1.5分段函数与映射教案

时间:2019-05-12 17:47:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《1.5分段函数与映射教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《1.5分段函数与映射教案》。

第一篇:1.5分段函数与映射教案

1.5分段函数与映射教案

      

一、知识与技能:

通过实例,让学生总结、体会分段函数的概念并了解分段函数在解决实际问题中的作用,培养学生数学来源于实际又服务于实践的意识或观念,增强学生运用所学知识解决实际问题的能力。经历映射概念的提出过程,体会由特殊到一般的思维方法,掌握映射的概念,会判断一个对应关系是否是映射。

体会用映射刻画函数的方法,理解函数是一种特殊的映射。

二、过程与方法:

自主学习,了解作图的基本要求。

探究与活动,明白作图是由点到线,由局部到全体的运动变化过程。会判断一个对应是不是映射。

重视基础知识的教学、基础技能的训练和能力的培养;启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题;通过教师指导发现知识结论,培养学生的抽象概括能力和逻辑思维能力。

三、情感态度与价值观:

培养辩证地看待事物的观念和数形结合的思想。

使学生认识到事物间是有联系的,对应、映射是一种联系方式。

激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚韧不拔的意志,实事求是的科学学习态度和勇于创新的精神。  

四、重点:分段函数及其表示,映射概念的理解。

五、难点:分段函数解析式的建立及图象的描绘,用映射来定义函数。

六、分段函数的定义:对于自变量x的不同取值范围,有着不同的对应法则,这样的函数通常叫做分段函数。

注意:

 分段函数是一个函数而不是几个函数,处理分段函数问题时,首先要确定自变量的数值属于哪个区间段,从而选取相应的对应法则。

 定义域是各段函数定义域的并集,值域是分段函数值域的并集。 求分段函数值时,应根据函数自变量的值选择相应的解析式求解。

 作分段函数的图象时,应分别分段作出其图象,在作每一段图象时,先不管定义域的限制,用虚线作出其图象,再用实线保留定义域内的一段图象即可。

七、例6:思考:

 自变量的范围是怎样得到的?

 自变量的范围为什么分成了四个区间?区间端点是怎样确定的?  每段上的函数解析式是怎样求出的?  画图象要注意什么?

八、函数是“两个非空数集间的一种确定的对应关系。”如果将数集扩展到任意的集合,会得到什么结论呢?什么是映射?

九、映射的定义:

十、设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x。在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。

象与原象:

y是x在映射f作用下的象,记作f(x),x称做y的原象。

其中A叫做映射f的定义域,由所有象f(x)构成的集合叫做映射f的值域,通常记作f(A).十一、映射要注意什么?

 有三个要素:两个集合,一个对应关系,三者缺一不可。 A中每个元素在B中都有唯一的元素与它对应。 对应可以是“一对一,多对一,”但不能是“一对多”。

十二、练习:判断下列对应关系哪些是从集合A到集合B的映射哪些不是,为什么?

1.ABN*,对应关系f:xyx3

x0 x01,y0,1,对应关系f:x2.AR,B0,3.ABR,对应关系f:xyx x4.AZ,BQ,对应关系f:xy5.

十三:作业:课本第23页:第3题。第24页第8题。

A0,1,2,9,B0,1,4,9,64对应关系f:aba12

第二篇:分段函数(范文模版)

RD辅导

Feel good Feel dream Feel hope 心存美好 心存梦想 心存希望

主题一 函数

分段函数专篇

在新课标中,对分段函数的要求有了进一步的提高,在近几年的高考试题中,考察分段函数的题目频频出现,分段函数已经成为高考的必考内容。

一.分段函数的定义

在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数。

例:1.已知函数yf(x)的定义域为区间0,2,当x0,1时,对应法则为yx,当x1,2]时,对应法则为y2x,试用解析式法与图像法分别表示这个函数。

2.写出下列函数的解析表达式,并作出函数的图像:

(1)设函数yf(x),当x0时,f(x)0;当x0时,f(x)

2(2)设函数yf(x),当x1时,f(x)x1;当1x1时,f(x)0;当x1时,f(x)x

1-1RD辅导

Feel good Feel dream Feel hope 心存美好 心存梦想 心存希望

三、分段函数的应用

例:1.在某地投寄外埠平信,每封信不超过20g付邮资80分,超过20g不超过40g付邮资160分,超过40g不超过60g付邮资240分,依此类推,每封xg0x100的信应付多少分邮资(单位:分)?写出函数的表达式,作出函数的图像,并求出函数的值域。

2.某市的空调公共汽车的票价制定的规则是:

(1)乘坐5km以内,票价2元;

(2)乘坐5km以上,每增加5km,票价增加1元(不足5km的按5km计算)。

已知两个相邻的公共汽车站之间相距约1km,如果在某条路线上(包括起点站和终点站)设21个汽车站,请根据题意写出这条路线的票价与里程之间的函数解析式,并作出函数的图像。

3.如图所示,在边长为4的正方形ABCD上有一点P,沿着折线BCDA由B点(起点)向A点(终点)移动,设P点移动的路程为x,ABP的面积为yf(x)。(1)求y与x的函数关系式 D

C(2)作出函数的图像

5)y5x3)yx1

((RD辅导

Feel good Feel dream Feel hope 心存美好 心存梦想 心存希望

2.把下列函数分区间表达,并作出函数的图像

(1)yx1x(2)y2x13x

x,1x0(3)f(x)x2,0x1

x,1x2

五、分段函数题型分类解析

1、求分段函数的函数值

2,x2例1:已知函数

f(x)0,2x2 2,x2f(3),f(2),f(1),f(1),f(100)。)RD辅导

Feel good Feel dream Feel hope 心存美好 心存梦想 心存希望

例2:设x,求函数y2x13x的最大值。

例3:解不等式2x1x2。

4、解与分段函数有关的方程或不等式

例1:已知f(x)x1,x0,则不等式x(x1)f(x1)1的解集是(x1,x0A、{x|1x21}

B、{x|x1}

C、{x|x21}

D、{x|21x21}

例2:设函数f(x)21x,x11log,则满足f(x)2的x的取值范围是(2x,x1A、[1,2]

B、[0,2]

C、[1,)

D、[0,)))RD辅导

Feel good Feel dream Feel hope 心存美好 心存梦想 心存希望

第三篇:映射与函数的概念

教案一

课题:3.1映射与函数:

一、映射与函数的概念.教学目标:1.了解映射的概念.如果给出两个集合的对应关系,能判断它是不是映射关系.2.理解以映射为基础的函数概念,加深对初中函数概念的理解和沟通.理解和掌握函数符号的意义和简单应用.3.培养学生的观察能力、识图能力、逻辑思维能力以及分析问题和解决问题的能力、运算能力.4.学会分析综合、归纳演绎,用数形结合的思想分析问题和解决问题.渗透符号化思想和联系的观点.教学重点:函数的概念.教学难点:对函数概念的理解.教学方法:讲授法.教学手段:三角板、小黑板、投影仪、胶片.课时安排:1课时.课堂类型:新授课.教学过程: 课件

一、复习导入

1.复习提问:初中所学的函数的概念是什么?(学生口答这一问题.)

2.导入新课:初中所学函数的概念可看成是数集到数集的一种对应,有一定的局限性.其实,在现实生活和科学研究中有很多非数集之间的对应.这节课我们将继续研究函数的概念,今天我们学习第三章3.1节映射与函数.(教师口述这些导入语,并板书课题,导入新课.)

二、讲授新课

1.实例分析

例1:(出示小黑板)设表示东方职业高级中学全体同学构成的集合,则对中任一元素(某个学生),通过测量身高,在实数集中必有唯一一个实数和对应.解:(教师口述)因为中的每个同学都有自己确定的身高,身高是一个确定的正实

中任一元素对应唯一一个正数,同一个同学在同一次测量中只可能有一个身高,所以对实数.这是典型的人与数的对应.(启发学生思考、回答,教师板书.)

例2:(出示小黑板)对任一对有序实数对(,),在直角坐标系中对应唯一一点(,).解:(教师口述画图说明)任一有序实数对(,第3.1节例2.如图,任一对有序实数对(,点(,).如取=1,)与点(,)对应 ,演示课件:),作为点的坐标,在坐标系中对应唯一一

(1,1).=1,有序实数时(1,1),对应坐标系中唯一一点这是典型的有序实数对与点的对应.(启发学生思考、回答,教师板书.)

例3:(出示小黑板)△△上有唯一对称点

与△关于轴对称.对△边上任一点,在与之对应.解:如图,对△→,→,→

边上任一点,在△,→

上都有唯一对称点与之对应.如

.这是典型的点与点的对应.(启发学生思考、回答,教师板书.)

2.映射的定义(重点,红字突出,通过对上述三个实例的分析,归纳出映射的定义,并板书.)

设、是两个非空集合,如果按照某种对应法则

和对应,则称

是集合,对到

内任一个元素,在是在映射中总有一个,且仅有一个元素的作用下的象,记作的映射;称,于是,称作的原象,映射可记为:

:→,→,其中定等于.)叫做的定义域,由所有象所构成的集合叫做的值域.(强调值域不一

3.函数的概念(重点,红笔突出.板书,在映射的基础上定义函数的概念,明确定义域、值域.的意义,强调允许函数的多种说法并存.)

映射概念是初中函数概念的推广,通常就把映射叫做函数.函数的定义域是使函数有意义的实数全体构成的集合,函数的值域是所有函数值的集合.的函数值.关于的函数

4.例题分析

经常写作函数

或函数

. 的意义是函数

在 例4:(出示投影.重点例题.)在图3-3中,图(1)、(2)、(3)、用箭头所标明的元素与中元素的对应法则,是不是映射?

解:(启发学生思考、分析、老师总结、分析、板书.)在图(1)中,通过开平方运算,在中的一个元素,中有两个元素与之对应.这种对应法则不符合上述映射的定义,所以这种对应关系不是映射;

在图(2)中,中任一个元素,通过加倍运算,在中有且只有一个元素与之对应,所以这种对应法则是映射;

图(3)中的平方运算法则同样是映射.因为中每一个数通过平方运算,在中都有唯一的一个数与之对应.图(3)与(2)不同的是,(启发学生分析比较,找出不同点.)在图(3)的中每两个元素同时对应

中的一个元素,而在中,10和16在中没有原象.结论:(投影,启发学生归纳出映射的实质)到的映射只允许多个元素对应一个

相等,一般是的一个子集.元素,而不允许一个元素对应多个元素.映射的值域不一定和

例5:(投影)有、、三名射手参加射击比赛,他们在一轮射击中(每人5发子弹),射得的总环数分别为32,48,40.试问三名射手所构成的集合与每人射击可能得的总环数构成的集合之间的对应关系是不是映射?如果是映射,试写出映射的定义域和值域.解:(启发学生思考、分析讲解,老师分析、总结,投影.)设三名射手所构成的集合为,则={,},每人5次射击所得可能总环数构成的集合是

={∈

|0≤≤50}.由于三名射手每在一轮射击中,有且只有一个总环数与之对应,所以A到B的对应法则是映射.定义域:;值域:{32,48,40}.三、课堂练习

1.(重点练习题.投影,启发学生思考、分析、口答,老师定正.)在下列各题中,哪些对应法则是映射?哪些不是?如果是映射,哪些映射的值域与的真子集?

相等,哪些映射的值域是

(1)={0,1,2,3},={1,2,3,4},对应法则:“加1”;

(2)=,=,对应法则:“求平方根”;

(3)=,=,对应法则:“3倍”;

(4)=,=,对应法则:“求绝对值”;

(5)=,=,对应法则:“求倒数”.2.(重点练习题.投影,启发学生思考、练习、出示解题过程.)已知函数∈{0,1,2,3,5},求

(0),(2),(5)及的值域.=2-3,解:(老师强调值域的求法.)(0)=-3,(2)=1,(5)=7.又(1)=-1,(3)=3,∴的值域为{-3,-1,1,3,7}.3.(投影,启发学生分析、讨论、举例说明,老师定正.)已知集合是映射,试问中的元素在中是否都有象?

中的元素是否在到集合的对应

中都有原象?为什么?

四、课堂小结(老师口述投影)

这节课我们主要学习了映射与函数的概念及简单应用,要求同学们加深对映射与函数概念的理解,掌握函数的意义.五、布置作业(投影说明)

1.复习本节课文,并整理笔记.2.书面作业:第85页习题3-1第1,2题

数学思想方法

函数思想,数形结合思想.待定系数法.

1.函数的思想

本章的中心议题是函数.初中用自变量和因变量之间的单值对应的定义初步探讨了函数的概念、函数关系的表示方法.本章则用集合、映射的思想对函数进行再认识,研究了函数关系的建立、函数的表示方法和函数的几个重要性质.在教学中要充分重视映射(函数)思想方法的培养,在练习和作业中,训练学生用函数的思想观察、分析有关问题.2.数形结合的思想

本章在分析函数性质时,既观察函数图象,又重视对函数解析式的代数分析,充分体现了数形结合的思想.在教学中,不能单打一的让学生只通过观察图象来总结函数性质,也不能不看图只对解析式进行代数分析就得出函数性质.前者只会使学生仍停留在初中的具体直观思维阶段,而后者则容易脱离学生原有认识水平,造成学习困难.正确的做法是数形结合,使学生顺利进行由具体直观思维到抽象思维、理论思维的发展.3.待定系数法

本章专设一节待定系数法,应该很好的利用这个优势,对学生进行待定系数法的教学.4.配方法

在研究二次函数时,配方法是重要方法.在今后也有大量应用

第四篇:函数性质培优教案2(映射、反函数)

数(2)

映 射

逆映射:如果f是A与B之间的一一对应,那么可得B到A的一个映射g:任给bB,规定g(b)a,其中a是b在f下的原象,称这个映射g是f的逆映射,并将g记为f —1.显然有(f —1)—1= f,即如果f是A与B之间的一一对应,则f —1是B与A之间的一一对应,并且f —1的逆映射是f.典例分析

例1:设A={a,b,c},B={0,1},请写出所有从A到B的映射

变式1:设集合A=1,0,1,2集合B=1,0,1。

(1)从集合A到集合B可以构造多少不同的映射?(2)从B到A的映射有多少个?

(3)若B中每个元素都要有原象,这样的映射有多少个?

例2:假设集合M ={0,-1,1} N ={-2,-1 ,0,1,2} 映射f:M→N 满足条件“对任意的x属于M ,x+f(x)是奇数”,这样的映射有多少个?

变式2:设集合A={-1,0,1} B={2,3,4,5,6 } 从A到B的映射 f满足条件 :对每个X∈A 有 f(X)+X为偶数 那么这样的映射f的个数是多少?

变式3:设集合X=

1,0,1,Y=2,3,4,5,6,映射f:

XY,使得对任意的xX,都有x+fx+xfx是奇数,这样的映射f有多少个?

例3:已知:集合M{a,b,c},N{1,0,1},映射f:MN满足f(a)f(b)f(c)0,那么映射f:MN的个数是多少?

例4:设集合A=1,0,1,集合B=2,1,0,1,2。若A中的元

素x对应B中元素f(x),且满足fxfx2,则这样的映射有

多少个?

变式4:知集合M=

x,y,z,N=1,0,1,由集合M到N的映射f满足:fx=fy+fz,那么这样的映射有多少个?

反 函 数

1.反函数的定义

设函数y=f(x)的定义域是A,值域是C.我们从式子y=f(x)中解出x得到式子x=φ(y).如果对于y在C中的任何一个值,通过式子x=φ(y),x在A中都有唯一的值和它对应,那么式子x=φ(y)叫函数y=f(x)的反函数,记作x=f-1(y),习惯表示为y=f-1(x).注意:函数y=f(x)的定义域和值域,分别是反函数y=f-1(x)的值域和定义域,例如:f(x)=的定义域是[-1,+∞],值域是[0,+∞),它的反函数f-1(x)=x2-1, x≥0,定义域为[0,+∞),值域是[-1,+∞)。

2.反函数存在的条件

按照函数定义,y=f(x)定义域中的每一个元素x,都唯一地对应着值域中的元素y,如果值域中的每一个元素y也有定义域中的唯一的一个元素x和它相对应,即定义域中的元素x和值域中的元素y,通过对应法则y=f(x)存在着一一对应关系,那么函数y=f(x)存在反函数,否则不存在反函数.

3.函数与反函数图象间的关系

函数y=f(x)和它的反函数y=f-1(x)的图象关于y=x对称.若点(a,b)在y=f(x)的图象上,那么点(b,a)在它的反函数y=f-1(x)的图象上.

4.反函数的几个简单命题

(1)一个奇函数y=f(x)如果存在反函数,那么它的反函数y=f-1(x)一定是奇函数.

(2)一个函数在某一区间是(减)函数,并且存在反函数,那么它的反函数在相应区间也是增(减)函数. 典例分析

例1:求下列函数的反函数:

(1)y=x2+2x-2, x∈[-3,-2]

(2)y=

(3)已知f(x)=(0≤x≤4)

例2:已知点(1,2)既在y=的图象上,又在它反函数的图象上,求a、b.

例3:函数y=f(x+1)与函数y=f-1(x+1)的图象().A、关于直线y=x对称

B、关于直线y=x+1对称

C、关于直线y=x-1对称

D、关于直线y=-x对称

例4:设y=f(x)=, y=g(x)的图象与 y=f-1(x+1)的图象关于y=x

对称,求g(3)的值.

例5:函数y=f(x)=(1+)2-2(x≥-2), 求方程f(x)=f-1(x)的解集.

例6.已知f(x)=(x≥3), 求f-1(5).课后练习

1.定义在R上的函数y=f(x)有反函数,则函数y=f(x+a)+b的图象与

y=f-1(x+a)+b的图象间的关系是().A、关于直线y=x+a+b对称

B、关于直线x=y+a+b对称

C、关于直线y=x+a-b对称

D、关于直线x=y+a-b对称

2.设定义域为R的函数y = f(x)、y = g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y = x对称,若g(5)= 1999,那么 f(4)=()

A、1999

B、2000

C、2001

D、2002

3.设有三个函数,第一个函数式y=f(x),第二个函数是它的反函数,而第三个函数的图象关于直线x+y=0对称。则第三个函数是()A、y=-f(x)

B、y=-f(-x)

C、y=-f-1(x)

D、y=-f-1(-x)

4.若函数f(x)的图象过(0,1)点,则f-1(x+4)的图象必过点________.

5.已知f(x)2x3,则f1(x1)______________.

6.已知f(x)2x3,则f(x1)的反函数为_____________.

7.已知yf(x)反函数为yf1(x),则f(x3)的反函数

_____________.

8.已知yf(x)的图象过点(0,1),则函数yf(4x)的反函数图象过点____________. 9.若函数图象yf1(x)过点(-2,0),则函数图象yf(x5)过点___________. 10.若函数f(x)x,则f11x2(3)=______________. 参 考 答 案

映射

1、从A到B的映射共有2^3=8个:(a,b,c)→(0,0,0);(a,b,c)→(0,0,1);(a,b,c)→(0,1,0);(a,b,c)→(1,0,0);(a,b,c)→(0,1,1);(a,b,c)→(1,0,1);(a,b,c)→(1,1,0);(a,b,c)→(1,1,1)。

变式

1、分析 这个问题是要建立没有限制条件的映射。它的关键是正确理解映射的概念。对于映射f:AB,集合A中的任何一个元素在集合B中都有B中都有唯一的象(可理解为放球模型),因此,建立从A到B的映射就是给A中的每个元素找到一个象,而A中的每个元素都有3种对应方式,根据乘法原理,共有34个不同的映射。

1)变形思考 C234P3=36个 2)43个

2、①当x=-1时,x+f(x)=-1+f(-1)恒为奇数,相当于题目中的限制条件“使对任意的x属于M,都有x+f(x)是奇数” f(-1)=-2,0,2 ②当x=0时,x+f(x)=f(0),根据题目中的限制条件“使对任意的x属于M,都有x+f(x)是奇数”可知f(0)只能等于-1和1 ③当x=1时,x+f(x)=1+f(1)恒为奇数

f(1)=-2,0,2 综上①②③可知,只有第②种情况有限制,所以这样的映射共有3×2×3=18个

变式

2、映射可以多对一,要让f(X)+X=偶数,当X=-1和1时,只能从B中取奇数,有3,5两种可能,当X=0从B中取偶数有2 4 6三种,则一共有2×2×3=12个

变式

3、分析 此题需仔细分析题意,根据映射的定义,要使X中的每个元素都有象,而集合X中只有三个元素,所以我们可以直接对元素进行分类。

1)当x=-1时,x+fx+xfx=-1,恒满足题意,所以-1的象可在Y中任取,有5种可能。

2)当x=0时x+fx+xfx=f0,要满足题意,0的象可在3,5中任取一个,有2种可能。3)当x=1时,x+fx+xfx=1+2f1,恒满足题意,所以-1的象可在Y中任取,有5种可能。由乘法原理得:共有映射525=50个。

3、思路提示:满足f(a)f(b)f(c)0,则只可能

00001(1)0,即f(a)、f(b)、f(c)中可以全部为0,或0,1,1各取一个.

解:∵f(a)N,f(b)N,f(c)N,且f(a)f(b)f(c)0 ∴有00001(1)0.

当f(a)f(b)f(c)0时,只有一个映射;

当f(a)、f(b)、f(c)中恰有一个为0,而另两个分别为1,-1时,有32=6个映射.因此所求的映射的个数为1+6=7.

评注:本题考查了映射的概念和分类讨论的思想.

4、分析 这是一个要建立有限制条件的映射,所以关键是分析它有何限制条件。由条件fxfx2可知,f1f12=

f1,也就是说,-1和1应该和同一个元素对应,又f0f02是一定

满足的,所以这样的映射可以有:55=25个。变式:

4、7个。

反 函 数

1、解:(1)∵ y=(x+1)2-3, x∈[-3,-2],∴-2≤y≤1且(x+1)

2=y+3.∴ x+1=-, y=-1-,∴ 所求反函数y=-1--2≤x≤1.(2)若x≤0,则y=x2

≥0, x=-.若x>0, 则 y=-x-1<-1, x=-y-1.∴ 所求反函数y=.(3)∵0≤x≤4,∴0≤x2

≤16, 9≤25-x2≤25, ∴ 3≤y≤5,∵ y=, y2

=25-x2, ∴ x2

=25-y2

.∵ 0≤x≤4, ∴x=

(3≤y≤5)

将x, y互换,∴ f(x)的反函数f-1(x)=(3≤x≤5).评注:求函数y=f(x)的反函数的一般步骤是

(1)确定原函数的值域,也就是反函数的定义域.

(2)由y=f(x)的解析式求出x=f-1(y).(3)将x、y交换位置得y=f-1(x).

(4)求分段函数的反函数,应分别求出各段的反函数,它们联合在一起构成原函数的反函数.

2、解:∵点(1,2)在y=上,∴ 2=...........(1)

∵点(1,2)在y=的反函数的图象上,∴点(2,1)在y=

上,∴1=...........(2)由(1),(2)得a=-3, b=7.

评议:本题目巧妙的运用了:若点(a,b)在y=f(x)的图象上,那么点(b,a)在它的反函数y=f-1(x)的图象上.

3、解答:y=f(x+1)与y=f-1(x+1)图象是分别将y=f(x), y=f-1(x)的图象向左平移一个单位所得,∵ y=f(x)与y=f-1(x)的图象关于直线y=x对称,y=x向左平移一个单位而得y=x+1.故选B.例

4、解:由y=f-1(x+1), f(y)=x+1.∴ x=f(y)-1, y=f(x)-1是y=f-

1(x+1)的反函数,即它们关于y=x对称.所以g(x)=f(x)-1,∴g(3)=f(3)-1=

-1=

5、分析:若先求出反函数f-

1(x)=2-2(x≥-2),再求它的解集,这时由题设有

2-2=(1+)2-2.整理得四次方程,求解

有困难,但我们可利用y=f(x)与y=f-1

(x)的图象关系求解.

首先画出y=f(x)=(1+)2-2的图象,如图所示.因为互为反函数的两个函数的图象是关于直线y=x对称的,故立即可画出y=f-1

(x)的图象,由图可见两图象恰有两个交点,且交点在y=x上,因此可由方程组:

解得 x=2或-2, 从而得方程f(x)=f-1

(x)的解集为{-2,2}. 例

6、解:设f-

1(5)=x0, 则 f(x0)=5,即 =5(x0≥3)

∴ x02+1=5x0-5, x0

2-5x0+6=0.解得:x0=3或x0=2(舍)∴ f-1

(5)=3.课后练习

1、解答:将y=x向左平移a个单位,向上平移b个单位得y=x+a+b,故选A.2、解:∵y = f(x-1)和y = g-1(x-2)函数的图像关于直线y = x对称,∴y = g-1(x-2)反函数是y = f(x-1),而y = g-

1(x-2)的反函数是:y = 2 + g(x), ∴f(x-1)= 2 + g(x), ∴有f(5-1)= 2 + g(5)=2001 故f(4)= 2001,应选(C)

3、B

4、分析:∵f(x)的图象过(0,1)点,∴ f-1(x)的图象过(1,0)点,而f-1(x+4)-1的图象是把y=f-

1(x)的图象向左平移4个单位而得到的,故f(x+4)的图象过(-3,0)点.

5、f1(x1)=12(x4)

6、y12(x1)

7、yf1(x)

38、(1,4)

9、(-5,-2)10、1

第五篇:分段函数复习学案

专题

二、分段函数

题型

一、求分段函数的函数值

lgx,x>0,例1(2011·陕西卷)设f(x)=x10,x≤0,则f(f(-2))=________.-x,x≤0,例2.(2011·浙江卷)设函数f(x)=2若f(a)=4,则实数a=()

x,x>0.A.-4或-2 B.-4或2 C.-2或4 D.-2或2

例3.(2009辽宁)已知函数f(x)满足:x≥4,则f(x)=()x;当x<4时f(x)=f(x1),则

121311=()

(A)(B)(C)(D)f(2log3)2882412巩固练习

|x1|2,(|x|1)1(05年浙江)已知函数f(x)1求f[f(1.2)],(|x|1)1x23x2,x1,2(2010陕西文数)已知函数f(x)=2若f(f(0))=4a,则实数a=.xax,x1,

2,x>0,3.(2011·福建卷)已知函数f(x)=

x+1,x≤0.

x

若f(a)+f(1)=0,则实数a的值等于()A.-3 B.-1 C.1 D.3

2x+a,x<1,4.(2011·江苏卷)已知实数a≠0,函数f(x)=

-x-2a,x≥1,若f(1-a)=f(1+a),则a的值为________.

5.(2009山东卷文)定义在R上的函数f(x)满足f(x)= 则f(3)的值为

x0log2(4x),,f(x1)f(x2),x0

()A.-1

B.-2

C.1

D.2 题型

二、分段函数的图像与性质应用 例4.已知函数f(x)(3a1)x4a,(x1)是R上的减函数,那么a的取值范围是()

logx,(|x1)a13117317A.(0,1)B.(0,)C.[,)D.[,1)

x24x,例5.(2009天津卷)已知函数f(x)24xx,的取值范围是

x0x0

若f(2a)f(a),则实数a

()A(,1)(2,)B(1,2)C(2,1)D(,2)(1,)例6.(2010课标全国卷)已知函数f(x)=错误!未找到引用源。若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()

A.(1,10)

B.(5,6)

C.(10,12)

D.(20,24)例7.(2011天津)对实数a和b,定义运算“”:aba,ab1,设函数

b,ab1.f(x)(2x2)x(取值范围是

yf(x)c的图象与x轴恰有两个公共点,则实数c的。若函数1x),R

()

A.(1,1](2,)

B.(2,1](1,2]

C.(,2)(1,2]

D.[-2,-1] 巩固练习

log2x,x0,1(2010天津)若函数f(x)=log(x),x0,若f(a)f(a),则实数a的取值范围是()

12(A)(-1,0)∪(0,1)(B)(-∞,-1)∪(1,+∞)(C)(-1,0)∪(1,+∞)(D)(-∞,-1)∪(0,1)

x24x6,x02(2009天津卷文)设函数f(x)则不等式f(x)f(1)的解集是()

x6,x0A.(3,1)(3,)B.(3,1)(2,)C.(1,1)(3,)D.(,3)(1,3)23(2010江苏卷)已知函数f(x)x1,x0,则满足不等式f(1x2)f(2x)的x的范围是_____。

x01,1,x01x4(2009北京)若函数f(x) 则不等式|f(x)|的解集为____________.3(1)x,x03x2+2x-3,x05(2010福建文)函数(的零点个数为()fx)=-2+lnx,x>0A.3 B.2 C.1 D.0

26(2011新课标)已知函数yf(x)的周期为2,当x[1,1]时,f(x)x,那么函数yf(x)的图像与函数ylgx的图像的交点共有()A.10个 B.9个 C.8个 D.1个

下载1.5分段函数与映射教案word格式文档
下载1.5分段函数与映射教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    第9课 分段函数

    第9课分段函数 |x1|2,|x|111、设f(x)=1,则f[f()]=( ) 2,|x|121xA. 1 2B.4 13C. -9 5 D.25 41x2(x0)x(x0)(x)22、若f(x)=,则当x......

    高中常见分段函数题型归纳[★]

    提高兴趣 增强自信 对接高考 分层教学 总结规律 规范答题 分段函数常见题型及解法 分段函数是指自变量在两个或两个以上不同的范围内,有不同的对应法则的函数, 它是一个函数,非......

    分段函数的教学反思

    分段函数的教学反思 本节课能基本完成教学任务。 教学目标基本实现,在教学引导、自学、归纳、探究以及数学思想方法等方面都进行了积极的构思设计,学生能够在教师指导下进行类......

    映射教案1

    数学教案-映射 教学目标 1.了解映射的概念,象与原象的概念,和一一映射的概念. (1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是......

    小学 分段教案

    一、知识点概述 同学们,上一讲我们学习的内容是“状物文章中的状物方法”。 今天上课之前,老师想和大家讲《变了一个指头以后》的故事:“变换手指”是美术史上一个令人深思的故......

    考研高数精华知识点总结:分段函数范文大全

    凯程考研 历史悠久,专注考研,科学应试,严格管理,成就学员! 考研高数精华知识点总结:分段函数 高等数学是考研数学考试中内容最多的一部分,分值所占比例也最高。为此我们为大家整理......

    平行线与函数教案

    平行线与函数教案 教学目标: 1.能根据平面直角坐标系中两直线互相平行,即k1k2,然后抓住函数图象上点的坐标的特性,即图象上的点都满足函数解析式,实现形与数(式)的转化;同时结合平行......

    函数与方程教案

    函数与方程教案 27.3实践与探索(第二课时) 二次函数与一元二次方程的关系 晋城四中 李前进 【教学目标】 1、知识与技能: (1)体会函数与方程之间的联系,初步体会利用函数图象......