2.1.1 认识无理数(第1课时)教学设计[小编整理]

时间:2019-05-12 16:32:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2.1.1 认识无理数(第1课时)教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2.1.1 认识无理数(第1课时)教学设计》。

第一篇:2.1.1 认识无理数(第1课时)教学设计

第二章 实数

1.认识无理数(第1课时)

北大附中贵阳为明实验学校八年级数学组

2013.9

一、学生起点分析

通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.

二、教学任务分析

《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.

本节课的教学目标是:

①通过拼图活动,让学生感受客观世界中无理数的存在;

②能判断三角形的某边长是否为无理数;

③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;

④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;

三、教学过程设计

本节课设计了6个教学环节:

第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.

第一环节:质疑

内容:【想一想】

⑴一个整数的平方一定是整数吗?

⑵一个分数的平方一定是分数吗? 目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理. 效果:为后续环节的进行起了很好的铺垫的作用

第二环节:课题引入

内容:1.【算一算】

已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?

2.【剪剪拼拼】

把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗? 目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”. 效果:巧设问题背景,顺利引入本节课题.

第三环节:获取新知

内容:【议一议】→【释一释】→【忆一忆】→【找一找】

【议一议】: 已知a22,请问:①a可能是整数吗?②a可能是分数吗?

【释一释】:释1.满足a22的a为什么不是整数?

释2.满足a22的a为什么不是分数?

【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,那么a一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础

【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段

目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣

效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性. 第四环节:应用与巩固

内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】

【画一画1】:在右1的正方形网格中,画出两条线段: 1.长度是有理数的线段

2.长度不是有理数的线段

【画一画2】:在右2的正方形网格中画出四个三角形

(右1)

2.三边长都是有理数

2.只有两边长是有理数 3.只有一边长是有理数

4.三边长都不是有理数

【仿一仿】:例:在数轴上表示满足x22x0的x

解:

(右2)

仿:在数轴上表示满足x25x0的x

【赛一赛】:右3是由五个单位正方形组成的纸片,请你把

它剪成三块,然后拼成一个正方形,你会吗?试试看!

(右3)

目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上

效果:加深了对“新知”的理解,巩固了本课所学知识.

第五环节:课堂小结

内容: 1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?

2.客观世界中,的确存在不是有理数的数,你能列举几个吗?

3.除了本课所认识的非有理数的数以外,你还能找到吗?

目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化. 效果:学生总结、相互补充,学会进行概括总结.

第六环节:布置作业

习题2.1

六、教学设计反思

(一)生活是数学的源泉,兴趣是学习的动力

大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.

(二)化抽象为具体

常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.

(三)强化知识间联系,注意纠错

既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.

第二篇:1.1 认识无理数(第1课时)教学设计

第二章 实数

1.认识无理数(第1课时)

二、教学任务分析

《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受无理数的存在,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存在性和引入的必要性,并能判断一个数是不是有理数.

本节课的教学目标是:

①通过拼图活动,让学生感受客观世界中无理数的存在;

②能判断三角形的某边长是否为无理数;

③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;

④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;

三、教学过程设计

本节课设计了6个教学环节:

第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.

第一环节:质疑

内容:【想一想】

⑴一个整数的平方一定是整数吗?

⑵一个分数的平方一定是分数吗?

目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理. 效果:为后续环节的进行起了很好的铺垫的作用

第二环节:课题引入

内容:1.【算一算】

已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?

2.【剪剪拼拼】

把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗? 目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”. 效果:巧设问题背景,顺利引入本节课题.

第三环节:获取新知

内容:【议一议】→【释一释】→【忆一忆】→【找一找】

【议一议】: 已知a22,请问:①a可能是整数吗?②a可能是分数吗?

【释一释】:释1.满足a22的a为什么不是整数?

释2.满足a22的a为什么不是分数?

【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,那么a一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础

【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段

目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣

效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.

第四环节:应用与巩固

内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】

【画一画1】:在右1的正方形网格中,画出两条线段: 1.长度是有理数的线段

2.长度不是有理数的线段

【画一画2】:在右2的正方形网格中画出四个三角形

(右1)2.三边长都是有理数

2.只有两边长是有理数 3.只有一边长是有理数

4.三边长都不是有理数

【仿一仿】:例:在数轴上表示满足x22x0的x

解:

(右2)

仿:在数轴上表示满足x25x0的x

【赛一赛】:右3是由五个单位正方形组成的纸片,请你把

它剪成三块,然后拼成一个正方形,你会吗?试试看!

(右3)

目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上

效果:加深了对“新知”的理解,巩固了本课所学知识.

第五环节:课堂小结

内容: 1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?

2.客观世界中,的确存在不是有理数的数,你能列举几个吗?

3.除了本课所认识的非有理数的数以外,你还能找到吗?

目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化. 效果:学生总结、相互补充,学会进行概括总结.

第六环节:布置作业

习题2.1

六、教学设计反思

(一)生活是数学的源泉,兴趣是学习的动力

大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.

(二)化抽象为具体

常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,因此对新数的学习不能仅仅停留于感性认识,还应要求学生充分理解,并能用恰当数学语言进行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存在,让学生觉得新数并不抽象.

(三)强化知识间联系,注意纠错

既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不可以用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这一点:“新数”不能表示成分数,为无理数的教学奠好基.

第三篇:《1.1正数和负数(第1课时)》教学设计

《1.1正数和负数(第1课时)》教学设计

一、内容和内容解析 1.内容

正数和负数的意义。2.内容解析

引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。本课内容是本章后续的有理数的相关概念及运算的基础。

通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量.在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。

基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。

二、目标和目标解析 1.教学目标

(1)体会引入负数的必要性;

(2)了解负数的意义,会用正数、负数表示具有相反意义的量。2.目标解析

(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。

三、教学问题诊断分析

学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。

本节课的教学难点为:用正数、负数表示指定方向变化的量。

四、教学过程设计 1.创设情境,引入新知

教师展示教科书图1.1-1,并提出:

问题1 哪位同学知道这些图片介绍的是什么内容?

师生活动 学生回答。教师补充说明数的产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性。

【设计意图】使学生感受数的产生和发展离不开生活和生产的需要. 问题2 请同学们阅读本章的引言。你能尝试着回答一下其中的问题吗?

师生活动 学生思考并尝试解释,对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述.

【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答。让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲。

2.观察感知,理解概念

问题3 根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗? 师生活动 学生回答,给出正确答案后,教师给出正数、负数的描述性定义: 大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数。

问题4 阅读课本第2页倒数第二段。你能举例说明什么叫一个数的符号吗? 师生活动 学生阅读,举例。只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话。

教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”。0既不是正数,也不是负数。

【设计意图】让学生阅读课文,以培养他们的读书习惯。通过学生举例,可以检验他们对这段课文的理解情况。因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了。

3.例题示范,学会应用

例:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%。写出这些国家这一年商品进出口总额的增长率。

师生活动 提问:你是怎么理解例(1)的?

如果学生回答不完善,再追问:这个问题中,哪些词表明其中含有相反意义的量?小华体重减少1kg,你认为应该怎样表示他的体重“增长值”?

师生合作回答上述问题。估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的,体重增长值为负数,相当于体重减少。

再提问:你能仿照第(1)题的解答,自己解决(2)吗?

【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点。通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。

问题5 你能从例题的解答过程中,总结一下如何用正数、负数表示实际问题中具有相反意义的量吗?

师生活动 学生总结,师生共同补充、完善。要总结出:

(1)先找出表示具有相反意义的量的词,如“增加”和“减少”、“零上”和“零下”、“收入”和“支出”、“上升”和“下降”等;

(2)选定一方用正数表示,那么另一方就用负数表示;

(3)实际问题中,有时需要描述指定方向变化的量,如本例中,进出口总额“减少6.4%”要表示为“增长-6.4%”,这就是说,增长量是一个负数实际上是减少了,也可以说成是“负增长”;

(4)当数据没有变化时,增长率是0。

【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论。一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负。

问题6 请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案。【设计意图】让学生用刚刚总结出的结论解决问题。4.巩固概念,学以致用 练习:教科书第3页练习1,2。

【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况。5.归纳小结,反思提高

师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能举例说明引入负数的必要性吗?(2)你能用例子说明负数的意义吗?

(3)有人说,增长一个负数就是减少一个正数,减少一个负数就是增加一个正数。你能举例说明吗?

6.布置作业:教科书习题1.1第1,2,4,8题。

五、目标检测设计 1.以下各

120115,0.6,10,0,0,36,28220127中,正数有______________________________;负数有______________________________。

【设计意图】考查对正数、负数概念的理解。

2.向东行进-50m表示的实际意义是______________________________。【设计意图】会用正数、负数表示具有相反意义的量。3.下列结论中正确的是()A.0既是正数,又是负数 B.O是最小的正数 C.0是最大的负数

D.0既不是正数,也不是负数

【设计意图】感受数0的特殊身份,并为学习有理数的分类做铺垫。

4.举一个能用正数、负数表示其中的量的生活实例,并解释其中相关数量的含义。【设计意图】能用正数与负数表示生活中的数量。

第四篇:《1.1正数和负数(第1课时)》教学设计

《1.1正数和负数(第1课时)》教学设计

一、内容和内容解析 1.内容

正数和负数的意义。2.内容解析

引入负数,将数的范围扩充到有理数,是解决实际问题的需要,也是为了解决数学内部的运算、解方程等问题的需要。本课内容是本章后续的有理数的相关概念及运算的基础。

通过实例引入正数与负数,既能让学生感受负数与现实生活的紧密联系,体会引入负数的必要性,又有助于学生了解正数和负数的意义,从而学会用正数、负数去刻画现实中具有相反意义的量.在刻画现实问题时,通常将“上升”“增加”“盈利”等确定为正,相应地将“下降”“减少”“亏欠”等确定为负。

基于以上分析,确定本节课的教学重点为:感受引入负数的必要性;能用正数和负数表示具有相反意义的量。

二、目标和目标解析 1.教学目标

(1)了解负数的产生是生活、生产的需要;

(2)掌握正、负数的概念和表示方法,理解数0表示的量的意义;(3)理解具有相反意义的量的含义;(4)熟练地运用正、负数描述现实世界具有相反意义的量;(5)进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力。

2.目标解析

(1)学生能自己举出含有相反意义的量的生活实例,说明引入负数的必要性;

(2)学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义。在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。

三、教学问题诊断分析

学生在小学已经学习了整数、分数(包括小数),即正有理数及0的知识,对负数的意义也有初步的了解,还会用负数表示日常生活中的一些量,但他们对负数意义的了解非常有限。在一些比较复杂的实际问题中,需要针对问题的具体特点规定正、负,特别是要用正数与负数描述向指定方向变化的现象(如“负增长”)中的量,大多数学生都会有困难。这既与学生的生活经验不足有关,同时也因为这样的表示与日常习惯不一致。突破这一难点,需要多举日常生活、生产中的实例,让学生通过例子来理解正数与负数的意义,学会用正数、负数表示具有相反意义的量。

本节课的教学难点为:用正数、负数表示指定方向变化的量。

四、教学过程设计 1.创设情境,引入新知

教师展示课本第2页 图1.1-1,并提出: 问题1 哪位同学知道这些图片介绍的是什么内容?

师生活动 学生回答。教师补充说明数的产生与日常生活、生产实践的关系,感受数随着社会发展而发展的必要性。

【设计意图】使学生感受数的产生和发展离不开生活和生产的需要.

问题2 请同学们阅读本章的引言。你能尝试着回答一下其中的问题吗?

师生活动 学生思考并尝试解释,对于其中的问题(1),如果本地气温有低于0℃的情况,可以选择自己所在地区的气温状况进行描述.

【设计意图】引言中的问题,有的学生凭生活经验可以回答,有的不能回答。让学生阅读并尝试回答,一方面让他们感受在生活、生产中需要用到负数,另一方面让他们知道,要解决这些问题,就需要学习新的数的知识,从而激发学生的求知欲。

2.观察感知,理解概念

问题3 根据小学的知识,你能指出上述例子中哪些是正数,哪些是负数吗?

师生活动 学生回答,给出正确答案后,教师给出正数、负数的描述性定义:

大于0的数叫做正数,在正数前加上符号“-”(负)的数叫负数。问题4 阅读课本第2页倒数第二段。你能举例说明什么叫一个数的符号吗?

师生活动 学生阅读,举例。只要学生能举出与课本上不同的例子,并说明它们的符号就表明他们看懂了这段话。

教师补充说明:一般的,正数的符号是“+”,负数的符号是“-”。0既不是正数,也不是负数。

【设计意图】让学生阅读课文,以培养他们的读书习惯。通过学生举例,可以检验他们对这段课文的理解情况。因为“0既不是正数,也不是负数”是一种规定,所以老师直接说明,学生记住就可以了。

3.例题示范,学会应用

例:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;

(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增加7.5%。写出这些国家这一年商品进出口总额的增长率。

师生活动 提问:你是怎么理解例(1)的?

如果学生回答不完善,再追问:这个问题中,哪些词表明其中含有相反意义的量?小华体重减少1kg,你认为应该怎样表示他的体重“增长值”?

师生合作回答上述问题。估计学生解释体重“增长值”的意义时会出现困难,教师可以在学生解释的基础上补充总结:体重增长值可能是正的,也可能是负的,体重增长值为负数,相当于体重减少。

再提问:你能仿照第(1)题的解答,自己解决(2)吗? 【设计意图】通过具体问题情境,使学生学会用正数与负数表示具有相反意义的量的方法,通过师生合作,突破用正数、负数表示指定方向变化的量这一难点。通过不断追问,引导学生逐步理解题意,重点是找出表示具有相反意义的量的词。

问题5 你能从例题的解答过程中,总结一下如何用正数、负数表示实际问题中具有相反意义的量吗?

师生活动 学生总结,师生共同补充、完善。要总结出:(1)先找出表示具有相反意义的量的词,如“增加”和“减少”、“零上”和“零下”、“收入”和“支出”、“上升”和“下降”等;

(2)选定一方用正数表示,那么另一方就用负数表示;(3)实际问题中,有时需要描述指定方向变化的量,如本例中,进出口总额“减少6.4%”要表示为“增长-6.4%”,这就是说,增长量是一个负数实际上是减少了,也可以说成是“负增长”;

(4)当数据没有变化时,增长率是0。

【设计意图】引导学生及时总结,提炼出可以指导解答其他同类问题的一般性结论。一般而言,我们习惯上把“上升”“盈利”“增加”“收入”等规定为正,把与它们相反的量规定为负。

问题6 请同学们自己举出一个能用正数、负数表示其中的量的实际例子,并给出答案。

【设计意图】让学生用刚刚总结出的结论解决问题。4.巩固概念,学以致用 练习:课本第3页练习1,2。

【设计意图】巩固性练习,同时检验用正数、负数表示具有相反意义的量的掌握情况。

5.归纳小结,反思提高

师生共同回顾本节课所学内容,并请学生回答以下问题:(1)你能举例说明引入负数的必要性吗?(2)你能用例子说明负数的意义吗?

(3)有人说,增长一个负数就是减少一个正数,减少一个负数就是增加一个正数。你能举例说明吗?

6.布置作业:课本习题1.1第1,2,4,8题。

第五篇:《认识无理数》 教学设计

《认识无理数》 教学设计平山乡后山小学:陶旭

教学目标:(一)知识目标:

1、通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性。

2、能判断给出的数是否为有理数;并能说出理由。(二)能力训练目标:

1、让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神。

2、通过回顾有理数的有关知识,让学生能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力。(三)情感与价值观目标:

1、激励学生积极参与教学活动,提高学习数学的热情。

2、引导学生充分进行交流、讨论与探索等教学活动,培养他们合作与钻研精神。

3、了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神。

教学重点:

1、让学生经历无理数发现的过程。感知生活中确实存在着不同于有理数的数。

2、会判断一个数是否为有理数。教学难点:

1、把两个边长为1的正方形拼成一个大正方形的动手操作过程。

2、判断一个数是否为有理数。教学过程:

(一)创设情境,导入新课: 讲故事:(播放课件)

早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,他认为在生活中还存在除有理数之外的另一种数。

[师]到底谁的观点正确呢?我们以前学的有理数范围是否能满足我们实际生活的需要呢? 这节课我们就共同来研究这个问题。(板书课题)学生认真听故事。做好学前准备。(本环节设计意图:以故事引入新课首先能激起学生的学习兴趣,同时让学生带着问题听讲新课会收到良好的效果。)

(二)操作观察,总结归纳:

1、分组活动:

[师]请学生拿出课前准备好的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形。

学生分小组讨论,组长带领组员动手剪、拼。各小组组长展示自己的操作成果(利用投影仪)教师演示拼图过程(播放课件)

2、探索新知 [师]a2=2中a是整数吗?是分数吗?

[甲生]因为12=1,22=4所以a应在1和2之间,故a不能是整数。[乙生]因为 两个相同因数的乘积都为分数,所以a不可能是分数。

[师]同学们说的都不错,我们可以来回顾一下前面学过的有理数的范围。[生]有理数包括整数、分数。[师]经过我们刚才的分析可知,在a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数。看来我们学的有理数的范围又不够用了。

3、做一做:(播放课件)

(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?(2)正方形的边长为b,则b应满足什么条件?b是有理数吗? [师]我们先来回顾一下勾股定理的内容。

[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2。[师]在这题中,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗? [甲生]因为22=4,32=9,所以b不可能是整数。

[乙生]没有两个相同的分数相乘得5,所以b不可能是分数。

[丙生]因为没有一个整数或分数的平方为5,所以b不可能有理数。

[师]同学们说的很正确,生活中确实存在不同于有理数的数,它就是——无理数。下面我们继续看课前播放的故事。(播放课件)

希伯索斯当时的发现动摇了毕达哥拉斯学派的信条,他们试图封锁这一发现,然而希伯索斯早己将这个发现偷偷传播出去了。可是后来还是被毕氏围捕,投进了大海,从而献出了宝贵的生命。但真理是不可战胜的,后来古希腊人证实了希伯索斯的发现。

[师]我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神。

(本环节设计意图:让学生分组讨论、合作、交流,培养了学生新的学习方法,加强了学生团结、协作的能力。了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神。)

(三)巩固练习,深化认识:

1、如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?

[师]找两生板演,其余在练习本上完成。

[生]由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3。h不可能是整数,也不可能是分数。

2、为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗? [生]a的值大约是2.2,这个值不可能是分数。师总结,同时了解其余学生的做题情况。

(本环节设计意图:练习的目的既是检查又是巩固、深化,帮助学生对本节课所学的知识形成更为清晰和深刻的认识,同时可以让学生在探索与被肯定当中获得积极的情感体验。)

(四)课堂小结,课外延伸:

[师]通过今天这节课的学习你都有哪些收获?

[甲生]通过拼图活动,经历无理数产生的实际背景,我感受到生活中不仅有理数,还有无理数。[乙生]会判断一个数是否为有理数。

(只要学生回答的有道理,教师就要给予肯定。

[师]希望同学们课后能在生活中寻找这类不同于有理数的数。(本环节设计意图:这部分有两个作用:一是培养学生归纳梳理知识的良好学习习惯和能力;二是培养学生用数学的眼光观察生活,感受到数学和生活的联系,激发学生学习数学的兴趣。)

(五)课后作业:

1、必做题:课本习题

2、选做题:课本“试一试”

(本环节设计意图:考虑学生的实际情况分层布置作业,必做题面向全体,让学生在巩固知识的同时,有一定的创新空间,选做题供学有余力的同学研究、提高。)

下载2.1.1 认识无理数(第1课时)教学设计[小编整理]word格式文档
下载2.1.1 认识无理数(第1课时)教学设计[小编整理].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    1 认识无理数教案

    第二章 实数 1 认识无理数 【知识与技能】 1.通过拼图活动,让学生感受无理数产生的必要性. 2.借助计算器探索无理数是无限不循环小数. 3.会判断一个数是有理数还是无理数.......

    认识无理数第一课时教案

    2.1认识无理数 (第一课时) 一、教学目标叙写 1.学生通过预习教材21页,并思考情景引入中的问题1. 2.学生通过合作探究部分,初步感知数不够用了, 让学生充分感受“新数”(无理数)的存在.......

    倍的认识教学设计(第1课时)

    《倍的认识》教学设计 教学目标 (一)知识与技能 结合具体情境,利用旧知迁移,理解“倍”的意义,建立“倍”的概念; (二)过程与方法 在观察、比较、变化、抽象中,让学生经历建构倍的直......

    《大数的认识》教学设计(第1课时)

    教学目标: 1.知道生活中有比万大的数;认识新的计数单位十万百万千万亿,知道亿以内各个计数单位的名称,类推每相邻两个计数单位之间的关系,知道数级、数位,掌握数位顺序表。......

    第1课时《吨的认识》名师教学设计

    第一课时 吨的认识 汝河新区小学 任丽娟 一、学习目标 (一)学习内容 《义务教育教科书数学》(人教版)三年级上册第31—32页的例7、例8和做一做。 吨的认识这部分内容是在学生认......

    4.1《认识三角形》(第1课时)教学设计(5篇)

    第4章 三角形 4.1.1 认识三角形 〖教学目标〗 1.了解三角形的概念。 2.掌握一类图形中的三角形计数方法,渗透分类思想。 3.掌握三角形的内角和规律及其应用。 4.培养分析、归纳问......

    《100以内数的认识》教学设计(第1课时)

    教学内容:人教版小学数学教材一年级下册第3335页的内容。 教学目标: 1.使学生能够正确地数出100以内的物体的个数,知道这些数是由几个十和几个一组成的,掌握100以内数的顺......

    1205《认识键盘》第1课时的教学设计

    《认识键盘》第1课时的教学设计 一、教学设计 (一)教学分析 1.教材分析: 《认识键盘》是江苏科学技术出版社出版的《小学信息技术》三年级第5课的内容。本课教材是针对学生在了......