第一篇:七年级数学上册第五章 1.你今年几岁了(典型例题)教学设计
典型例题
例1 把下面式子中的一元一次方程找出来,写在下面的括号里.
2+3=5,一元一次方程:{}
分析
判断是否是一元一次方程应注意以下几个方面:(1)必须是等式;(2)等式中必须含有一个未知数,且未知数的指数是1.
解
一元一次方程:
说明:2+3=5和,都不是一元一次方程,因为前者无未知数,后者不是等式.
例2 下面是一个方程的求解过程,请在括号中填上根据等式的什么性质.
()
()
分析
第一个括号前.方程两边都加上(-3)(或减去3),所以根据是:“等式的两边同时加上(或减去)同一个数或同一个代数式,所得的结果仍是等式.”第二个括号前是等式两边都乘以或除以2,所以根据是:“等式的两边同时乘以同一个数(或除以同一个不为0的数),所得的结果仍是等式.”
解
略
说明:在应用等式的性质时,必须注意“同时„„,同一个数”,避免出现的错误.
例3 据2001年中国环境状况公报,我国水蚀和风蚀造成的水土流失面积达356万平方公里,其中风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里,问水蚀与风蚀造成的水土流失面积各是多少平方公里?请列出解决这个问题的方程.
分析
根据已知条件,我们可以知道,我国水蚀与风蚀造成水土流失的总面积,又知道,风蚀造成的水土流失面积比水位造成的水土流失面积多,那么即使我们没学过本节知识,利用小学学过的关于和差问题的公式,我们仍然能够计算出本题的正确答案.
风蚀造成的水土流失面积=(风蚀、水蚀造成的水土流失之和+风蚀、水性造成的水土流失之差)+2
水蚀造成的水土流失面积=(风蚀、水蚀造成的水土流失之和-风蚀、水蚀造成的水土流失之差)÷2,则
但是,和差公式需要死记硬背/
如果利用这一节学过的知识来解本题,要简便很多.
(1)水蚀与风蚀造成的水土流失总面积为356万平方公里,即水蚀造成的水土流失面积+风蚀造成的水土流失面积=356万平方公里.
(2)可以设水蚀造成的水土流失面积为x平方公里,又知“风蚀造成的水土流失面积比水蚀造成的水土流失面积多26万平方公里”,所以风蚀造成的水土流失面积为(公里.
(3)把x与()万平方)代入①中的等式并省略不参与计算的单位名称,就得到方程。
解
设水蚀造成的水土流失面积为x平方公里,则有
说明(1)这个方程并不难解,同学们在学习下一节之后,将会有更深的体会。
(2)对题目中出现的表示同一种量的数(在本题中是表示水土流失面积的数)要注意分清哪个数大、哪个数小,要仔细分析列式时该用加号、还是该用减号。初学者要尽量避免在这些地方发生错误。
例4 判断下列各式是不是方程,如果是指出已知数和未知数;如果不是,说明为什么?
(1)
(4);(2);(5)
;(3);(6)
;
分析: 判断一个式子是不是方程,主要根据方程的概念;一是等式,二是含有未知数,二者缺一不可。
解:(1)是。3,-2,0是已知数,是未知数。
(2)是:-1,0是已知数,、(3)不是。因为它不含未知数。
(4)是。-1,0是已知数,、(5)不是。因为它不是等式。
(6)是。-1,3,2是已知数,是未知数。
说明: 未知数的系数如果是1,这个省略是1也可看作已知数,但可以不说,已知数应该包括它的符号在内。
例5 己知是方程的解,求m的值. 是方程的解,也就是,右边。
是未知数。是未知数。
分析:欲求m的值,由己知条件
将代入方程后左、右两边的值相等,即左边,即可求出m. 的解,∵ 左边=右边,∴
解:∵是方程
∴
将
∴
代入方程得:
第二篇:你今年几岁了(一)教学设计
第五章 一元一次方程
1.你今年几岁了
(一)山西省实验中学 贾麟香
一、学生起点分析
学生在小学已学过了等式、等式的基本性质、方程、方程的解等知识,对方程已有初步认识.但这个过程没有给“一元一次方程”这样准确的理性的概念.学生在小学学习相关知识的过程中,已经经历了简单方程的简答、简单数量关系的分析,具有一定的解方程的能力.这时解方程的操作依据为加减法、乘除法互为逆运算的简单算理.二、学习任务分析
本课从有趣的“猜年龄”游戏入手,通过对多个熟悉的实际问题的分析,由学生结合已有知识,得出一元一次方程,在此过程中,让学生体会方程是刻画现实世界、解决实际问题的有效数学模型,从而引导学生观察、思考、分析,并用自己的语言描述一元一次方程的定义.本课的重点是让学生根据多种实际问题中的数量关系,找出等量关系,感受方程就是将众多实际问题“数学化”的一个重要模型的意义,列出方程,并归纳出一元一次方程的概念.三、教学目标
1。在对实际问题情境的分析过程中感受方程模型的意义;
2。借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法; 3。使学生在分析实际问题情境的活动中体会数学与现实的密切联系。
四、教学过程设计
环节一:
内容:让学生课前阅读本节教材上的内容,结合课本多以问题串的形式呈现内容的特点,粗读并简答各种背景下的设问.目的:通过读书的过程,首先让学生回忆起小学学过的等式的概念、方程的概念,对课文所设置的较简单又熟悉的实例中的各种量的关系分析清楚,找出等量关系,列出方程,初步认识一元一次方程.实际效果:通常,多数学生能够分析教材实例中所蕴含的各种数量关系,并列出方程。教学过程中需要注意学生在这个环节的活动中所表现出来的表述不规范的问题,以备后面教学时提醒。
环节二:情境引入(归纳总结,给出方程的描述性定义)
内容:课本第166页~167页的四个例题.(1)以四人小组做猜年龄的游戏,每个小组会有几个不同的等式.如:我的年龄乘2减5等于91,你知道老师多大了吗?
学生算出老师48岁了.(2)结合小学学过的等式的概念、方程的概念对所列等式进行观察分析.实际效果:
六人
(一)小组得出如下的结果.1、我的年龄的2倍减5得23
2、我的年龄的2倍减5得21
3、我的年龄的2倍减5得19
4、我的年龄的2倍减5得17 六人
(二)小组接着算出了以上四位同学的实际年龄为14、13、12、11.并由此得出了四个等式:设某人的年龄为X岁,2X-5=23 2X-5=21 2X-5=19 2X-5=17 同时本小组的同学还提出另外的求年龄的方法.如:我的年龄的3倍加3得42,你知道我几岁吗?
可类似得出 3X+3=42的等式.此时的学生已经自觉地使用方程,计算不同关系下的年龄问题,并顺利地求出了方程的解.有的同学还提出:任何一个人的年龄仿上述方式都可以求出.由此反映出学生善于分析、研究问题的良好思维品质.由学生归纳出方程的描述性定义.环节三:实际问题的方程布列(归纳出一元一次方程定义)
内容:课本P166—P167三个实际问题.并提出下面的问题:
1、你能找出每个问题中的已知量与未知量吗?
2、结合题中的设问,用到那些具有实际意义的代数式呢?
3、它们之间有无联系呢?
4、列出你所要的方程了吗?
5、上述过程你感受到了什么?
6、观察以上方程有什么共同点?
目的:以问题串的方式,引导学生逐步深入地思考列方程的核心问题是什么?关键又是什么?
问题1、2的设置,让学生认真审题,培养学生准确获取题中所给信息的思维习惯.问题3的设置是让学生明确不同的代数式,在同一个环境下,表示着同样意义的量.问题5的设置属于开放性思维问题.主要考察学生的数学建模是列方程的核心,找 不同的代数式表示同一个意义的量的列方程的关键的数学思维品质.当然有其他方面合理的收获也要鼓励学生,使他们学会思考.问题6的设置得出一元一次方程的定义.实际效果:
如:同学甲分析 “种树”问题.“树苗原高40cm,X周后张高了5Xcm,(40+5X)cm为现在的高度.又知现在的高度为1米.(40+5X)cm与1米这两个不同的代数式表示同一个意义下相同的量.即树苗X周后的高度.由此列出方程为:
40+5X=100(这里要注意单位的统一).”
诸如此类问题的回答,同学们个个完成的都很好.同学乙还提出对足球场问题设问的改编,“如果设足球场的长为X米”,情况如何? 学生结合自己课前预习时的感知,通过问题串的解答,对方程的布列这一数学模型的价值有了初步的认识.六个问题串的设置,逐步引发学生对列方程的核心与关键的思考,由此让学生对第五个问题说出自己的见解:
(1)列方程实质在找一种变化规律;
(2)列方程分析题中的已知量、未知量,由此产生的新的量是审题的主要环节,也是数学建模思想的简单的应用;
(3)分析出以上诸多量中,表示同一意义下的等量是列方程的关键;(4)上述诸方程都是一元一次方程.结论的得出,源于学生在实际问题中分析,并不断地综合总结,体现了学生思维的主动性.环节四:练习提高
内容:
提供教材上的相应练习、或补充必要的练习。目的:对本节知识进行巩固练习实际效果:
学生基本能很好地对这两个问题给出准确的解答.以小组为单位交流了用自己的年龄编写的应用问题.由同学选自己组的代表发言,对P168随堂练习(2)中的各个量及所表示的意义进行说明,加深对背景下的数学模型的理解.环节五:课堂小结
内容:师生互动,梳理本节内容
目的:鼓励学生结合学习本节课本内容及课前的预习,谈谈自己的收获与感想,包括如何调整自己的读书方法.实际效果:
学生一方面总结出了:
1. 本节给出了四个知识点:等式(回顾巩固),方程(给出描述性定义),一元一次方程及一元一次的解(根).2. 感觉在解决实际问题时,列方程相比小学算术法,给出的思维方式与途径更具普遍性.3. 列方程的核心:实际问题“数学化”,关键分析出各量中表示同一意义的等量.另一方面:每位同学都在现有程度上,适当调整自己的读书预习方式及自己独立思考问题的途径.环节六:布置作业
四.教学反思:
1. 此阶段的学生有比较强烈的自我发展意识,对与自己的主观经验相冲突的现象,教师只有进行得当合理的诠释方可得到学生的认可.授课时要设法让学生体会运用方程建模的优越性,将能使众多实际问题“数学化”的重要数学模型成为学生学习后续知识的自觉选择.2. 让学生在简单的背景问题中,一点一滴地体会分析已知量、未知量之间的数量关系,对列方程的帮助,其正做到分解难点、降低难度、突破难点的目的.3. 学生的读书仍然停留在表面上的阅读,还须继续坚持.
第三篇:你今年几岁了教案
教学目标:
1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。
2、过程与方法:通过观察,归纳一元一次方程的概念。
3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。
教学重点:归纳一元次方程的概念
教学难点:感受方程作为刻画现实世界有效模型的意义.教学过程:
一、情景导入:
我能猜出你们的年龄,相信吗?
只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧.问:你的年龄乘以2加3等于多少?
学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?
学生讨论并回答
二、知识探究:
1、方程的教学(投影演示)
小彬和小明也在进行猜年龄游戏,我们来看一看。
找出这道题中的等量关系,列出方程.大家观察,这两个式子有什么特点。
讨论并回答:什么是方程?方程有哪些特点?
2、判断下列式子是不是方程?
(1)X+2=3(是)(2)X+3Y=6(是)
(3)3M-6(不是)(4)1+2=3(不是)
(5)X+3>5(不是)(6)Y-12=5(是)
三、合作交流
1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)
情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?
你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?
情景二:第五次全国人口普查统计数据(2001年3月28日新华社公布)
截至2000年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了153.94%,1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?
下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?
2X–5=
2140+15X=100
X(1+153.94﹪)=3611
2=200
2=200
在一个方程中,只含有一个未知数X(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?
生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程
四、随堂练习
1、投影趣味习题,2、做一做
下面有两道题,请选做一题。
(1)、请根据方程2X+3=21自己设计一道有实际背景的应用题。
(2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。
五、课堂小节
1、这节课你学到了什么?
2、这节课给你印象最深的是什么?
六、作业:分组布置
第四篇:七年级数学平行线及其判定典型例题
七年级数学平行线及其判定典型例题
例1.已知直线
由.分析:这一例题是平行公理的直接应用,但题干部分的几何语句与平行线的传递性的几何语句又相一致,所以学生容易犯不认真读懂题,丢掉“过点P”的前提要求,只看后面部分就做出平行的错误判断,解决办法就是提醒学生逐字读懂题,并画图,先形成直观感知(即与先前的平行判断形成对立矛盾的感知)再联系所学的知识“经过直线外一点,有且只有一条直线与这条直线平行”加以解释,所以正确结论是l和l12均过点P,且l∥l,l∥l,则l与l132312的关系是什么?说明理l与l12重合.技巧:经过直线外一点,有且只有一条直线与这条直线平行.例2.如图,直线AB和CD与直线MN分别相交于点E、F,∠1=∠2,能否判定直线AB与CD平行?若能,请说明理由;若不能,请增加适当的条件使得AB∥CD.M
BA E 1
G
DC F 2
H
N
例图
分析:本题是对平行线的判定定理的应用,具体地说,应是对三线八角概念教学的考察.学生极易将∠1和∠2理解为同位角,从而直接应用判定定理说“AB∥CD”,而实际上,∠1和∠2是四条线形成的角,不属于三线八角,不可以作为判定平行的依据.应引导学生观察“直线AB和CD被哪一条直线所截,形成同位角?”此时,自然产生可以补充条件“∠FEG=∠NFH”,由于∠1=∠2,所以∠FEG+∠1=∠NFH+∠2,即∠FEB=∠NFD,从而利用“同位角相等,两直线平行”证明出AB∥CD.规律:认清图形中的角是否为三线八角中的角.本文由:361学习网搜集整理;小学数学教案
第五篇:人教版七年级数学上册教学设计
人教版七年级数学上册教学计划
一、教材章节分析 第一章《有理数》 1.本章的主要内容:
对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。重点:有理数加、减、乘、除、乘方运算
难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的 理解。
2.本章的地位及作用:
本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。3.本章涉及到的主要数学思想及方法:
a.分类讨论的思想:主要体现在有理数的分类及绝对值一节课的教学中。
b.数形结合的思想:主要体现在数轴一节课的学习上,用数字表示数轴(图形)的形态,反过来用数轴(图形)反映数字的具体意义,达到数字与图形微观与宏观的统一,具体与抽象的结合,即用数说明图形的形象,用图形说明数字的具体,尤其利用数轴比较有理数的大小,理解相反数与绝对值的几何意义,更是形象直观。
c.化归转化的思想:主要体现在有理数的减法转化为有理数的加法,有理数的乘法转化为有理数的除法。
d.类比法:对于有理数加、减、乘、除、乘方运算可类比小学学过的加、减、乘、除、混合运算等内容学习,总的来说计算方法不变,只是把数字的范围扩大了,增加了负数。在学习过程中要时时考虑符号问题。用类比的方法去学习会对新知识有“似曾相识”之感,不会觉得陌生,学起来自然会轻松的多。
4.教法建议(仅供参考)
a.在学完数轴一节课后,把利用数轴比较有理数的大小补充进来,提前讲解,在讲完绝对值后,在利用绝对值比较两个负数的大小,这样做既可以体会到数轴的用途,也可以避免两种方法放在一起给学生造成的混乱,而利用绝对值比较有理数的大小,写法上学生一般情况下掌握不好,这样可以着重训练学生的写法,分散难点。
b.注重联系实际:这本教材的编排更注重了知识来源于生活,反过来又应用到生活中去的思想。充分体现了生活中处处有数学,人人都学有用的数学的理念。因此,在每课的“创设情境”这一环节中,要充分注意这一点,充分利用生活实例引入新知识,使学生充分体现到学好数学是有用的,因而提高学生学习数学的兴趣。
c.对于绝对值一课的教法建议:对于绝对值的代数意义的理解,学生往往感到困难,教者可以告诉学生:两棍中间夹着一个人(整体),当它是正数和零时,两棍一扒拉,直接走出来,当它是负数时,两棍一扒拉,拄着拐棍走出来,比较形象,使学生容易理解,在《整式的加减》一章中,才可以顺利去掉绝对值符号,进行化简。d.注重本章的选学内容:一个是第6页的“用正负数表示加工允许误差”,另一个是第40页的“翻牌游戏中的数学定到理” 第二章《整式的加减》 1.本章的主要内容:
列代数式,单项式及其有关概念,多项式及其有关概念,去括号法则,整式的加减,合并同类项,求代数式的值。
重点:去括号,合并同类项。
难点:对单项式系数,次数,多项式次数的理解与应用。2.本章的地位及作用:
整式是简单代数式的一种形式,在日常生活中经常要用整式表示有关的量,体现了变量与常量之间的关系,加深了对数的理解。本章中列代数式,去括号及合并同类项是后面学习一元一次方程的基础,求代数式的值在中考命题中占有重要的地位。3.本章涉及到的主要数学思想及方法:
a.整体数思想:主要体现在式子的化简求值问题中,有些题目采用整体代人的解题策略,可使计算简便。有些题目只有从整体考虑才能解决问题。例如:已知:a-b=-3,c+d=2,求(b+c)-(a-d)的值 b.从“特殊到一般”,又从“一般到特殊”的数学思想:这主要体现在本章的习题中,都是根据实际问题列出式子,然后再根据具体数值求式子的值中。
c.对比思想:本章出现了单项式,多项式,同类项等概念,为了正确掌握这些概念,可在比较辨析中加深对概念的理解。4.教法建议(仅供参考)
a.在讲多项式一节的内容中,增加多项式的升(降)幂排列的内容,为下一节对合并同类项的结果的整理提前做好准备。
b.注重本章的数学活动:第43页的数学活动,我认为很有价值,有一定的趣味性,也有较强的探索性,对于学生思维逻辑性的培养是很有价值的,应给予学生充分的时间进行学习。
c.本章概念较多,应使学生首先牢记概念,在解决问题时,才能有意识地联系这些概念,以此为依据完成相关题目。
d.在求多项式的值的相关题目中,注意解题格式的要求,学生初次接触,往往不注意解题格式的写法。
第三章《一元一次方程》 1.本章的主要内容:
列方程,一元一次方程的概念及解法,列一元一次方程解应用题。重点:列方程,一元一次方程的解法,难点:解有分母的一元一次方程和应用一元一次方程解决实际问题。2.本章的地位及作用:
一元一次方程是数学中的主要内容之一,它不仅是学习其它方程的基础,而且是一种重要的数学思想——方程思想,利用方程思想可以使许多实际问题变得直接易懂,体会方程是刻画现实世界的一个有效的数学模型。更深刻地体会数学的应用价值。3.本章涉及到的主要数学思想及方法:
a.转化思想:主要体现在利用方程的同解原理,将复杂的方程转化为简单的方程,直至求出它的解。
b.整体思想:例如:解方程3/2(3x+1)—1/2(3x+1)=5运用整体思想可以使解题步骤简捷,思路清晰。c.数学建模思想:它是在对问题深入地思考、分析、抽象的基础上,用数学方法去解决实际问题,建立数学模型。方程是刻画现实世界的一个有效的数学模型。本章中的列方程解应用题就是培养学生的数学建模思想。
d.数形结合思想:这主要体现在列方程解应用题时,尤其是对行程问题的分析解决中。4.教法建议(仅供参考)
a.本册教材为了更好地体现数学与生活的联系,在讲一元一次方程的解法时,都是先通过一道生活实际问题引入的,然后探讨方程的解法,我的建议是,对于引例的讲解,可以先用算术法,大部分学生习惯这种解法,再引导学生用方程的方法,从而使学生逐步认识到代数方法的优越性。在列出方程后,引导学生探讨完方程的每一步骤后,熟练了应用这一步骤解方程后,在开始下一步骤的学习。
b.注重几种基本题型的应用题:商品利润问题,储蓄问题,行程问题,行船问题,工程问题,调配问题,比例分配问题,数字问题,等积变形问题。这是一些经典题型。同时注意一些图表型应用题,阅读理解型等新颖的应用题。
c.关注教材第95页的实验与探究:无限循环小数化分数,使学生意识到可以利用一元一次方程的知识将无限循环小数化分数,进一步体会方程的应用。第四章《图形认识初步》
1.本章的主要内容、地位及作用:
本章主要介绍了多姿多彩的图形(立体图形、平面图形),以及最基本的图形——点、线、角等,并在自主探究的过程中,结合丰富的实例,探索“两点确定一条直线”和“两点间线段最短”的性质,认识角以及角的表示方法,角的度量,角的画法,角的比较及余角,补角等,探索了比较线段长短的方法及线段中点。本章中的直线,射线,线段以及角等,都是我们认识复杂图形的基础,因此,本章在初中数学中占有重要的地位。2.教学重点与难点
教学重点:(1)角的比较与度量。
(2)余角、补角的概念和性质。
(3)直线、射线、线段和角的概念和性质
教学难点:(1)用几何语言正确表达概念和性质。(2)空间观念的建立。3.本章涉及到的主要数学思想及方法:
a.分类讨论思想:本章经常遇到直线上的点点位置不确定的问题,或者从公共端点出发的一条射线在角内或角外的不确定问题,这时往往需要用分类讨论思想来解决。
b.方程的思想:在涉及线段和角度的计算中,把线段的长度或角的度数设为一个未知数,并根据所求线段或角与与其他线段或角之间的关系列方程求解,能清楚简捷地表示出几何图形中的数量关系,是解决几何计算题的一种重要方法。
c.由特殊到一般的思想:主要体现在依靠图形寻找规律的习题中。4.教法建议(仅供参考)
a.在讲“几何图形”一节中,注意利用实物和几何模型进行教学,让学生通过认真观察、想象、思考加强对图形的直观认识和感受,从中抽象出几何图形,从而更好地掌握知识。
b.在讲立体图形平面展开图中,我建议最好让学生准备好粉笔盒等其它实物,亲自动手操作,全班集体归纳总结出正方体的11种平面展开图,培养学生的空间想象能力,锻炼学生不用动手折叠,就能通过观察展开图,想象出立体图形的形状的能力。
c.在讲“直线、射线、线段”一节中,注重培养学生依据几何语言画图的能力,注意补充一部分“根据语句画出图形”的习题。
d.在涉及有关线段角的计算题时,大部分学生不是求不出结果,利用小学学的算术方法往往能给出答案。但不能很好地写出解题过程。因此对于这部分内容要逐步训练学生的简单说理能力。
二、进度安排 教学内容课时
1.1正数和负数
1课时 1.2有理数
4课时 1.3有理数的加减法
4课时 1.4有理数的乘除法
5课时 1.5有理数的乘方
3课时 本章复习
2课时 2.1整式
2课时 2.2整式的加减
3课时
本章复习
2课时
3.1从算式到方程
4课时 3.2从古老的代数说起—一元一次方程的讨论(1)
4课时 3.3从“买布问题”说起—一元一次方程的讨论(2)4课时 3.4再探实际问题和一元一次方程
4课时 本章复习
4.1多姿多彩的图形
4.2直线、射线、线段
4.3角的度量
4.4角的比较和运算
本章复习
2课时 4课时 2课时 3课时 3课时 2课时