可以得出

是单调递增且有界的,它的极限,设为,从,即。

3.11利用等价无穷小量代换求极限 所谓的无穷小量即,例如 求极限 解 本题属于有

型极限,利用等价无穷小因子替换

=

=,,称

时的无穷小量,记作

注:可以看出,想利用此方法求函数的极限必须熟练掌握一些常用的 等价无穷小量,如:由于,故有又由于故有。

另注:在利用等价无穷小代换求极限时,应注意:只有对所求极限中相乘或相除的因式才能利用等价无穷小量来代换,而对极限式中的相加或相减的部分则不能随意代换。

小结:在求解极限的时候要特别要注意无穷小等价代换,无穷小等价代换可以很好的简化解题。

3.12利用函数的连续性求极限

在若处连续,那么且

在点连续,则。

例 求的极限

解:由于

及函数在处连续,故

3.13利用泰勒展开式求极限 列举下 例题

3.14利用两个准则求极限

3.14.1函数极限迫敛性(夹逼准则):若一个正整数,并且例题

3.14.2单调有界准则:单调有界数列必有极限,并且极限唯一。,当时,则

则。

利用单调有界准则求极限,关键是要证明数列的存在,然后根据数列的通项递推公式求极限。例题

3.15利用级数收敛的必要条件求极限

利用级数收敛的必要条件:若级数收敛,则,首先判定级数收敛,然后求出它的通项的极限。例题

3.16利用单侧极限求极限

1)求含的函数

趋向无穷的极限,或求含的函数

趋于的极限;2)求含取整函数的函数极限;3)分段函数在分段点处的极限;4)含偶次方根的函数以及

或的函数,趋向无穷的极限.这种方法还能使用于求分段函数在分段点处的极限,首先必须考虑分段点的左,右极限,如果左、右极限都存在且相等,则函数在分界点处的极限存在,否则极限不存在。例题

3.17利用中值定理求极限 3.17.1微分中值定理: 3.17.2积分中值定理

第四篇:求函数极限的常用方法

求函数极限的常用方法

袁得芝

函数极限是描述当x→x0或x→∞时函数的变化趋势,求函数极限,常用函数极限的四则运算法则和两个重要结论limnnlim1xx0,0.涉及到单侧极限与nxx0xx

双侧极限的关系问题时,一般运用两个命题:limlimlimf(x)f(x)af(x)axxx和limlimlimf(x)f(x)af(x)a予以解决。现就常见题型及解xxxxx00

法举例如下:

1、分子分母均是x的多项式时,x∞的极限,分式呈现“”型

lima0alxklak例1 求极限(其中ai、bi)为与x无关的常数,k、l、xb0xlblxllbk

为整数且(a0≠b0≠0).a0b(当lk)

0

解:原式=0(当l>)

不存在(当l<)

注:本例的一般性结论是:若分子、分母中的x的最高次幂相同时,则极限等于它们的最高次项的系数比;若分子中x的最高次幂低于分母中x的最高次幂则极限为零;反之极限不存在。

2、分子分母都是x的多项式时,x→x0的极限,分式呈现“0”型 0

x21lim例2,求极限 2x12xx

1解:limx21

x12x2x1

lim(x1)(x1)x1(2x1)(x1)limx12。x12x1

3注:因lim

xx0f(x)a,这是从x趋向x0的无限变化过程来看f(x)的变化趋

势的,它对于x0是否属于函数f(x)的定义域不作要求,故求解此类题目常采用分解因式,再约去公因式,使之能运用法则求极限的方法。

3、含有根式的一类式予,由x的变化趋势,呈“∞→∞”型

例3.求极限:lim(x21x24x)。x

lim解:(x21x24x)x

lim14x xx21x24x

14lim2。x142xx

注:分子或分母有理化是常采用的方法。

4、已知函数的极限,求参数的范围

例4:已知:limax2bx

1x1x13,求a、b.解:当x=1时分母为零,故ax2+bx+1中必有x-1这样的因式,由多项式除法可知ax2+bx+1除以 x-1商式为ax+a+b,余式为a+b+1。

∴a+b+1=0①

∴limax2bx

1x1x1lim(x1)(axab)x1x1

lim(axab)2ab。x1

∴2a+b=3②

ab10解方程组

2ab3① ②

a4可得

b

5注:这是一个已知函数极限要确定函数解析式的逆向思维问题,应灵活使用运算法则。

5、涉及单侧极限与双侧极限的问题

例5.求函数f(x)=1+

限。|x1|在x=-1处的左右极限,并说明在x=-1处是否有极x1

limlimx1解:f(x)(1)2,x1x1x1

limlim(x1)f(x)(1)0 x1x1x1

limlim∵f(x)f(x),x1x1

∵f(x)在x=-1处的极限不存在。

注:本例是

limlimlimf(x)af(x)f(x)a的直接应用。xx0xx0xx0

原载于《甘肃教育》2005年第4期

第五篇:用定义证明函数极限方法总结

144163369.doc

用定义证明函数极限方法总结:

用定义来证明函数极限式limf(x)c,方法与用定义证明数列极限式类似,只是细节xa

不同。

方法1:从不等式f(x)c中直接解出(或找出其充分条件)xah(),从而得h()。

方法2:将f(x)c放大成xa,解xa,得xah(),从而得

h()。

部分放大法:当f(x)c不易放大时,限定0xa1,得f(x)cxa,解xa,得:xah(),取min1,h()。

用定义来证明函数极限式limf(x)c,方法: x

方法1:从不等式f(x)c中直接解出(或找出其充分条件)xh(),从而得Ah()。

方法2:将f(x)c放大成xa,解xa,得xh(),从而得

Ah()。

部分放大法:当f(x)c不易放大时,限定xA1,得f(x)cxa,解xa,得:xh(),取AmaxA1,h()。

平行地,可以写出证明其它四种形式的极限的方法。

例1 证明:lim(2x3)7。x2

证明:0,要使:

(2x3)72x2,只要 2x2,即0x2

取2,

2,即可。

x212。例2 证明:lim2x12xx13

x1x212x12分析:因为,放大时,只有限制22xx132x1332x1

0x1,即0x2,才容易放大。

证明:0,限制0x1,即0x2,要使;

x1x1x1x1x212x12

,只要

32x2x132x1332x132x13

即0x3,取min(1,3),即可。

例3

证明:(a1)。

xa

证明:0,限制0xa

1a1a

1,要使:,所以x

22

,只要

1a,,即可。,取min,即0xa

22



x3,x1

例4 设f(x),证明:limf(x)1。

x1

2,x1

证明:当x1时,f(x)1x1x1xx1

限制0x1,则xx112,xx17。0,要使:

f(x)1x1x2x17x1,只要7x,即x1

7,取



min,当0x1时,有:

7

f(x),limf(x)1

x1

说明:这里限制自变量x的变化范围0x1,必须按自变量x的变化趋势来设计,xa时,只能限制x在a点的某邻域内,不能随便限制!

错解:设x1,则xx13,要使:

f(x)1x1x2x13x1,只要0x1

,取min1,,3

当0x1时,有:f(x)1。limf(x)1。

x1

例5 证明:lim

1。

x12x1

2x11

证明:考察,2x12x1112x1 1

2x12x1

限制0x1

111,则2x112x11。0,要使: 422

2x1

4x1,只要4x,即x1,42x12x1

1

44

1,2x1

取min,,当0x时,有:lim

x1

1。

2x1

1,则4

说明:在以上放大f(x)A(即缩小2x1)的过程中,先限制0x1得:2x1

11。其实任取一个小于的正数1,先限制0x11,则22

0x1或0x1,则不2x1x1112m(如果是限制0

例6 证明:lim

能达到以上目的)。

x

2。

x24x7

证明:考察

7x271x,仅在x的邻域内无界,所以,限制2

44x74x74x7

171

0x2(此邻域不包含x点),则4x74x2114x2。

842

0,要使:

7x27x2x

只要14x2,即x2,214x2,144x74x714x2

取min,x1,当时,有:2,0x2

4x7814

x

2。

x24x7

x0

lim

x

例7 用定义证明极限式:lima1,(a1)

证明:0(不妨1),要使:

ax11ax1loga1xloga1(由对数函数

。于是,取minloga1, loga10,f(x)logax是单调增函数)

xx

当0x0时,有:a1。故lima1。证毕

x0

例8 设f(x)0,limf(x)

A,证明:lim

xx0

xx0

n2为正整数。

证明:(用定义证明)因为,f(x)0,由极限保不等式性知,A0;当A0时,0,由limf(x)A,知:0,当0xx0时,有:f(x)A

xx0



f(x)A

n1



n2

n2

n1

f(x)A

n1

n1,故:lim

xx0

im(f)x0当A0时:0,由l

xx,知:

0,当0xx0时,有:

f(x)

 0lim

xx0

0。证毕

下载函数极限理论的归纳与解题方法的总结word格式文档
下载函数极限理论的归纳与解题方法的总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    函数极限

    习题 1.按定义证明下列极限: limx6x5=6 ; lim(x2-6x+10)=2; x2x x251 ; lim lim2xx1x2 limcos x = cos x0 xx04x2=0; 2.根据定义2叙述limf (x) ≠ A. xx0......

    函数极限

    《数学分析》教案第三章 函数极限 xbl 第三章 函数极限 教学目的: 1.使学生牢固地建立起函数极限的一般概念,掌握函数极限的基本性质; 2.理解并运用海涅定理与柯西准则判定某些......

    函数极限

    数学之美2006年7月第1期函数极限的综合分析与理解经济学院 财政学 任银涛 0511666数学不仅仅是工具,更是一种能力。一些数学的方法被其它学科广泛地运用。例如,经济学中的边际......

    第一章函数与极限(本站推荐)

    第一章函数与极限 第一节 映射与函数 一、集合 1、集合的概念 集合是数学中的一个基本概念,我们先通过例子来说明这个概念。例如,一个书柜的书构成一个集,一间教室里的学生构成......

    函数极限与连续(汇编)

    函数、极限与连续一、基本题1、函数fxln6x的连续区间ax2x2x12、设函数fx,若limfx0,且limfx存在,则 x1x1x12axba-1,b41sin2x3、limx2sin-2x0xx4、n2x4/(√2-3)k5、lim1e2,则k=-1xx......

    第一章函数与极限

    《函数与极限》重难点电信1003班  函数1. 定义域与定义区间的关系。2. 映射的种类及存在条件。3. 求函数定义域的基本原则(7条)。4. 几种特殊的函数类型(绝对值函数、符号函数......

    函数与极限测试题答案(定稿)

    函数与极限测试题答案(卷面共有26题,100分,各大题标有题量和总分)一、选择(9小题,共26分)1.D2.B3.B4.C5.A6.D7.B8.A9.B二、填空(6小题,共13分)1.1 e2.yln(x2)) 3.(3,4.x1及x15.aln36.5 3三、计算(10小题......

    函数极限与连续教案

    第四讲Ⅰ 授课题目(章节)1.8:函数的连续性Ⅱ 教学目的与要求:1、正确理解函数在一点连续及在某一区间内连续的定义;2、会判断函数的间断点.4、了解初等函数在定义区间内是连续的......