1.1 正数和负数(新人教版七年级上洋思教案)

时间:2019-05-12 16:41:41下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《1.1 正数和负数(新人教版七年级上洋思教案)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《1.1 正数和负数(新人教版七年级上洋思教案)》。

第一篇:1.1 正数和负数(新人教版七年级上洋思教案)

题:1.1 正数和负数 教

材:新课标人教版 学习目标:1.知识与技能

①了解正数与负数是实际生活的需要.

②会判断一个数是正数还是负数.

③会用正负数表示互为相反意义的量. 2.过程与方法

通过正负数的学习,培养学生应用数学知识的意识、训练学生运用新知识解决实际问题的能力.

3.情感、态度与价值观

①通过教师、学生双边的教学活动,激发学生学习的兴趣,让学生体验到数学知识来源于生活并为生活服务.

②通过正负数的学习,渗透对立、统一的辩证思想.

点:会判断正数、负数,运用正负数表示相反意义的量,理解0•表示量的意义. 难

点:负数的引入. 教学过程

一.板书课题,揭示目标

同学们,本节课我们一同学习“1.1 正数和负数”,本节课的学习目标是(投影).

学习目标

①了解正数与负数是实际生活的需要.

②会判断一个数是正数还是负数.

③会用正负数表示互为相反意义的量.

二.指导自学

自学指导

请认真看P.1—4内容.思考:P3页中问题:图中的正数和负数的含义是什么?

5分钟后,比谁能做出与问题类似的习题. 三.学生自学

1.学生按照自学指导看书,教师巡视,确保人人学得紧张高效. 2.检查自学效果 投影练习

例1 举出几对具有相反意义的量,并分别用正、负数表示.

相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.

例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?

【答案】 表示比标准质量低0.03克.

例3 2001年美国的商品进出口总额比上年减少6.4%可记为-6.4%,中国增长7.5%可记为 +7.5% .

备选例题

(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为(B)

A.3 B.-3 C.-2.5 D.-7.45 【点拨】 读懂题意是解决本题的关键.7:45与10相差135分钟.

四.讨论更正,合作探究

1.学生自由更正,或写出不同解法; 2.评讲

【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.

五.课堂作业。

1.填空题

(1)如果节约用水30吨记为+30吨,那么浪费20吨记为 -20 吨.

(2)如果4年后记作+4,那么8年前记作-8 .

(3)如果运出货物7吨记作-7吨,那么+100吨表示 运进货物100吨 .

(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg . 2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.

(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?

【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)

提升能力(选作)

3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数. 【答案】 +2,-1,-0.2.

4.有没有这样的有理数,它既不是正数,也不是负数? 【答案】 有,是0. 5.下列各数中哪些是正数?哪些是负数?

611,-,4,-2,1.3,0,3.14,7713611 【答案】 正数:,4,1.3,3.14,;负数:-15,0.02,-,-2

7713 -15,-0.02,开放探究

6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?

【答案】 最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时. 7.新中考题

(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库 A .

第二篇:七年级正数和负数教案

襄城一高初中部七年级数学学案(1)

课型:新授课

执笔:张霞

审核:

审批:

班级:

姓名:

1.两件商品都卖84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后(). A.赢利16.8元 B.亏本3元 C.赢利3元 D.不赢不亏

2.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.

3、甲、乙两个工程队分别有188人和138人,现需要从两队抽出116人组成第三个队,并使甲、乙两队剩余人数之比为2:1,问应从甲、乙两队各抽出多少人?

4.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?

5三位数的数字之和是17,百位上的数字与十位上的数字的和比个位上的数大3,如把百位上的数字与个位上的数字对调,所得的新数比原数大495,求原数.襄城一高初中部七年级数学学案(1)

课型:新授课

执笔:张霞

审核:

审批:

班级:

姓名:

6.为节约能源,某单位按以下规定收每月电费:用电不超过140度,按每度0.43元收费;如果超过了140度,超过部分按每度0.57收费,如果某用户四月份的电费,平均每度0.5元,问该用户四月份用电多少度?

7.甲、乙两人同时从A地出发去B地,甲骑自行车,速度是10km/h,乙步行,速度为6km/h.若甲出发后在路上遇到熟人交谈了半小时后,仍以原速度前往B地,结果甲、乙两人同时到达B地,问A、B两地的路程是多少?

8、七年级学生在5名教师的带领下去公园秋游。公园的门票为每人30元,现有两种优惠方案,甲方案:带队老师免费,学生按8折收费;乙方案:师生都按7.5折收费。(6分

(1)若有n名学生,用代数式表示两种优惠方案各需多少费用?(2)当n=70时,采用哪种方案更优惠?(3)当n=100时,采用哪种方案更优惠?

9、(本题7分)小张自主创业开了一家服装店,因为进货时没有进行市场调查,在换季时积压了一批服装,为了缓解资金的压力,小张决定打折销售.若每件服装按标价的五折出售将亏20元,若按标价的八折出售将赚40元.(1)每件服装的标价是多少元?每件服装的成本是多少元?(2)为了尽快减少库存,又要保证不亏本,请你告诉小张最多能打几折?

襄城一高初中部七年级数学学案(1)

课型:新授课

执笔:张霞

审核:

审批:

班级:

姓名:

10.小明用的练习本可以到甲商店购买,也可以到乙商店购买,已知两商店的标价都是每本1元,甲商店的优惠条件是,购买10本以上,从第11本开始按标价的70%卖,乙商店的优惠条件是,从第一本开始按标价的80%卖。(1)小明要买20本时,到哪家商店省钱?(2)买多少本时到两个商店买都一样?

(3)小明现在又31元钱,最多可以买多少本?

作业卡

11.小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%).

12、有两个工程队,甲队有285人,乙队有183人,若要求乙队人数是甲队人数的,应从乙队调多少人到甲队?

襄城一高初中部七年级数学学案(1)

课型:新授课

执笔:张霞

审核:

审批:

班级:

姓名:

13甲、乙、丙三个人每天生产机器零件数为甲、乙之比为4:3;乙、丙之比为6:5,又知甲与丙的和比乙的2倍多12件,求每个人每天生产多少件?

14.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?

15、小明想在两种灯中选购一种,其中一种是10瓦(即0.01千瓦)的节能灯,售价50元,另一种是100瓦(即0.1千瓦)的白炽灯,售价5元,两种灯的照明效果一样,使用寿命也相同(3000小时内)节能灯售价高,但较省电,白炽灯售价低,但用电多,电费0.5元/千瓦·时

(1)照明时间500小时选哪一种灯省钱?(2)照明时间1500小时选哪一种灯省钱?(3)照明多少时间用两种灯费用相等?

第三篇:七年级上数学教案:1.1正数和负数

1.1正数和负数(1)

教学目标

1.整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;

2.会区分两种不同意义的量,会用符号表示正数和负数; 3.体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣. 教学重点与难点

重点:两种相反意义的量. 难点:正确区分两种不同意义的量. 教学过程

(一)创设情境

上课开始时,通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗? 师:今天我们已经是七年级的学生了,我是你们的数学老师.我们的班级是七(3)班,有35个同学,其中男同学有17个,占全班总人数的49%....

问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?(学生思考)

(交流后)

师:以前学过的数,实际上主要有两大类,分别是整数和分数(包

括小数).

问题2:在生活中,仅有整数和分数够用了吗? 请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流.

学生交流后,教师归纳:以前学过的数已经不够用了,有时需要一种前面带有“-”号的新数.

(二)提出问题,探究新知

问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引入负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢? 这些问题都必须要求学生理解.

教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流.

这阶段主要是让学生学会正数和负数的表示.

强调:用正、负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收入与支出;二是它们都是数量,而且是同类的量.

(三)举一反三,拓展思维

经过上面的讨论交流,学生对为什么要引入负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.

问题4:请同学们举出用正数和负数表示的例子.

问题5:你是怎样理解“正整数”“负整数”“正分数”和“负分数”的呢?请举例说明.

(四)巩固练习教科书第3页练习.(五)小结

围绕下面两点,师生共同交流:

1.由于实际问题中存在着相反意义的量,所以要引入负数,这样数的范围就扩大了;

2.正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”.

(六)作业 课后习题1、2题

第四篇:(教案1)1.1正数和负数

正数和负数(第1课时)

教学任务分析 学习目标:

1、知识技能:了解正数和负数是怎样产生的;知道什么是正数和负数;理解数0表示的量的意义。

2、数学思考:体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。

3、解决问题:会用师生合作,联系实际,激发学生学好数学的热情。重点:正、负数的意义。难点:负数的意义及0的内涵。课前准备 温度计、文具盒 教学流程安排

活动流程及活动内容和目的

活动1 问题引入 通过活动使学生了解数起源于生活。活动2 活动安排 使学生进入问题情境。从而引出问题。活动3 举例说明 用更多事例,丰富问题情境。活动4 学习负数的概念 说明什么是正、负数。活动5 负数概念的应用 进一步认识正数和负数。活动6 负数概念的巩固 全面认识正数和负数。教学过程设计 活动1

1、请同学们数一数自己的文具盒中共有几支笔。(若干支笔)

2、请一个同学数一数老师手中的文具盒中有几支笔。(没有笔)

3、用一把小刀把一个苹果切成两半,半个苹果怎样用一个数来表示?

4、书P2 图1.1-1 自然数的产生、分数的产生 师生行为及设计意图

通过活动说明数的产生和发展离不开生活和生产的需要。原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用“0”表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。通过创设情景问题,向学生渗透“实践第一”的辨证唯物主义观点。活动2

1、各组派两名同学进行如下活动:一名同学按老师的指令表演,另一名同学在黑板上速记,看哪一组获胜。

2、各小组研究各自手中的温度计上刻度的确切含义,然后各小组派一名说出其中三个刻度的含义,请另一组一名同学在黑板上速记。看哪一组获胜。师生行为

1、教师说出指令:向前两步,向后两步;

向前一步,向后三步;

向前四步,向后一步;

向前四步,向后两步。

一名学生按老师的指令表演,另一名学生在黑板上速记。

2、一名同学说出指令:零上10℃,零下5℃,零上35℃。

零上15℃,零上48℃,零下12℃。

另一名学生按指令在黑板上速记。设计意图

通过学生的活动,激发学生参与课堂教学的热情,使学生进入问题情境,引入新课。

教师分析同学们的活动情况,如果学生不能引入符号表示,教师也参与表演。用符号表示出 :+

2、-

2、+

1、-

3、+

4、-

1、+

4、-

2、+

10、-

5、+

35、+

15、+

48、-12等,让学生感受引入符号的必要性。活动3 问题展示

1、天气预报2003年12月某天北京的温度为―3~3℃,它的确切含义是什么?这一天北京的温差是多少?

2、某机器零件的长度设计为100㎜,加工图纸标注的尺寸为100±0.5(㎜),这里的±0.5代表什么意思?合格厂品的长度范围是多少?

3、有三个队参加足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序? 师生行为

教师解释净胜球数与排名顺序:介绍确定足球比赛排名顺序的规定:两队积分不相同,积分高的队排名在前;两队积分相同,净胜球多的队排名在前;两队积分,净胜球数都相同,进球多的队排名在前。按照上述规定,红队第一,蓝队第二,黄队第三。

学生思考-3~3℃、净胜球数与排名顺序、±0.5的意义。设计意图

通过事例引出用各种符号表示的数,让学生试着解释,激发学生的求知欲望,让不同水平的学生都在进行积极的思维参与,兴致勃勃地参与学习活动。同时对问题背景作些说明,有利于学生对问题的理解。使学生感到数的扩充势在必行,扩充的理由是社会生产,生活的需要及数学自生发展的需要。活动4

1、在师生活动中和问题中出现了一些新数据:-

3、-

2、-

5、-

12、-0.5它们表示什么含义?

2、我们小学知道,数0表示没有,仔细观察上述例子,数0都表示没有吗?数0是正数吗?是负数吗? 师生行为

教师讲解:我们把这种前面带有“—”号的数叫做负数。并说明:为与负数相区别,我们把以前学过的0以外的数,例如3、2、0.5等,叫做正数,根据需要,有时在正数前面也加上“+”,例如,+

2、+

3、+0.5。就是3、2、0.5。一个数前面的“+”“-”号叫做它的符号。

教师说明数0的意义。数0既不是正数,也不是负数,0是正数与负数的分界。0℃是一个确定的温度,海拔0表示海平面的平均高度。0的意义已不仅是表示“没有”。设计意图

在出现若干个新数后,采用描述性定义,并与小学学过的数对比,有利于学生理解概念。采用联系对比的方法,采取轻松的态度,尽量避免使概念复杂化。活动5 展示问题

1、学生举例说明正、负数在实际中的应用。

2、在地形图上表示某地的高度时,需要以海平面为基准(规定海平面的海拔高度为0)。通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度。珠穆朗玛峰的海拔高度为8848米,它表示的什么含义?吐鲁番盆地的海拔高度为–155米。它表示什么含义?

3、记录帐目时,通常用正数表示收入款额,负数表示支出款额。则收入254元可记为多少元?支出56元可记为多少元?

4、图1、1—2 1、1—3 活动6

1、练习

2、总结:这节课我们学习了哪些知识?你能说一说吗?

3、作业习题 1、2、3

第五篇:数学:1.1正数和负数学案(人教新课标七年级上)

1.1正数和负数(1)

学习目标:

1、整理前两个学段学过的整数、分数(包括小数)知识,掌握正数和负数概念.2、会区分两种不同意义的量,会用符号表示正数和负数.3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.学习重点:两种意义相反的量

学习难点:正确会区分两种不同意义的量 教学方法:引导、探究、归纳与练习相结合 教学过程

一、学前准备

1、小学里学过哪些数请写出来:、、.2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?

3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)

回答上面提出的问题:.二、探究新知

1、正数与负数的产生

1)、生活中具有相反意义的量

如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.2)负数的产生同样是生活和生产的需要

2、正数和负数的表示方法

1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—

3、—

8、—47。

2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.3)阅读P3练习前的内容

A.2个

B组

B.3个

C.4个

D.5个

1.零下15℃,表示为_________,比O℃低4℃的温度是_________.

2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.

3.“甲比乙大-3岁”表示的意义是______________________.

C组

1.写出比O小4的数,比4小2的数,比-4小2的数.

2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.

1.1正数和负数(2)

学习目标:

1、会用正、负数表示具有相反意义的量.2、通过正、负数学习,培养学生应用数学知识的意识.3、通过探究,渗透对立统一的辨证思想

学习重点:用正、负数表示具有相反意义的量

学习难点:实际问题中的数量关系 教学方法:讲练相结合 教学过程

一、.学前准备

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么即不是正数也不是负数呢? 引导学生思考讨论,借助举例说明.参考例子:温度表示中的零上,零下和零度.五、小结

1、本节课你有那些收获?

2、还有没解决的问题吗?

六、应用与拓展

1、必做题: 教科书5页习题4、5、:6、7、8题

2、选做题

1).甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.2.)一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?

下载1.1 正数和负数(新人教版七年级上洋思教案)word格式文档
下载1.1 正数和负数(新人教版七年级上洋思教案).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐