高中数学新课程创新教学设计案例50篇 46 等差数列的前n项和

时间:2019-05-12 16:34:48下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中数学新课程创新教学设计案例50篇 46 等差数列的前n项和》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中数学新课程创新教学设计案例50篇 46 等差数列的前n项和》。

第一篇:高中数学新课程创新教学设计案例50篇 46 等差数列的前n项和

等差数列的前n项和

教材分析

等差数列的前n项和是数列的重要内容,也是数列研究的基本问题.在现实生活中,等差数列的求和是经常遇到的一类问题.等差数列的求和公式,为我们求等差数列的前n项和提供了一种重要方法.

教材首先通过具体的事例,探索归纳出等差数列前n项和的求法,接着推广到一般情况,推导出等差数列的前n项和公式.为深化对公式的理解,通过对具体例子的研究,弄清等差数列的前n项和与等差数列的项、项数、公差之间的关系,并能熟练地运用等差数列的前n项和公式解决问题.这节内容重点是探索掌握等差数列的前n项和公式,并能应用公式解决一些实际问题,难点是前n项和公式推导思路的形成.

教学目标

1.通过等差数列前n项和公式的推导,让学生体验数学公式产生、形成的过程,培养学生抽象概括能力.

2.理解和掌握等差数列的前n项和公式,体会等差数列的前n项和与二次函数之间的联系,并能用公式解决一些实际问题,培养学生对数学的理解能力和逻辑推理能力.

3.在研究公式的形成过程中,培养学生的探究能力、创新能力和科学的思维方法.

任务分析

这节内容主要涉及等差数列的前n项公式及其应用.

对公式的推导,为便于学生理解,采取从特殊到一般的研究方法比较适宜,如从历史上有名的求和例子1+2+3+……+100的高斯算法出发,一方面引发学生对等差数列求和问题的兴趣,另一方面引导学生发现等差数列中任意的第k项与倒数第k项的和等于首项与末项的和这个规律,进而发现求等差数列前n项和的一般方法,这样自然地过渡到一般等差数列的求和问题.对等差数列的求和公式,要引导学生认识公式本身的结构特征,弄清前n项和与等差数列的项、项数、公差之间的关系.为加深对公式的理解和运用,要强化对实例的教学,并通过对具体实例的分析,引导学生学会解决问题的方法.特别是对实际问题,要引导学生从实际情境中发现等差数列的模型,恰当选择公式.对于等差数列前n项和公式和二次函数之间的联系,可引导学生拓展延伸.

教学设计

一、问题情景

1.在200多年前,有个10岁的名叫高斯的孩子,在老师提出问题:“1+2+3+…+100=?”时,很快地就算出了结果.他是怎么算出来的呢?他发现1+100=2+99=3+97=…=50+51=101,于是1+2+…+100=101×50=5050.

2.受高斯算法启发,你能否求出1+2+3+…+n的和.

3.高斯的方法妙在哪里呢?这种方法能否推广到求一般等差数列的前n项和?

二、建立模型

1.数列的前n项和定义

对于数列{an},我们称a1+a2+…+an为数列{an}的前n项和,用Sn表示,即Sn=a1+a2+…+an.

2.等差数列的求和公式

(1)如何用高斯算法来推导等差数列的前n项和公式? 对于公差为d的等差数列{an}:

Sn=a1+(a1+d)+(a1+2d)+…+[a1+(n—1)d],①

依据高斯算法,将Sn表示为Sn=an+(an—d)+(an—2d)+…+[an—(n—1)d].

由此得到等差数列的前n项和公式

小结:这种方法称为反序相加法,是数列求和的一种常用方法.

(2)结合通项公式an=a1+(n—1)d,又能得怎样的公式?

(3)两个公式有什么相同点和不同点,各反映了等差数列的什么性质? 学生讨论后,教师总结:相同点是利用二者求和都须知道首项a1和项数n;不同点是前者还须要知道an,后者还须要知道d.因此,在应用时要依据已知条件合适地选取公式.公式本身也反映了等差数列的性质:前者反映了等差数列的任意的第k项与倒数第k项的和都等于首、末两项之和,后者反映了等差数的前n项和是关于n的没有常数项的“二次函数”.

三、解释应用 [例 题]

1.根据下列各题中的条件,求相应的等差数列{an}的前n项和Sn.

(1)a1= —4,a8= —18,n=8.(2)a1=14.5,d=0.7,an=32.

注:恰当选用公式进行计算.

2.已知一个等差数列{an}前10项的和是310,前20项的和是1220.由这些条件能确定这个等差数列的前n项和的公式吗?

分析:将已知条件代入等差数列前n项和的公式后,可得到两个关于a1与d的关系式,它们都是关于a1与d的二元一次方程,由此可以求得a1与d,从而得到所求前n项和的公式.

解:由题意知

注:(1)教师引导学生认识到等差数列前n项和公式,就是一个关于an,a1,n或者a1,n,d的方程,使学生能把方程思想和前n项和公式相结合,再结合通项公式,对a1,d,n,an及Sn这五个量知其三便可求其二.

(2)本题的解法还有很多,教学时可鼓励学生探索其他的解法.例如,3.2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的通知》.某市据此提出了实施“校校通”工程的总目标:从20XX年起用10年的时间,在全市中小学建成不同标准的校园网.据测算,20XX年该市用于“校校通”工程的经费500万元.为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元.那么从20XX年起的未来10年内,该市在“校校通”工程中的总投入是多少?

教师引学生分析:每年“校校通”工程的经费数构成公差为50的等差数列.问题实质是求该数列的前10项的和.

解:根据题意,从2001~20XX年,该市每年投入“校校通”工程的经费都比上一年增加50万元.所以,可以建立一个等差数列{an},表示从20XX年起各年投入的资金,其中,a1=500,d=50.

那么,到20XX年(n=10),投入的资金总额为

答:从2001~20XX年,该市在“校校通”工程中的总投入是7250万元. 注:教师引导学生规范应用题的解题步骤.

4.已知数列{an}的前n项和Sn=n2+

n,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?

解:根据

由此可知,数列{an}是一个首项为,公差为2的等差数列.

思考:一般地,数列{an}前n项和Sn=An2+Bn(A≠0),这时{an}是等差数列吗?为什么?

[练习]

1.一名技术人员计划用下面的办法测试一种赛车:从时速10km/h开始,每隔2s速度提高20km/h.如果测试时间是30s,测试距离是多长?

2.已知数列{an}的前n项的和为Sn=

n2+

n+4,求这个数列的通项公式.

3.求集合M={m|m=2n—1,n∈N*,且m<60}的元素个数,并求这些元素的和.

四、拓展延伸

1.数列{an}前n项和Sn为Sn=pn2+qn+r(p,q,r为常数且p≠0),则{an}成等差数列的条件是什么?

2.已知等差数列5,4,3,…的前n项和为Sn,求使Sn最大的序号n的值.

分析1:等差数列的前n项和公式可以写成Sn=以看成函数y=x2+(a1-

n2+(a1-)n,所以Sn可)x(x∈N*).当x=n时的函数值.另一方面,容易知道Sn关于n的图像是一条抛物线上的一些点.因此,我们可以利用二次函数来求n的值.

解:由题意知,等差数列5,4,3,…的公差为-,所以

于是,当n取与最接近的整数即7或8时,Sn取最大值.

分析2:因为公差d= -<0,所以此数列为递减数列,如果知道从哪一项开始它后边的项全为负的,而它之前的项是正的或者是零,那么就知道前多少项的和最大了.即使然后从中求出n.

点 评

这篇案例从具体的实例出发,引出等差数列的求和问题,在设计上,设计者注意激发学生的学习兴趣和探究欲望,通过等差数列求和公式的探索过程,培养学生观察、探索、发现规律、解决问题的能力.

对例题、练习的安排,这篇案例注意由浅入深,完整,全面.拓展延伸的设计有新意,有深度,符合学生的认识规律,有利于学生理解、掌握这节内容.

就总体而言,这篇案例体现了新课程的基本理念,尤其关注培养学生的数学思维能力和创新能力.另外,这篇案例对于继承传统教学设计注重“双基”、关注学生的落实,同时注意着眼于学生的全面发展,有比较好的体现。

第二篇:等差数列前n项和教学设计(本站推荐)

本节内容选自人教版《普通高中课程标准实验教科书·数学·必修5》的〈第二章§2.3 等差数列的前n项和 〉的第一课时:等差数列的前n项和公式的推导及简单应用。它是在学生已经学习了等差数列的定义及其性质的基础上学习的,它既是对等差数列知识的运用与巩固,又是后面研究一般数列求和的基础,并且和前面学习的函数有密切的联系。通过本节课的学习,可以让学生进一步掌握从特殊到一般的认知规律,体验归纳与猜想,模仿与创新的重要性,也为以后推导等比数列求和公式奠定基础;等差数列求和在实际生活中有着广泛的应用,通过本节课的学习,使学生认识到数学来源于生活又服务于生活,提高学生分析问题解决问题的能力,增强学生的数学素养。

教学目标分析

根据课程标准的要求和学生的实际情况,本节课的教学目标确定为:

1、知识目标:

探索并掌握等差数列的前n项和公式;

能用等差数列的前n项和公式解决简单实际问题;

2、能力目标:

通过公式的探索,提高观察、分析、类比思维能力,并在此过程中掌握倒序相加求和的数学方法,体会从特殊到一般的认知规律;通过公式的运用,提高学生从实际问题中抽象出数列模型的能力,提高分析问题、解决问题的能力。体会数形结合、分类讨论、类比、方程思想、函数思想等数学思想方法。

3、情感目标:

通过“拟真”发现,模拟数学家的思维活动,经历等差数列的前n项和公式产生过程,进行知识的“再创造”,不仅学到了“死”的结论,还学会了提出问题、分析、解决问题的方法,品尝了知识探究过程中的成功喜悦。通过公式运用,树立“大众数学”思想意识。(3)教学重点、难点

教学重点:探索并掌握等差数列的前n项和公式及其运用。教学难点:等差数列前n项和公式的推导思路的获得;

建立等差数列模型,能用相关知识解决实际问题。

教学关键点:通过创设问题情境,运用多媒体动态演示倒置“三角形”,利用先合后分思想方法,类比推导出等差数列求和公式。通过对公式从不同层次、角度深入剖析,使学生从本质上理解记忆并掌握公式。在具体的问题情境中,引导学生发现数列的等差关系并用等差数列的前n项和公式解决实际问题,加深公式的运用。

教法与学法 学法分析:

在教学中关注学生的主体参与,丰富学生的学习方式、改进学生的学习方法,发挥学生的主体作用。学生已经学习了等差数列的通项公式及其性质,对高斯算法也是熟悉的,知道采用首尾配对的方法求和,这都为倒序相加法的教学提供了基础。但高斯的算法与一般等差数列求和还有一定的距离,他们对这种方法的认识可能处于模仿记忆阶段,如何引出倒序相加法这是学生学习的障碍。同时学生已有函数方程知识,因此在教学中可适当渗透函数思想。教法分析

教法上本着“教师为主导,学生为主体,探究为主线,思维训练为主攻”的教学思想,主要采用启发引导,合作探究的教学方法。本节课利用数列求和中丰富的数学史资源,创设问题情境引导学生追寻数学家的足迹,体验数学家的思维过程,进行知识的“再创造”。学生不仅学到“死”的结论,还学会提出问题、分析、解决问题的方法,品尝了知识探究过程中的成功与喜悦。运用多媒体动态演示作为辅助教学的一种手段,遵循由特殊到一般的认识规律,激发学生的学习兴趣,启迪学生的思维,提高课堂效率。在教学中重视学生“做数学”的过程,关注学生的主体参与,师生互动,生生互动,使学生在“做”的过程中掌握数学概念和方法的本质。

教学过程

学生是认知的主体,设计教学过程必须遵循学生的认知规律,尽可能地让学生去经历知识的形成与发展过程,结合本节课的特点,我设计了如下五个的教学过程:

(一)忆旧迎新——引入新课

从学生的原认知结构出发,复习等差数列的通项公式及性质,为学习等差数列的前n项和提供准备知识。同时教学平稳地过渡到下一环节。

(二)创设问题情境——探索交流

《数学课程标准》中明确指出:教材应注意创设情境,从具体实例出发,展现数学知识的发生、发展过程,使学生能够从中发现问题、提出问题,经历数学的发现和创造过程,了解知识的来龙去脉。本节课我由世界七大奇迹之一泰姬陵上的宝石图案,引入高斯算法。学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但是他们对这种方法的认识可能处于模仿、记忆的阶段,为了促进学生对这种算法的进一步理解,我设计了1+2+„+50+51的问题。普遍性寓于特殊之中,引导学生探究上式的结果。学生解答过程中,自然用到化归思想:将奇数项问题装化为偶数项求解,并在此基础上提出更高要求。不讨论n的奇偶可不可以呢?利用先分后和思想方法,运用多媒体把“三角形”倒置,学生通过直观观察易得出,由此猜想出等差数列前n项和,并类比上述推理用倒序相加法推导出公式,之后结合等差数列通项公式推导出

(三)公式剖析——思想升华

通过对公式不同层次、不同角度深入剖析并结合直观几何图形,记忆公式加深理解,使学生从本质上理解公式,知道公式的来龙去脉。在教学中,鼓励学生借助几何直观进行公式的记忆,揭示研究对象的性质和关系,渗透了数形结合的数学思想。

(四)例题讲解——学以致用

通过练习,进一步加深对本节知识的理解,在具体的问题情境中,引导学生发现数列的等差关系并用等差数列的前n项和公式解决实际问题,加深公式的运用,提高学生分析问题能力,解决问题的能力和解题能力,提高学生的建模能力及发展学生的应用意识。

(五)课堂小结——整体认知

以提问的方式鼓励学生自己总结,归纳提升,帮助学生养成系统整理知识的习惯;关注学生自主体验,培养学生归纳、概括能力并对本节课所蕴含的数学思想方法加以揭示,提高学生认知水平。

(六)布置作业——巩固加深

通过分层布置作业,提高学生学习兴趣,让不同学生得到不同发展。

教学反思

本节课我采用启发探究式教学模式,设置相关问题串以问题为中心,以实际生活为背景创设教学情境。从具体问题上,抽象出解决一般问题的方法,由“特殊到一般,再由一般到特殊”,让学生亲历提出问题,解决问题,反思总结的全过程。让学生在已有知识和经验的基础上主动建构新知识,整个教学活动总是在学生的“最近发展区”上进行。结果因过程而精彩,现象因方法而生动。无论是情境创设,还是探究设计,都必须以学生为主体、教师为主导、训练为主线,设法从庞杂的知识中引导学生去寻找关系,挖掘书本背后的数学思想,建构基于学生发展的知识体系,教学生学会思考,让教学真正成为发展学生能力的课堂活动。本节课为了培养学生学会探究与创新的能力,从历史故事泰姬陵上的宝石图案引入,接着引入高斯算法,激发学生学习的兴趣。学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但是他们对这种方法的认识可能处于模仿、记忆的阶段,为了促进学生对这种算法的进一步理解,我设计了1+2+„+50+51的问题。普遍性寓于特殊之中,引导学生探究上式的结果。在公式记忆部分我通过画等腰梯形帮助学生直观记忆公式。例题讲解通过具体问题的引入,设置相应的问题串,让学生体会数学源于生活,又服务于生活。整节课的设计,重在启发引导,使学生由浅到深,由易到难分层次对本节课内容进行掌握,在整个教学过程中渗透从特殊到一般、类比、数形结合、方程思想,提高学生观察、分析、归纳、反思及逻辑推理的能力。从学生的课堂积极性和学习成果来看,学生较好的完成了等比数列前n项和的学习,在获得知识的基础上提高了分析问题解决问题的能力。

第三篇:《等差数列的前n项和》教学设计

《等差数列的前n项和》

教学设计

教学内容分析

本节课教学内容是《普通高中课程标准实验教科书·数学(5)》(人教A版)中第二章的第三节“等差数列的前n项和”(第一课时).本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.在教学中应注意以下两点:

1.本小节重点是等差数列的前n项和公式.学习中可能遇到的困难是获得推导公式的思路,克服困难的关键是通过具体例子发现一般规律.

2.本小节首先通过高斯算法,发现等差数列任意的第k项与倒数第n+1-k项的和等于首项、末项的和,从而得出求和的一般思路. 等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法. 学生情况分析 在本节课之前学生已经学习了等差数列的通项公式及基本性质,也对高斯算法有所了解,这都为倒序相加法的教学提供了基础;同时学生已有了函数知识,因此在教学中可适当渗透函数思想.高斯的算法与一般的等差数列求和还有一定的距离,如何从首尾配对法引出倒序相加法,这是学生学习的障碍. 设计思想

建构主义学习理论认为,学习是学生积极主动地建构知识的过程,因此,应该让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据本班学生的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析问题、解决问题的能力,达到了分层教学的目的. 教学目标

1、知识目标

(1)掌握等差数列前n项和公式,理解公式的推导方法;(2)能较熟练应用等差数列前n项和公式求和.

2、能力目标 经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力.

3、情感目标

通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功. 教学重点和难点

教学重点是探索并掌握等差数列前n项和公式,学会用公式解决一些实际问题;

教学难点是等差数列前n项和公式推导思路的获得. 教学过程

第一环节 创设情境 引入新课

高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:1+2+„100=?”

过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10„算得不亦乐乎时,高斯站起来回答说: “1+2+3+„+100=5050.”

教师问:“你是如何算出答案的?”

高斯回答说:“因为1+100=101;2+99=101;„50+51=101,所以(1+100)+(2+99)+„„+(50+51)=101×50=5050.” 这个故事告诉我们:(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西.

(2)该故事还告诉我们求等差数列前n项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法. 第二环节 推进新课 探究新知 提问:在公差为的等差数列如何求?

中,定义前项和,由前面的大量铺垫,学生容易得出如下过程: ∵

∴ ∴

从而我们可以验证高斯十岁时计算上述问题的正确性. 组织学生讨论:在公式1中若将式? 即

此公式要求

(公式2)

必须已知三个条件:

(有时比较有用).

代入又可得出哪个表达

(公式1)第三环节 应用举例 巩固新知

例1 根据下列各题中的条件,求相应的等差数列的.

解(2)解

练习如何求下列和?

①1+2+3+„+100 =

5050

; ②1+3+5+„+(2n-1)=

③2+4+6+„+2n =

例2 等差数列-10,-6,-2,2,„前多少项和是54? 解 设题中的等差数列是,公差为,前n项和为

=54

.,则

=-10,d=-6-(-10)=4,由等差数列前n项和公式,得

解得

n=9或n=-3(舍去).因此,等差数列的前9项和是54. 练习

已知例3 已知一个等差数列

前10项的和是310,前20项的和是的公式吗? 1220.由这些条件能确定这个等差数列的前项和分析:将已知条件代入等差数列前项和的公式后,可得到两个关于与的关系式,它们都是关于与的二元一次方程,由此可以求得与,从而得到所求前项和的公式. 解

设等差数列,将它们代入公式

得到 的公差为,由题意可得

解这个关于与的方程组,得到,所以

练习

一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式与前项和公式.

第四环节 课时小结

本节课主要学习了:1.等差数列的前项和公式1:2.等差数列的前项和公式2:

在学习过程中,让学生能够体验倒序相加法的妙处以及能够正确运用等差数列的前n项和的两个公式. 第五环节 布置作业

1.课本P52习题2.3 第2、3、4题. 2.探索题

(1)数列的前项和,求; }(2)若公差为中,到的表达式?

第六环节 教学反思

d(d≠0)的等差数列{

,你能否由题(1)的启发,得

1、合理地对教材进行了个性化处理,挖掘了教材中可探究的因素,促使学生探究、推导.例如,等差数列前n项和的公式一,是通过具体的例子,引到一般的情况,激励学生进行猜想,再进行论证得出;而第二个公式并不象书本上那样直接给出,而是让学生从已知公式中推导得到的.这样处理教材,使学生的思维得到了很大的锻炼.

2、本节课教学过程的难点在于如何获得推导公式的“倒序相加法”这一思路.为了突破这一难点,在教学中采用了以问题驱动的教学方法,设计的问题体现了分析、解决问题的一般思路,即从特殊问题的解决中提炼方法,再试图运用这一方法解决一般问题.在教学过程中,通过教师的层层引导、学生的合作学习与自主探究,尤其是借助图形的直观性,学生“倒序相加法”思路的获得就水到渠成了.

第四篇:等差数列前n项和公式教学案例分析

《等差数列前n项和公式》教学案例分析

教学案例:

一、教学设计思想

本堂课的设计是以个性化教学思想为指导进行设计的。

本堂课的教学设计对教材部分内容进行了有意识的选择和改组,为了体现个性化教学的教学理念,在教法上,采用了以学生为主体,以问题为中心,以老师为引导,以小组的合作为主要学习方式。课堂结构个性化,让学生在探究中展现个性,在合作中促进学生的个性发展。

在教学中通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功。

二、学生情况与教材分析

1、学生通过上一节的学习,已经了解了等差数列的定义,基本上掌握了通项公式,会运用等差数列的通项公式进行解题,因此只要简单地回顾上一节课的知识就可引入新课;

2、几何能直观地启迪思路,帮助理解,特别是对于职中类学生,他们对知识的理解还是处于模糊阶段,因此,借助几何直观学习和理解数学,是数学学习中的重要方面。只有做到了直观上的理解,才是真正的理解。因此在教学中,要鼓励学生借助几何直观进行思考,揭示研究对象的性质和关系,从而渗透了数形结合的数学思想。

3、学习应该是学生积极主动的建构知识的过程,应该与学生熟悉的背景相联系。本课要求学生通过自主地观察、讨论、归纳、反思来参与学习,认识和理解数学知识,学会发现问题并尝试解决问题,在学习活动中进一步提升自己的能力。

三、教学目标

1、知识目标

(1)掌握等差数列前n项和公式,理解公式的推导方法;(2)能较熟练应用等差数列前n项和公式求和。

2、能力目标

经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。

3、情感目标

通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学心理体验,产生热爱数学的情感,体验在学习中获得成功。

四、教学重点、难点

1、等差数列前n项和公式是重点。

2、获得等差数列前n项和公式推导的思路是难点。

五、教学流程图

六、教学过程

1、引入新课(1)复习

师:上一节课中,我们学习了等差数列的定义及通项公式,知道了“公差d=,通项公式an=”(见黑板)生:(回答黑板上的问题)

(2)故事引入

师:那等差数列的前n项和怎样求?今天,我们主要探讨等差数列的前n项和公式。说起数列求和,我由地想起德国伟大的数学家高斯“神述求和”的故事。高斯在上小学四年级时,老师出了这样一道题“1+2+3、、、、、+99+100”(见课件)高斯稍微想了想就得出了答案。高斯到底用了什么巧妙的方法呢?下面给同学们一点时间来挑战高斯。

生:5050 师:看来我们班还是有不少高斯的。继续努力,说不定将来也成了数学家。下面请这位同学说一说是怎样算出来的。

生:(说明如何进行首尾配对进行求和的。)

师:根据等差数列的特点,首尾配对求和的确是一种巧妙的方法。不过,对于以下的题,“例:求等差数列8、5、2、、、、的前20项的和(见课件)”这种方法可就没那么方便了。因此我们非常迫切地需要推导出等差数列的前n项和公式。

2、探究等差数列前n项和公式一

师:下面我们从一个稍稍简单一点的等差数列来推导探讨等差数列的前n项和公式。(学生观察幻灯片上以等差数列逐层排列的一堆钢管。)

师:如何求?

生:利用刚才的方法.(略)师:想一想,除了刚才的首尾配对求和的方法外,还有没有其他的方法呢?

(课件演示:引导学生设想,如果将钢管倒置,能得到什么启示)

生:每一层都和上一层是一样多的。一共有8层,所以为8×(4+11),但一共有两堆,所以为

师:那如果如下图所示共有n层,第一层为a1,第n层为an,请大家来猜想一下这个呈等差数列排列的钢管的总和sn等于多少? 生:

师:这个猜想对不对呢?下面我们用所学过的知识一起来证明一下。

板书:把上式的次序反过来又可以写成

两式相加:

所以

看来,我们的猜想是正确的。下面我们做几道练习来熟悉一下公式。

3、学生合作学习,运用公式一解题,并从练习中探索得到求和公式二。学生练习一:

1、在等差数列{an}中,已知a1=1,a10=8,求s10

2、求正整数列是前1000个数的和; 学生小组合作练习,分组进行交流。

师:看来,大家对公式的掌握还是不错的。下面,我们再来看一道练习。

学生练习二:在等差数列{an}中,已知a1=1,d=-2,求s10;

学生思考,并讨论解答。

学生讲解如何进行求解这题。

师:刚才那道题给出了a1,d和n=10,a10没有给出,但我们一样可以将s10求出,那我们能不能直接由a1,d和n,得到an呢?

学生根据求和公式一和通项公式导出公式二:

学生练习三:求正整数中前500个偶数的和(用多种方法求解)学生讨论解答此题,并请学生上台讲解。

4、总结

师:今天,大家学得不错。下面我们再来回顾一下本堂课的内容。今天我们主要倒序相加的方法推导了等差数列前n项和公式一,并结合等差数列通项公式二推导出等差数列前n项和公式二,希望同学们在今后的解题要灵活运用这两个公式。

【教学反思】:

综观本节课,存在有特点主要有以下几点:

1、合理地对教材进行了个性化处理,挖掘了教材中可探究的因素,促使学生探究、推导。例如:等差数列前n项和的公式一,是通过具体的例子,引到一般的情况,激励学生进行猜想,再进行论证得出;而第二个公式并不象书本上那样直接给出,而是让学生从习题中进行归纳总结得到的。这样处理教材,使学生的思维得到了很大的锻炼。

2、本节课主要采用观察法、归纳法等教学方法,同时采用设计变式题的教学手段进行教学,通过具体问题的引入,使学生体会数学源于生活,创设情境,重在启发引导,使学生由浅到深,由易到难分层次对本节课内容进行掌握。学生在学习的过程中体验从特殊到一般的研究方法,学会观察、归纳、反思和逻辑推理的能力。

第五篇:《等差数列前n项和》教学反思

《等差数列前n项和》教学反思

身为一名刚到岗的人民教师,教学是重要的任务之一,写教学反思可以快速提升我们的教学能力,教学反思应该怎么写才好呢?下面是小编收集整理的《等差数列前n项和》教学反思,供大家参考借鉴,希望可以帮助到有需要的朋友。

《等差数列前n项和》教学反思1

长期以来,我们的教学太过于重视结论,轻视过程。为了应付考试,为了使对公式定理应用达到所谓的“熟能生巧”,教学中不惜花大量的时间采用题海战术来进行强化。在数学概念公式的教学中往往把学生强化成只会套用公式的解题机器,这样的学生面对新问题就束手无策。 基于以上认识,在设计这两节课时,我所考虑的不是简单地复习等差数列求和公式,而是让学生自己去推导公式。学生在课堂上的主体地位得到了充分的发挥。事实上,定义推导过程就是建构知识模型、形成数学思想和方法的过程。

等差数列是高中数学研究的两个基本数列之一。等差数列的前n项和公式则是等差数列中的一个重要公式。它前承等差数列的定义,通项公式,后启等比数列的前 项和公式。高三最后复习阶段,可千万要重视课本知识,要注意对课本知识和例题的挖掘,如果我们能指导学生不满足课本所给的知识,学会对课本例题的再研究和再探索,那势必会达到事半功倍的效果。

《等差数列前n项和》教学反思2

一.教材分析及能力要求:

数列前n项和是数列单元的重点内容,是在充分理解和掌握等差数列通项公式的基础上课题的延伸;要求学生对公式能理解并掌握,并能根据条件灵活运用,解决简单的实际问题。

二.教学中的重点、难点教学

数学公式只是一些符号,学生记忆容易,但用起来困难,因此,公式的记忆要借助于对知识点的理解。在本节的教学中,我设置了一个带有生活知识的趣味数学题作为引子,设置的问题由易到难,在解决问题过程中,一步一步引向本节的'课题,让学生在问题中寻找规律、方法,并加以总结,最后得到等差数列前n项和的两个公式;在课堂练习中,增加讨论、小节这一环节,帮助学生提高认识、归纳方法,通过分析前n项和公式中的四个量,只要知道其中的任意三个量就可以求另一个,归纳为“知一求三”的问题,如果是求两个量,可以用公式联立方法组解决问题。这样,通过对问题解决方法的归纳,提高了学生的解题能力。

三.教学过程反思

在课堂实施过程中,教学思路清晰、明确,学生对问题的回答也比较踊跃,并能对问题的解法提出自己的不同观点,找出最简单、有效的解决方法。因此,对等差数列的前n公式的推导有一个科学的分析过程,学生对公式的获取思路明确,理解比较深刻,较好地完成了课前预设的目标。但由于教学内容的紧凑,过于追求教学的量,在教学、训练中侧重于方法的指导而忽略了过程的详细讲解,对学生的计算能力、变形能力会产生不利影响,这一点,在第二天的作业中就体现出来。另外,过多的罗列解题方法,提高了学生的解题能力,但学生课后没有自己的思维空间,对学生创新思维的培养就显得的不足。

下载高中数学新课程创新教学设计案例50篇  46 等差数列的前n项和word格式文档
下载高中数学新课程创新教学设计案例50篇 46 等差数列的前n项和.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    等差数列前n项和教学设计说明

    《等差数列前n项和》的教学设计说明 本课的教学设计反映了等差数列求和公式推导过程中数学思想方法——倒序相加法的生成过程,这是本节课教学设计的重中之重;设计中结合本班学......

    等差数列前n项和教案

    等差数列前n项和教案 一、教材分析 1、教材内容:等差数列前n项求和过程以及等差数列前n项和公式。 2.教材所处的地位和作用:本节课的教学内容是等差数列前n项和,与前面学过 的......

    高中数学新课程创新教学设计案例50篇___45_等差数列

    等差数列 教材分析 等差数列是高中阶段研究的两种最常见的数列之一.这节内容在一些具体实例的基础上,归纳、抽象、概括出了等差数列的定义及其通项公式.教学重点是等差数例的......

    高二数学等差数列前n项和教学设计

    2017-2018学年度第一学期教学设计 几何概型 高二(4)组 孙彦艳 教材分析 和古典概型一样,在特定情形下,我们可以用几何概型来计算事件发生的概率。它也是一种等可能概型。 教材......

    高一数学教案 《等差数列前n项和》教学设计

    《等差数列前n项和》教学设计 常州市第二中学 季明银一、教学设计意图: 数列作为一种特殊的函数与函数思想密不可分。现行教材把《数列》放在《函数》之后,非常合理。本节课......

    《等差数列的前n项和》教学设计(精选五篇)

    : 等差数列的前n项和是人教实验版必修5第二章第3节的内容,是学生学习了等差数列的定义 、通项公式后,对数列知识的进一步学习。 学情分析: 学生通过对等差数列基本概念和通项公......

    等差数列前n项和(第一课时)教学设计

    数列---教学设计 等差数列前n项和(第一课时)教学设计 江苏省锡山高级中学 陈春芳 教学目的: 知识目标:1.掌握等差数列前n项和公式及公式的推导思想. 2.灵活运用等差数列前n项......

    等差数列前n项和(教学实录)(五篇模版)

    “自主学习与创新意识培养数学课堂教学模式”研究课一例——“等差数列前n项和”教学实录《普通高中数学课程标准(实验)》中指出:“高中数学课程应力求通过各种不同形式的自......