第一篇:两个未知数的和倍问题教学设计
《两个未知数的和倍问题》教学设计
教学内容:
人教版六年级上册数学第41页例6,练习九和第1、2、3题。教学目标
1、掌握用方程解决“已知一个数是另一个数的几分之几和这两个数的和,求这两个数”的实际问题。
2、学会从不同的角度分析题中的数量关系,体会解法的多样性。
3、在解决实际问题的过程中,体会转化的思想,提高分析问题和解决问题的能力。
4、会通过线段图理解题意,并根据关键句弄清数量关系设未知数,能列方程解决两个未知数的和倍问题。
教学重点
1、根据关键句弄清数量关系设未知数。
2、能列方程解决两个未知数的和倍问题。教学难点
1、理解第二种方法 教学准备 课件 教学过程
一、复习导入,揭示课题
(一)看图回答问题
问题:
1、根据线段图,你能说说男、女生人数间的数量关系吗?
2、学生分组讨论,男生人数与女生人数比较,谁是单位“1”。怎样表示男、女生人数间的数量关系。
3、小组汇报:
预设:
男生人数与女生人数比较;女生人数是单位“1”;把女生人数平均分成4份,男生人数是5份;男生人数是女生人数的5/4。
4、如果女生有x人,男生有多少人?(男生5/4x人。)
5、学生分组讨论,女生人数与男生人数比较,谁是单位“1”。怎样表示男、女生人数间的数量关系。
6、小组汇报:
预设:
女生人数与男生人数比较;男生人数是单位“1”;把男生人数平均分成5份,女生人数是4份;女生人数是男生人数的4/5
7、如果男生有x人,女生有多少人?(女生4/5x人。)
(二)小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
(三)揭题:今天我们一起来学习“已知一个数是另一个数的几分之几和这两个数的和,求这两个数未知数的和倍问题。”
二、引入情境,探究新知
(一)教学例6 课件出示问题:例
6、这次篮球赛我们班全场得了42分,下半场得分只有上半场的一半。上半场和下半场各得多少分?
1、阅读与理解
问:从题目中你知道了什么? 全场得分
下半场得分只有上半场的 两个半场的得分是
求出上半场和下半场各得多少分。
2、分析与解答
(1)怎样理解“下半场得分只有上半场的一半”这句话?)
预设:
“下半场得分和上半场得分在比较;上半场得分看作单位“1”;下半场得分是上半场的二分之一”,(2)你们能借助线段图找出一个等量关系式吗?学生试画线段图。列出数量关系式。
上半场的得分*1/2=下半场得分
上半场得分+下半场得分=全场得分(3)上半场和下半场的得分我们都不知道,那怎样设未知数?(设单位“1”为x,即设上半场得分为x。)
(4)还可以怎样理解“下半场得分只有上半场的一半”这句话?)预设:
“上半场得分和下半场得分在比较;下半场得分看作单位“1”;上半场得分是下半场的2倍”,(5)学生画线段图。列出数量关系式。
下半场得分*2=上半场得分 上半场得分+下半场得分=全场得分
(6)那怎样设未知数?(设单位“1”为x,即设下半场得分为x。)请你依据等量关系列方程并解答。
3、回顾与反思
师:刚才同学们列出了两个不同的方程,分别求出了上、下半场的得分,那么对不对呢?可以怎样检验?
(1)小组讨论
(2)小组汇报
三、巩固练习,提升认识
1.某电视厂去年全年生产电视机108万台,其中上半年产量是下半年的4/5。这个电视机厂去年上半年和下半年的产量分别是多少万台?
(1)结合题中的分率句,找出单位“1”,画出线段图,列出数量关系式,列方程解答。小组汇报。
(2)如果把上半年的产量看作是单位“1”,那么下半年的产量是上半年的几分之几?应该怎样设未知数?画出线段图,列出数量关系式。列方程解答。
四、小结
1、今天,我们学习了“已知一个数是另一个数的几分之几和这两个数的和,求这个数”的问题的应用题,解答这类应用题要先找准单位“1”,画出线段图,按照题意找准等量关系式,最后根据等量关系式列方程解答。
五、布置作业 作业:第44页练习九,第2题、第3题。
第二篇:《两个未知数的和倍问题》教学设计
《两个未知数的和倍问题》教学设计
关雯清
课型:新授课
学习内容: 六年级数学上册41页例6。
学习目标制定依据:
1、课程标准相关内容
(1)能解决分数的简单实际问题。
(2)能用方程表示简单情境中的等量关系,了解方程的作用。
2、教材分析:
本节课是在学生初步学会列方程设一个未知数应用题的基础上,来学习含有两个未知数的应用题的解法。这一知识在算术中称为“和倍”和“差倍”问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应用题的基础,也是今后到中学继续学习代数方程解应用题所必须具备的知识。
3、学情分析:
“和倍”问题的文字叙述比较抽象,数量关系比较复杂,而学生的思维又处于具体形象思维向抽象逻辑思维的过渡阶段,对于一些抽象问题理解起来困难较大。
学习目标:
1、会通过线段图分析题意,并根据关键句理清数量关系设未知数。
2、能列方程解决两个未知数的和倍问题。
学习重点: 能列方程解决两个未知数的和倍问题。
学习难点: 会通过线段图分析题意,并根据关键句理清数量关系。
教法与学法: 观察、研究、类推、比较等方法。
评价方案: 1、通过课堂提问、讨论交流等方式检测目标1的达成。
2、通过板演、课堂检测等方式检测目标2的达成。
学前准备:课件
学习过程
一、复习导入,揭示课题
1、果园里有桃树和梨树共120棵,桃树的棵数是梨树的2倍。桃树、梨树各有多少棵?
2、兔的只数是鸡的 ,鸡有x只,那么兔有()只。
3、上衣的价钱是裤子的2倍,裤子的价格为x元,那么上衣的价钱是()元。
4、杨树的棵树是柳树棵树的一半,柳树为x棵,那么杨树为()棵。
5、两个数的和为30,其中一个数是另一个数的4倍,求这两个数。
6.看图回答问题。
女生人数
男生人数
问题:①从图中你知道了什么?
②根据线段图,你能说说男、女生人数间的数量关系吗?
(男生人数与女生人数比较;女生人数是单位“1”;把女生人数平均分成4份,男生人数是5份;男生人数是女生人数的。女生人数与男生人数比较;男生人数是单位“1”;把男生人数平均分成5份,女生人数是4份;女生人数是男生人数的。)
③如果男生有x人,女生有多少人?你是怎样得到的?(女生x人。)
如果女生有x人,男生有多少人?你是怎样得到的?(男生x人。)
二、引入情境,探究新知
1.阅读与理解:阅读教科书41页例6。
问题:①从图中你知道了什么?
②怎样理解“下半场得分只有上半场的一半”这句话?
(下半场得分和上半场得分在比较;上半场得分看作单位“1”;下半场得分是上半场的。)
上半场和下半场各得多少分?
③这道题怎样解答,请你根据题意画出线段图。
2.分析与解答。
(1)问题:①你们能借助线段图找出一个等量关系式吗?
②上半场和下半场的得分我们都不知道,那怎样设未知数?
③请你依据等量关系列方程并解答。
分析:(上半场得分+下半场得分=42分)
解:设上半场得了x分,则下半场得了x分。
x+x=42
x=42
x=42×
x=28
28×=14(分)
答:上半场得分28分,下半场得分14分。
(2)问题:①如果设下半场得了x分,那么我们把谁看作是单位“1”?
②如果把下半场得分看作单位“1”,那么上半场得分是下半场的几倍?
③应该怎样设未知数?说说你列的方程。
分析:(上半场得分+下半场得分=42分)
解:设下半场得了x分,则上半场得了2x分。
x+2x=42
3x=42
x=42 ÷3
x=14
42-14=28(分)
答:上半场得分28分,下半场得分14分。
3.回顾与反思:
(1)比一比,思考:我们依据题意画出了相同的线段图,找到了相同的等量关系,为什么同学们列出的方程不一样呢?
(2)刚才同学们列出了两个不同的方程,分别求出了上、下半场的得分,那么对不对呢?可以怎样检验?
①看看上、下半场的得分和是不是42分;28 +14 =42(分)
②看看下半场得分是不是上半场的.14÷28 =
三、巩固练习,提升认识
1.某电视厂去年全年生产电视机108万台,其中上半年产量是下半年的。这个电视机厂去年上半年和下半年的产量分别是多少万台?
2.一套运动服共300元。裤子价钱是上衣的,上衣和裤子各多少钱?
(学生独立完成后,说说是怎么想的,怎么做的?)
四、课堂小结:
通过本节课的学习,你有什么收获?不足之处是什么?
五、课堂检测:
1、六二班有故事书和科技书共90本,其中科技书是故事书的,科技书和事故书各有多少本?
2、王大爷养了鸭和鹅一共有50只,其中鸭的只数是鹅的,鸭和鹅各有多少只?
作业设计: 课本第44页练习九第2题、第3题。
板书设计
两个未知数的和倍问题
解:设上半场得了x分,则下半场得了x分。
x+x=42
x=42
x=42×
x=28
28×=14(分)
答:上半场得分28分,下半场得分14分。
解:设下半场得了x分,则上半场得了2x分。
x+2x=42
3x=42
x=42 ÷3
x=14
42-14=28(分)
答:上半场得分28分,下半场得分14分。
课后反思:
第三篇:《两个未知数的和倍问题》教学设计
《两个未知数的和倍问题》教学设计
关雯清 课型:新授课
学习内容: 六年级数学上册41页例6。学习目标制定依据:
1、课程标准相关内容
(1)能解决分数的简单实际问题。
(2)能用方程表示简单情境中的等量关系,了解方程的作用。
2、教材分析:
本节课是在学生初步学会列方程设一个未知数应用题的基础上,来学习含有两个未知数的应用题的解法。这一知识在算术中称为“和倍”和“差倍”问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应用题的基础,也是今后到中学继续学习代数方程解应用题所必须具备的知识。
3、学情分析:
“和倍”问题的文字叙述比较抽象,数量关系比较复杂,而学生的思维又处于具体形象思维向抽象逻辑思维的过渡阶段,对于一些抽象问题理解起来困难较大。
学习目标:
1、会通过线段图分析题意,并根据关键句理清数量关系设未知数。
2、能列方程解决两个未知数的和倍问题。
学习重点: 能列方程解决两个未知数的和倍问题。
学习难点: 会通过线段图分析题意,并根据关键句理清数量关系。
教法与学法: 观察、研究、类推、比较等方法。
评价方案:
1、通过课堂提问、讨论交流等方式检测目标1的达成。
2、通过板演、课堂检测等方式检测目标2的达成。
学前准备:课件 学习过程
一、复习导入,揭示课题
1、果园里有桃树和梨树共120棵,桃树的棵数是梨树的2倍。桃树、梨树各有多少棵?
12、兔的只数是鸡的,鸡有x只,那么兔有()只。
3、上衣的价钱是裤子的2倍,裤子的价格为x元,那么上衣的价钱是()元。
4、杨树的棵树是柳树棵树的一半,柳树为x棵,那么杨树为()棵。
5、两个数的和为30,其中一个数是另一个数的4倍,求这两个数。
6.看图回答问题。
女生人数 男生人数
问题:①从图中你知道了什么?
②根据线段图,你能说说男、女生人数间的数量关系吗?
(男生人数与女生人数比较;女生人数是单位“1”;把女生人数平均分成4份,男生人数是5份;男生人数是女生人数的5。女生人数与男生人数比较;4男生人数是单位“1”;把男生人数平均分成5份,女生人数是4份;女生人数是男生人数的4。)54x人。)55 如果女生有x人,男生有多少人?你是怎样得到的?(男生x人。)
4③如果男生有x人,女生有多少人?你是怎样得到的?(女生
二、引入情境,探究新知
1.阅读与理解:阅读教科书41页问题:①从图中你知道了什么?
②怎样理解“下半场得分只有上半场的一半”这句话?
(下半场得分和上半场得分在比较;上半场得分看作单位“1”;下半场得分是1上半场的。)
2上半场和下半场各得多少分?
③这道题怎样解答,请你根据题意画出线段图。2.分析与解答。
(1)问题:①你们能借助线段图找出一个等量关系式吗?
②上半场和下半场的得分我们都不知道,那怎样设未知数? ③请你依据等量关系列方程并解答。
例6。预设1:
“1”
上半场得分:
下半场得分: 2 ?分
42分
?分
分析:(上半场得分+下半场得分=42分)
1解:设上半场得了x分,则下半场得了x分。x+x=42 23 x=42 22 x=42× x=28 28×=14(分)
2答:上半场得分28分,下半场得分14分。
(2)问题:①如果设下半场得了x分,那么我们把谁看作是单位“1”?
②如果把下半场得分看作单位“1”,那么上半场得分是下半场的几倍?
③应该怎样设未知数?说说你列的方程。预设2:
“1”
下半场得分:
?分 2倍
上半场得分:
42分
?分
分析:(上半场得分+下半场得分=42分)
解:设下半场得了x分,则上半场得了2x分。
x+2x=42 3x=42 x=42 ÷3 x=14 42-14=28(分)
答:上半场得分28分,下半场得分14分。
3.回顾与反思:
(1)比一比,思考:我们依据题意画出了相同的线段图,找到了相同的等量关系,为什么同学们列出的方程不一样呢?
(2)刚才同学们列出了两个不同的方程,分别求出了上、下半场的得分,那么对不对呢?可以怎样检验?
①看看上、下半场的得分和是不是42分;28 +14 =42(分)
11②看看下半场得分是不是上半场的.14÷28 =
2三、巩固练习,提升认识
1.某电视厂去年全年生产电视机108万台,其中上半年产量是下半年的这个电视机厂去年上半年和下半年的产量分别是多少万台?
2,上衣和裤子各多少钱? 3(学生独立完成后,说说是怎么想的,怎么做的?)
4。52.一套运动服共300元。裤子价钱是上衣的四、课堂小结:
通过本节课的学习,你有什么收获?不足之处是什么?
五、课堂检测:
11、六二班有故事书和科技书共90本,其中科技书是故事书的,科技书和事
8故书各有多少本?
22、王大爷养了鸭和鹅一共有50只,其中鸭的只数是鹅的,鸭和鹅各有多少
3只?
作业设计: 课本第44页练习九第2题、第3题。
板书设计
两个未知数的和倍问题
解:设上半场得了x分,则下半场得了1x=42 23 x=42 21x分。2 x+ x=42×3 x=28 28×=14(分)
2答:上半场得分28分,下半场得分14分。
解:设下半场得了x分,则上半场得了2x分。
x+2x=42 3x=42 x=42 ÷3 x=14 42-14=28(分)
答:上半场得分28分,下半场得分14分。
课后反思:
第四篇:两个未知数的和倍问题-说课稿
分数除法
例6 两个未知数的和倍问题说课稿
一、说教学内容
本节课的教学内容是人教版小学数学教材六年级上册第 41~42 页例 6 及相关练习。
二、说学情分析
“和倍”问题的文字叙述比较抽象,数量关系比较复杂,而学生的思维又处于具体形象思维向抽象逻辑思维的过渡阶段,对于一些抽象问题理解起来困难较大。
三、说教学目标
1.掌握“和倍问题”的分数除法应用题的解题思想和方法,并熟练解答一些实际问题。2.从解题过程中切实理解用方程解应用题的优越性,提高学生列方程解决 问题的自觉性与积极性。
3.让学生对生活中的有关数学信息予以选择、加工,进而解决问题,感悟 稍复杂的“已知一个数的几分之几是多少,求这个数”的实际问题的内在联系,培养学生分析问题、解决问题的能力。
重点:弄清单位“1”的量,会画线段分析图。难点:正确分析题目中的数量关系,会设未知数。
四、说教学过程
一、复习旧知,引入问题 1.根据题意,写出关系式。(1)白兔的只数是灰兔的 ; ;(2)美术小组的人数是航模小组的(3)小明的体重是爸爸的 ;(4)男生人数是女生的一半。2.根据线段图,列出方程 想一想:线段图相同,列出的方程为什么不同? 你为什么这样列方程?你能用一句话概括两幅线段图中甲和乙的关系吗? 1/5 .教师说明:今天我们就要来学习解决稍复杂的“已知一个数的几分之几 是多少,求这个数”的实际问题。
【设计意图】准备题的设置,是从学生已有知识经验出发的。一方面复习了找单位“1”、分析数量关系和如何列方程,分解了本课的重难点;另一方面,为后面环节的对比分析、沟通联系做好铺垫。
二、探索交流,解决问题
(一)出示例 6 1.课件出示例 6 图片。2.提问,你从图中获得了哪些信息?(1)知道了我们班全场的总得分;(2)知道了下半场得分是上半场的。3.想一想,根据已有的信息,你能提出哪些数学问题? 引导学生提出:上半场和下半场各得多少分? 4.请学生概括图片信息,编出完整的应用题。引导学生概括:六(1)班参加篮球比赛,全场得分为 42 分,下半场得分 只有上半场的一半。六(1)班上半场和下半场各得多少分?
【设计意图】这一环节主要是在例题情景中培养学生捕捉信息和语言概括 的能力,明确例题中的已知条件与问题,为后面的解答做好铺垫。
(二)解答例题 1.画线段图。(1)根据题意,请学生把线段图画在草稿本上,其中一个学生黑板上板演。(2)对照板演的同学,检查自己的线段图有什么不足之处。2/5 2.独立解答。(1)学生尝试独立解答,教师巡视,收集学生不同的解题方法,出示在实 物投影上。(2)解题方法预设: 方法一: 方法二:(3)学生逐题讲解解题思路,教师配合线段图加以说明。3.教学用方程解答例 6。(1)想一想:如果用方程来解答这道题目,你能在题中找出怎样的等量关 系? 根据学生的回答板书: 上半场的分数+下半场的分数 ; 下半场的分数=上半场的分数; 上半场的分数=下半场的分数 下半场的分数=上半场的分数 ??(2)说一说:根据这些等量关系,应该把哪个量设为未知数?另一个量又 可以怎样表示? ①把上半场设为 分,那么下半场可以表示为 ②把下半场设为 分,那么上半场可以表示为 分或 分或 分; 分。; ;(3)做一做:用方程完整地解答例题,并请学生板演。学生用方程解答预设: 方法一:
解:设上半场得分为x分。x+12x=42(1+12)x=42
x=42×23
x=28
28×12=14(分)方法二:
解:设下半场得分为x分。2x+x=42
3x=42
x=14 42-14=28(分)(5)检验:
①总分是否为42分。(14+28=42)②下半场得分是否为上半场的12。(14÷28=12)2.尝试练习:完成教材第44页第1题。(提醒:找准数量关系式和单位“1”)【巩固应用】
五、说教学反思
分数除法应用题教学是整个小学阶段应用题教学的重、难点之一,为了更好到激发学生主动积极地参与学习的全过程,引导学生正确理解分数除法应用题的数量关系。因而在设计时,我从学生已有知识出发,抓住知识间的内在联系,通过对分数乘法应用题的转化,使学生了解分数除法应用题的特征,并借助线段图,分析题目中的数量关系,通过迁移、类推、分析、比较,找出分数除法应用题的解题规律。
一、关注过程,让学生获得亲身体验。
以往分数除法应用题教学效率并不高,是因为大多数时间我在课堂教学中为了自己省心、学生省力,往往避重就轻,草草带过,舍不得把时间用在过程中,总是急不可待,直奔知识的技能目标,究其根由,在于教师的课堂行为,我缺乏必要的耐心。或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。
因此在今年整体的教学中已经改变了自己的教学方法,尤其在本节课上我把分数除法应用题与前面学习过的应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的能力,省去了许多烦琐的分析和讲解。教师在教学中准确把握自己的地位。教师真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显了学生的主体地位,体现了生本主义教育思想。也只有这样才能真正落实《数学课程标准》中,“在数学学习活动中获得成功的体验,锻炼克服困难的意志,建立自信心”的目标,让学生的思维真正得到发展。
二、多角度分析问题,提高能力。
在解答应用题的时候,鼓励学生尽量找出其它方法,让学生从多角度去考虑,这样做拓展了学生思维,引导了学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
第五篇:和倍问题教学设计
教 学 设 计
【教学题目】稍复杂的方程(三)——“和倍”问题 【教学内容】教科书第70页例3 练习十三4—6 【教学目标】
知识与技能:学生通过自主探索、交流互助学会根据两个未知量之间的关系,列方程解答含有两个未知量的实际问题。
问题解决与数学思考:学会用检验答案是否符合已知条件的方法,提高学生求解验证的能力;培养学生的主体意识、创新意识、合作意识,以及分析、观察能力和表达能力。
情感、态度与价值观:让学生体验到生活中处处是数学体验数学的应用价值和数学学习的乐趣。
【教学重点】明确数量关系列方程解决问题。
【教学难点】能理解把一倍量的未知数设为X,则用含有X的式子表示另一个未知数。【教学过程】
一、复习引入 1.用字母表示复习。
学校科技组有女同学X人,男同学是女同学的3倍,男同学有()人,男女同学一共有()人,男同学比女同学多()人。2.引入新课
二、探究新知 呈现问题情景:地球的表面积为5.1亿平方千米,其中海洋面积约为陆地面积的2.4倍。
(1)这道题,告诉我们哪些已经条件?(2)你能提出哪些数学问题?
(3)能解决这个问题吗?请同学们独立解答。(4)汇报,说说你是怎么想的?(5)请同学们思考下面的问题:
①题中有几个未知数?
②怎样设未知数?为什么?
③问题中包含这样的等量关系吗?(6)汇报交流
(7)师小结:用方程解,一般设“一倍量”为x,那么“几倍量”就可以用几x表示,根据题中另一个条件找数量间的相等关系,然后列方程。
(8)解方程,并汇报。
(9)你是根据什么求出海洋面积的呢?(10)我们做的对吗?如何检验呢?
三、巩固拓展
练习十三相关习题(生独立列式解答并集体反馈。)
四、课堂总结
简述今天所学方程的解法。