第一篇:“方程的根与函数的零点”教学反思
《方程的根与函数的零点》教学反思
巴里坤县第三中学教师 李晓莹
本节是在学习了前两章函数性质的基础上,利用函数的图象和性质来判断方程的根的存在性及根的个数,从而了解函数的零点与对应方程的根的关系以及掌握函数在某个区间上存在零点的判定方法;为下节“二分法求方程的近似解”和后续学习的算法提供基础。因此本节内容具有承上启下的作用,非常重要。表面上看,这一内容的教学并不困难,但要让学生真正理解,在教学设计和难点突破上需要下足够的功夫,教学过程中还需要妥善处理其中的一些问题。所以,我在教法上,以问题为纽带,用问题引出内容,激发学生积极主动地进行探索;同时向学生渗透数学思想方法;渗透问题意识,培养学生发现问题、解决问题的能力以及采用“提出问题——引导探究——得出结论——讲练结合”的教与学模式。本节课借助多媒体手段创设问题情境,指导学生研究式学习和体验式学习.如,函数零点与方程根之间的联系是这节课的一个重点,为了突破这一重点,在教学中利用多媒体教学,调动了学生学习的积极性,准确、直观、易于学生理解,符合学生的认知特点,调动了学生主动参与教学的积极性,使他们进行自主探究与合作交流,亲身体验知识的形成过程,变静态教学为动态教学。
一、新课的引入
本堂课是用对实际问题的探讨来引入函数的零点,通过这样一个问题激发学生的学习兴趣,由直观过渡到抽象,更符合学生的认知过程,在评课的时候,这一点也获得了听课老师的一致好评。再复习巩固一元一次方程和一元二次方程的解法,由学生已掌握的知识入手,创设熟悉环境,引导进入本课状态。接着让学生在原有二次函数的认知基础上,使其知识得到自然的发生发展。理解了像二次函数这样简单的函数的零点,再来理解其他复杂的函数的零点就会容易一些。围绕怎样判断所给方程是否有实根来提出问题,并且,利用了教材中的方程提出了下列问题:方程x2-2x-3=0是否有实根?你是怎样判断的?结果,大家对如何解一元二次方程早就熟练了,快速解决了问题。由此看来,这堂课一开始引入熟悉的例子,最能激发学生的学习积极性,并让其认识到学习函数的零点的必要性。
二、重难点的突破
零点存在性定理是本节课的难点和重点,教学设计的好坏直接关系到学生对本节课的学习效果。因此,从“一个函数是否有零点,就是看它的图象与x轴是否有交点。那么,我们又如何判定一个函数的图象与x轴是否有交点呢?”的提问入手,引出零点存在条件的探究。给出6个问题:问题 1、2是学生熟悉的一元一次方程和一元二次方程求根,问题3、4是方程的根和函数图象与x轴的交点之间有何联系与区别,问题5、6上升到抽象连续函数y=f(x)在区间(a,b)内一定有零点的条件。引导学生一边画草图,一边思考,总结规律:函数图象穿过x轴时,图象就与x轴产生了交点。要判断函数f(x)在(a,b)内是否有零点(教材对于函数f(x)在(a,b)内有零点,只研究函数f(x)的图象穿过x轴的情况),应该先观察函数f(x)的图象在(a,b)内是否与x轴有交点,再证明是否有f(a)f(b)<0。从课后了解到,学生都以为只要观察到图象与x轴是否有交点,就可以判断函数f(x)在(a,b)内是否有零点,教学却没有对证明的必要性展开讨论。忽略了在研究函数f(x)在(a,b)内有几个零点时,应该先观察函数f(x)的图象在(a,b)内有几个交点,再进行证明。所以,在课后向学生提出如何判断函数f(x)在(a,b)内有几个零点时,就有学生认为,只需看函数f(x)的图象在(a,b)内有几个交点即可。这样看来,教师有必要引导学生认识证明的必要性。我们也可以作出一些特殊函数在不同区间范围的图象,让学生通过观察对比得到认识。这6个问题设计精巧,层层递进,引发了学生积极思考、探索与交流,将教学推向高潮。如此寻求函数零点存在的条件,符合学生的认知规律:从简单到复杂,从具体到抽象,让学生在具体的例题中概括出共同的本质特征,得出一般性的结论,使学生思维发生碰撞,既弄懂了问题又使数学方法得到提升。
三、教学内容结构,突出思想方法
首先要通过把握教材内容结构来设计教学框架,然后根据教学框架来考虑需要突出的思想方法。本节课按照下列主线来展开教学:
(一)如何引导学生将复杂的问题简单化,并学会从已有认知结构出发由特殊到一般地思考问题。
教材设置函数的零点这一内容的目的,就是为了体现函数的应用,为用二分法求方程的近似解奠定基础。所以,教学一开始就从学生熟悉的知识点入手,用方程的求解出发展开讨论,然后引导学生体会其中的思想方法。例当学生陷入困境时,再逐步提出下面的问题进行引导:
1.当遇到一个复杂的问题,我们一般应该怎么办?
以此来引导学生将复杂的问题简单化,寻找类似的简单问题的解决方法。2.以前我们如何判断一个方程是否有实根,这对研究这个方程是否有帮助?
以此来引导学生从已有认知结构出发,将解决简单方程的方法迁移到不能求解的方程中去,学会从特殊到一般的思维方法。
3.除了用判别式可以判断一元二次方程根的情况,还有其他的方法吗?
以此来引导学生建立方程与函数的联系,渗透函数与方程的思想方法,并培养其从不同角度思考问题的习惯。
(二)怎样突出数形结合的思想方法
数形结合的思想方法几乎贯穿于“基本初等函数”一章的始终,学生通过前面的学习,已基本形成数形结合的思想方法,所以本节教学以培养学生主动运用数形结合的思想方法去分析问题为目的。在建立方程的根与函数的零点的关系时,函数图象起到了关键的桥梁作用,充分体现了它与方程的根以及函数零点之间的数形结合的关系。由学生作出函数图象,让学生回答方程的根与函数图象和x轴的交点有何关系,然后学生自己总结出方程的根、函数图象和x轴的交点、函数的零点之间的关系。这样的教学,在一定程度上也能体现数形结合的思想方法。在这种能够体现思想方法的关键地方,教师要舍得花时间,要让学生由方程自觉地联想到相应的函数,主动地建立方程的根与函数图象间的关系,提升数形结合思想方法的层次,增强函数应用的意识。
(三)如何从直观到抽象
教材是通过由直观到抽象的过程,才得到判断函数f(x)在(a,b)内有零点的一种条件。如何让学生从直观自然地到抽象,有下面几个教学难点需要处理:
1.如何引导学生用f(a)f(b)<0来说明函数f(x)在(a,b)内有零点?
教材是先从函数图象出发,让学生通过观察函数f(x)的图象在(a,b)内是否与x轴有交点,来认识函数f(x)在(a,b)内是否有零点。这是一个直观认识的过程,对学生来说并不困难。然后再让学生认识,f(a)f(b)<0则函数f(x)的图象在(a,b)内与x轴有交点。不过,这却是一个由直观到抽象的飞跃,对学生来说是有困难的。教学的关键在于,如何引导学生由函数f(x)的图象穿过x轴在(a,b)的部分,联想到f(a)f(b)<0。
2.如何引导学生判断函数f(x)在(a,b)内的零点个数?
(1)要判断函数f(x)在(a,b)内的零点个数,可先观察函数f(x)的图象在(a,b)内与x轴有几个交点,再进行证明。
当观察到函数f(x)的图象在(a,b)内与x轴的交点个数后,可以在(a,b)内分别选取每个交点周围的一个区间,然后说明函数分别在各个区间只有一个零点。这样,就将判断函数f(x)在(a,b)内的零点个数转化为判断函数在各个区间内分别只有一个零点。由于f(a)f(b)<0只能说明函数f(x)在(a,b)内有零点,而不能说明f(x)在(a,b)内有几个零点,这就要求函数在每个交点周围所选取的区间上的图象在直观上要单调,并且要证明函数f(x)在该区间上单调。
(2)要证明函数在某个区间内只有一个零点需要一个循序渐进的过程
证明函数在某个区间内只有一个零点,是一个从图象的直观到抽象的代数证明的理性思维过程。从学生现有的知识积累来看,目前教学应立足从图象直观来认识,对于易于用函数单调性定义证明函数单调性的函数,可要求学生进行代数证明。待学生学习了函数的导数之后,再统一要求学生对所有的函数都进行代数证明。所以,学生对这一问题的认识有一个循序渐进的过程,教师对这一问题的教学需要分阶段提出不同层次的要求,关键是把握好教学的度。
本课的实际教学中还存在着不足: 1.在探究新知识时试图给学生讲授一点关于方程的解的数学史知识,但时间问题,最终舍弃了;
2.想自在的调控课堂而不尽得。我所期望的课堂是学生既自主又合作,既数学又生活的。这需要对数学史与知识点较透彻的理解,这需要语言表达的精确,这些都是我的不足。3.在课件制作方面还是存在不足,水平不够高,有待提高。4.在板书方面,板块意识有了,也算工整,但是字迹不够美观。
本节课零点的引入部分可以简化改进,使之更趋合理,零点存在性定理引入部分略显生硬,应该有更艺术的方式。高一学生在函数的学习中,常表现出不适,主要是数形结合与抽象思维尚不能胜任。具体表现为将函数孤立起来,认识不到函数在高中数学中的核心地位。函数与方程相联系的观点的建立,函数应用的意识的初步树立,应该是本节课必须承载的重要任务。在这一任务的达成度方面,本课还需更突出。另外,课堂上教师怎样引导学生也是值得我深思的一个问题,还有少讲多引方面也是我今后教学中努力的方向。
《方程的根与函数的零点》教学反思
巴里坤县第三中学教师
李晓莹
第二篇:“方程的根与函数的零点”教学反思
“方程的根与函数的零点”教学反思
王巧香
方程的根与函数的零点是高中课程标准新增的内容,表面上看,这一内容的教学并不困难,但要让学生能够真正理解,教学还需要妥善处理其中的一些问题。最近,在浙江绍兴听了这一内容的两堂新授课,使用教材都是人民教育出版社《普通高中课程标准试验教科书·数学1(必修)》,课后又与部分学生进行了交流。总的来说,教学效果都不甚理想,暴露出了一些共同的问题,看来具有一定的代表性。下面就两堂课共同存在的问题,谈一点看法。
一、首先要让学生认识到学习函数的零点的必要性
教材是利用一元二次方程的例子来引入函数的零点。这样处理,主要是想让学生在原有二次函数的认知基础上,使其知识得到自然的发生发展。理解了像二次函数这样简单的函数的零点,再来理解其他复杂的函数的零点就会容易一些。但在教学时,就不能照本宣科。
这两堂课的教学都和教材一样,也是利用一个一元二次方程来引入,围绕怎样判断所给方程是否有实根来提出问题。并且,两位教师都利用了教材中的方程提出了下列问题:
方程x2-2x-3=0是否有实根?你是怎样判断的?
结果,学生的反应都很平淡,大多数人对这个问题都不感兴趣。课后学生认为,大家对如何解一元二次方程早就熟练了,老师没必要再问那么简单的问题了。由此看来,这堂课一开始就应该让学生认识到学习函数的零点的必要性。教师所选择的例子,最好是学生用已学方法不能求解的方程,这样才能激发学生的学习积极性,并让其认识到学习函数的零点的必要性。例如,可以把教材后面的例子先提出来,让学生思考:
方程lnx+2x-6=0是否有实根?为什么?
在学生对上述问题一筹莫展时,再回到一元二次方程上,引导学生利用函数的图象和性质来研究方程的根。这堂课的头开好了,整堂课就活了。二、一元二次方程根的存在是否由其判别式决定
当教师问到一元二次方程x2-2x-3=0是否有实根时,两个班的学生很快就用根的判别式作出了判断,没有一位学生用方程相应的函数图象进行分析。于是,教师又引导学生作出一元二次方程相应的函数的图象,并建立方程的根与函数图象和x轴交点的联系。值得注意的是,在上述活动中,学生认为,因为一元二次方程根的判别式的大小有三种情况,所以一元二次方程相应的函数图象和x轴的交点就有三种情况。教师不仅对此默认,还在研究了一元二次方程与其函数图象的关系后总结到,虽然我们可以用判别式来判断一元二次方程根的存在,但对于没有判别式的其他方程就可以根据相应的函数图象来判断了。
看来,师生们对一元二次方程根存在的本质原因都不清楚,都误以为是其判别式的大小。如果通过建立一元二次方程与其相应函数图象的关系,没有揭露出方程根存在的本质原因是相应函数的零点的存在,那么就会导致学生对引入函数零点的必要性缺乏深刻的认识,以为结合函数图象并利用f(a)?f(b)的值与0的关系判断方程根的存在只是其中的一种方法或技巧,而认识不到其一般性和本质性。所以,教学在研究一元二次方程与其相应函数图象的关系时,关键要以函数图象为纽带,建立一元二次方程的根与相应函数零点之间的关系,让学生理解方程根存在的本质以及判断方程根存在的一般方法。这样,才能将所得到的判断方程根存在的方法推广到一般情况,并使学生对方程根存在的认识不仅仅停留在判别式或函数图象上。
三、根据图象能否判断函数是否有零点以及零点的个数 尽管两堂课教师都谈到,要判断函数f(x)在(a,b)内是否有零点(教材对于函数f(x)在(a,b)内有零点,只研究函数f(x)的图象穿过x轴的情况),应该先观察函数f(x)的图象在(a,b)内是否与x轴有交点,再证明是否有f(a)?f(b)<0。但是,教学却没有对证明的必要性展开讨论。结果,从课后了解到,学生都以为只要观察到图象与x轴是否有交点,就可以判断函数f(x)在(a,b)内是否有零点,至于证明只是数学上的严格要求而已。同样,两堂课在研究函数f(x)在(a,b)内有几个零点时,教师也是这样告诉学生,应该先观察函数f(x)的图象在(a,b)内有几个交点,再进行证明,依然没有说明证明的必要性。所以,在课后向学生提出如何判断函数f(x)在(a,b)内有几个零点时,就有学生认为,只需看函数f(x)的图象在(a,b)内有几个交点即可。
看来,教师有必要引导学生认识证明的必要性。例如,我们可以作出一些特殊函数在不同区间范围的图象,让学生通过观察对比得到认识。
如图1,是计算机所作的某个函数的图象。可以让学生根据图象思考,该函数是否有零点?
在学生作出判断后,再逐步将原点附近的图象放大,得到该函数在其他较小区间范围的多个图象(图2(1)、(2))。然后再问学生,该函数究竟有没有零点?
如图3,是计算机所作的又一个函数的图象。可以让学生根据图象思考,该函数有几个零点?
在学生作出判断后,再逐步将原点附近的图象放大,得到该函数在其他较小区间范围的多个图象(图4(1)、(2))。此时再问学生,该函数究竟有几个零点?
结合上述例子,要让学生知道,我们所作的函数图象只能反映函数一个局部的情况,如果根据一个图象就作出判断可能就会片面。这样,学生自然就会认识到证明的必要性了。
四、教学要把握内容结构,突出思想方法
教师首先要通过把握教材内容结构来设计教学框架,然后根据教学框架来考虑需要突出的思想方法。本节课可以按照下列主线来展开教学:
两位教师对教材内容结构的把握还不到位,课堂教学比较凌乱,对上述三块内容所蕴含的思想方法也没能抓住,主要表现在以下几个方面。
(一)如何引导学生将复杂的问题简单化,并学会从已有认知结构出发由特殊到一般地思考问题 教材设置函数的零点这一内容的目的,就是为了体现函数的应用,为用二分法求方程的近似解奠定基础。所以,教学一开始就应该从学生用已学方法不能求解的方程出发展开讨论,然后引导学生体会其中的思想方法。例如,可以像前面一样先提出:方程lnx+2x-6=0是否有实根?为什么?当学生陷入困境时,教师再逐步提出下面的问题进行引导:
1.当遇到一个复杂的问题,我们一般应该怎么办?
以此来引导学生将复杂的问题简单化,寻找类似的简单问题的解决方法。2.以前我们如何判断一个方程是否有实根,这对研究这个方程是否有帮助? 以此来引导学生从已有认知结构出发,将解决简单方程的方法迁移到不能求解的方程中去,学会从特殊到一般的思维方法。
3.除了用判别式可以判断一元二次方程根的情况,还有其他的方法吗?
以此来引导学生建立方程与函数的联系,渗透函数与方程的思想方法,并培养其从不同角度思考问题的习惯。
遗憾的是,两位老师都是直接从一元二次方程出发展开讨论,学生就错过了上述这些思想方法的训练。
(二)怎样突出数形结合的思想方法
数形结合的思想方法几乎贯穿于“基本初等函数I”一章的始终,学生通过前面的学习,已基本形成数形结合的思想方法,所以本节教学应该以培养学生主动运用数形结合的思想方法去分析问题为目的。但是,在两堂课中,教师却没有留给学生主动运用数形结合思想方法的空间。
在建立方程的根与函数的零点的关系时,函数图象起到了关键的桥梁作用,充分体现了它与方程的根以及函数零点之间的数形结合的关系。但是,两位教师却没有留给学生足够的时间去主动搭建函数图象这一桥梁,而是由教师作出函数图象,让学生回答方程的根与函数图象和x轴的交点有何关系,然后老师再给出方程的根、函数图象和x轴的交点、函数的零点之间的关系。这样的教学,虽然一定程度上也能体现数形结合的思想方法,但体现的思想层次却很低。在这种能够体现思想方法的关键地方,教师要舍得花时间,要让学生由方程自觉地联想到相应的函数,主动地建立方程的根与函数图象间的关系,提升数形结合思想方法的层次,增强函数应用的意识。
(三)如何从直观到抽象
教材是通过由直观到抽象的过程,才得到判断函数f(x)在(a,b)内有零点的一种条件。如何让学生从直观自然地到抽象,有下面几个教学难点需要处理:
1.如何引导学生用f(a)?f(b)<0来说明函数f(x)在(a,b)内有零点
教材是先从函数图象出发,让学生通过观察函数f(x)的图象在(a,b)内是否与x轴有交点,来认识函数f(x)在(a,b)内是否有零点。这是一个直观认识的过程,对学生来说并不困难。然后再让学生认识,f(a)?f(b)<0则函数f(x)的图象在(a,b)内与x轴有交点。不过,这却是一个由直观到抽象的飞跃,对学生来说是有困难的。教学的关键在于,如何引导学生由函数f(x)的图象穿过x轴在(a,b)的部分,联想到f(a)?f(b)<0。为此,我们不妨可以通过下列问题来启发学生:
(1)我们看到,当函数f(x)的图象穿过x轴时,函数f(x)的图象就与x轴产生了交点。如果不作出函数f(x)的图象,你又如何判断函数f(x)的图象与x轴有交点?
(2)函数f(x)的图象穿过x轴这是几何现象,那么如何用代数形式来描述呢?
(3)函数f(x)的图象穿过x轴其实就是穿过与x轴的交点周围的部分,比如(a,b)。在区间(a,b)内,如何用代数形式来描述呢?
(4)如果函数f(x)的图象与x轴的交点为(c,0),那么函数f(x)分别在区间(a,c)和区间(c,b)上的值各有什么特点?这对我们用代数形式进行描述有何帮助?
2.如何引导学生判断函数f(x)在(a,b)内的零点个数
要判断函数f(x)在(a,b)内的零点个数,可先观察函数f(x)的图象在(a,b)内与x轴有几个交点,再进行证明。这同样是一个从直观到抽象的过程,教学需要处理好下列两个问题:
(1)如何引导学生说明函数在某个区间内只有一个零点 当观察到函数f(x)的图象在(a,b)内与x轴的交点个数后,可以在(a,b)内分别选取每个交点周围的一个区间,然后说明函数分别在各个区间只有一个零点。这样,就将判断函数f(x)在(a,b)内的零点个数转化为判断函数在各个区间内分别只有一个零点。由于f(a)?f(b)<0只能说明函数f(x)在(a,b)内有零点,而不能说明f(x)在(a,b)内有几个零点,这就要求函数在每个交点周围所选取的区间上的图象在直观上要单调,并且要证明函数f(x)在该区间上单调。但教学的难点正在于此,如何引导学生利用函数的单调性来说明函数在某个区间内只有一个零点?我们可以设计下列教学环节来帮助学生认识:
① 可以先给出一些只有一个零点的函数图象(图5);
②让学生通过观察这些图象,归纳出这些函数具有的共同性质;
③当学生发现这些函数分别在交点周围的一个区间上都单调后,再让学生思考,为什么函数在某个区间上单调则函数在该区间内就只有一个零点?
经过上述从直观到抽象的过程,学生才会真正认识到,为什么可以利用函数的单调性来说明函数在某个区间内只有一个零点。
(2)要证明函数在某个区间内只有一个零点需要一个循序渐进的过程
证明函数在某个区间内只有一个零点,是一个从图象的直观到抽象的代数证明的理性思维过程。从学生现有的知识积累来看,目前教学应立足从图象直观来认识,对于易于用函数单调性定义证明函数单调性的函数,可要求学生进行代数证明。待学生学习了函数的导数之后,再统一要求学生对所有的函数都进行代数证明。所以,学生对这一问题的认识有一个循序渐进的过程,教师对这一问题的教学需要分阶段提出不同层次的要求,关键是把握好教学的度。
从两堂课的教学情况来看,两位教师都没能抓住上述内容所蕴含的思想方法来设计教学,而是直接将结论灌输给学生,让学生失去了合适的思维训练和思想方法提升的机会。
方程的根与函数的零点是高中课程标准新增的内容,第一次教学就要取得成功的确不易。看来,像这些中学新增内容的教学,需要一个不断实践以及实践后的反思的过程,在实践与反思的过程中,不仅要妥善解决上述问题,还要不断地发现和解决新的问题,这样,教学效果才会逐步得到改善。
第三篇:方程的根与函数的零点教学反思
方程的根与函数的零点教学反思
通过本节课的教学实践,我感觉学生对方程和函数之间的关系有了进一步的理解,通过对具体函数与方程之间关系的分析到对一般函数和方程之间关系的分析,使学生真正理解了方程的根、函数的图像与轴交点的横坐标和函数的零点是一个值在不同环境下的不同称呼,更使学生能够利用不同的方法判断函数的零点。通过生活实例让学生自主探究出函数零点存在的判定条件,突破本节课的难点,并能利用存在定理判断函数在区间是否有零点及零售的个数,体现出数学与生活的紧密联系,是自然的。这样基本达到本节课的教学目标,学生在自己思考或讨论或探究问题的过程中基本能得到正确的结果,对问题的解决能力有所提高。
存在的问题是,本节课因为教学容量过大,时间过紧,结束部分处理的比较仓促;在学生探究讨论部分,教师干预过多,留给学生思考的空间及时间稍显不足;在板书环节由于对黑板的不适应导致板书不够美观,感到很遗憾。
第四篇:方程的根与函数的零点教学反思
3.1.1 方程的根与函数的零点”教学反思
朱河中学 李丹
“方程的根与函数的零点”是高中课程标准新增的内容,教材用了三个版面(人民教育出版社《普通高中课程标准试验教科书·数学1(必修)A版》P.86—87)介绍本课。从表面上看,这一内容的教学并不困难,但要让学生真正理解,在教学设计和难点突破上需要下足够的功夫。实施本节课的教学,得到一些感悟。
一、背景分析
1、学习任务分析
函数与方程是中学数学的重要内容,既是初等数学的基础,又是初等数学与高等数学的连接纽带。在新课程教学中有着不可替代的重要位置.为什么要引进函数的零点?原因是要用函数的观点统帅中学数学,把解方程问题纳入到函数问题中.引入函数的零点,解方程的问题就变成了求函数的零点问题.就本章而言,本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形.它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3.1.2)加以应用,通过建立函数模型以及模型的求解(3.2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系.即体现了函数与方程的思想,又渗透了数形结合的思想.总之,本节课渗透着重要的数学思想 “特殊到一般的归纳思想” “方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。
2、学生情况分析
学生在学习本节内容之前已经学习了函数的图象和性质,理解了函数图象与性质之间的关系,尤其熟悉二次函数,并且已经具有一定的数形结合思想,这为理解函数的零点提供了直观认识,并为求出零点提供了支持,但学生基础普遍较差,因此在设计导学案的时候,都是以基础为主,没有把函数零点的存在性放在里面,主要是理解函数零点的概念和三者之间的关系,为后面零点的存在性和零点的分布打好基础。而且学生有一定的方程知识的基础,熟悉从特殊到一般的归纳方法,这为深入理解函数的零点及方程的根与函数零点的联系提供了依据.但学生对于函数与方程之间的联系缺乏一定的认识,对于综合应用函数图象与性质尚不够熟练,这些都给学生在联系函数与方程,发现函数的零点造成了一定的难度。因此教学中尽可能提供学生动手实践的机会,让学生亲身体验中掌握知识与方法,充分利用学生熟悉的二次函数图象和一元二次方程通过直观感受发现并归纳出函数零点的概念;在函数零点存在性的判定方法的教学时应该为学生创设适当的问题情境,激发学生的思维引导学生通过观察、计算、作图、思考理解问题的本质。
二、本节课的内容、地位、核心
本节课的内容就是三个“一”:一个概念(函数零点)、一种关系(函数零点、方程的根、函数图象与x轴交点的横坐标三者的等价关系)、一个方法(求函数零点的方法)。它反映了方程与函数的联系,体现了“数”与形的辩证统一,增加了函数的“应用点”,体现了函数应用的广泛性,具体诠释了“数学是有用的”。本节课的核心内容是函数零点、方程的根、函数图象与x轴交点的横坐标三者的关系,从而得到如何求函数零点的方法,这既是本节课的重点又是难点。
三、本节课的成功之处
1.新课的引入
简单介绍了章头话,说明本章的任务——运用函数的思想,建立函数模型,去解决现实生活中的一些简单问题。给出三个方程:(1)
;(2)
;(3)。
为引入新课作铺垫,得到函数零点的概念。函数零点、方程的根、函数图象与x轴交点的横坐标三者的等价关系。
2.难点的突破
学生有一定的方程知识的基础,熟悉从特殊到一般的归纳方法。同时通过一元二次方程的判别式来探讨函数的零点,方程的根以及函数图像与X轴的交点三者之间的关系。逐层铺垫,降低难度由具体到一般,建立一元二次方程的根与相应的二次函数的零点的联系,然后将其推广到一般方程与相应的函数的情形.恰当使用信息技术,让学生直观形象地理解问题,了解知识的形成过程.采用“启发—探究—讨论”教学模式,精心设置一个个问题链,给每个学生提供思考、创造、表现和成功的机
3.课堂小结
课堂小结中为了让学生记忆深刻,巩固知识,将本节课的知识点”归结为一首小诗:函数零点方程根,形数本是同根生。读起来朗朗上口,容易记忆,又道出了“函数零点”的定义,数形结合这一重要的的数学思想方法。
三、本节课值得思考之处
1.对学生估计不足,学生面对全校的数学专家,开场时有点怯场,思维受阻,导致一些该引导学生回答的问题,老师代劳了,学生的主体作用未得到充分体现。
2.对现代教育手段的使用,由于能力有限,未能做出精美生动的图形变化来刺激学生的思维,更好地辅助教学。
第五篇:关于方程的根与函数的零点一课的教学反思
关于方程的根与函数的零点一课的教学反思
穆棱市第一中学
靳春明
本节课是一节校内公开课,回顾这节课整个过程有成功之处也有遗憾,为了更好进行教学,总结过去展望未来,对本节进行如下的分析:
本节是第三单元的第一节,我先对这一章内容进行了分析:
从总体上把握住了教学的关键,认识到了本节课在本章的地位和作用,本节课是为了二分法的教学的一节预备课,是基础课,为此也就确定了本节课的重点:零点的存在性。为此我开始思考如何让学生对这个问题产生兴趣,如何理解零点的存在性,如何在问题情境下引导学生自主探求知识产生发展过程。为此我设计在引入时提出
2三个方程(1)3x20;(2)x5x60;(3)lnx2x60让同学们解决,前两个方程学生很容易解决,但第三个超越方程学生不能够解决,从而激发学生的求知欲,根据由易到难,有已知得到未知的认知规律为前提,从具体的问题出发,揭示函数与代数式、方程之间的内在联系,并从学生所熟悉的具体二次函数,推广到一般的二次函数,再进一步推广到一般的函数。从而提出零点的概念,此时再回到求方程lnx2x60的根的问题,及时回应了导入时提出的问题又再次激发学生的探索欲望,这时学生已经能考虑到可以利用函数的图像,零点的知识解决但同时又有新的问题出现,怎么判断函数的零点位置,什么时候出现函数的零点,这时我有趁热打铁提出零点的存在性问题。
问题1:函数y=f(x)在某个区间上是否一定有零点? 怎样的条件下,函数y=f(x)一定有零点? 探究:(Ⅰ)观察二次函数f(x)x22x3的图象:
①.在区间(-2,1)上有零点______;f(2)_______,f(1)_______,. f(2)·f(1)_____0(<或>)②.在区间(2,4)上有零点______;f(2)·f(4)____0(<或>).
(Ⅱ)观察函数的图象
①在区间(a,b)上______(有/无)零点;f(a).f(b)_____0(<或>). ② 在区间(b,c)上______(有/无)零点;f(b).f(c)_____ 0(<或>). ③ 在区间(c,d)上______(有/无)零点;f(c).f(d)_____ 0(<或>). 通过上面问题学生已经能够得出零点的存在性定理,此时再次提出lnx2x60的根的问题,同学们已经可考虑到利用函数图像,零点的存在性定理判断它有根的问题但是还不能确定有几个,此时再将问题升华:在什么样的条件下,何时零点的个数是惟一的呢?这样使学生对零点的存在性及惟一性就有了既明确又深刻的认识。最后解决问题
求函数f(x)=㏑x+2x -6的零点个数。设计问题:
(1)你可以想到什么方法来判断函数是否存在零点?(2)你是如何来确定零点所在的区间的?(3)零点是唯一的吗?为什么?
最后学生虽然找到零点的范围但是依然没确定方程的根,提出问题如何确定跟的具体值?为下节课埋下伏笔。本节课成功之处:
1.引入时提出方程lnx2x60它是教材中的例题,把它放到引入里让学生带着问 题进行学习,激发了学生的学习兴趣,调动了他们的学习积极性。有部分同学马上想到了可以利用图像法,我给与鼓励并提出方程的根与函数图像究竟是怎样的联系并引导学生先从简单的,我们熟悉的二次方程二次函数开始研究从而推动了教学的进行。
2.始终以lnx2x60中心,围绕这个问题不断设问引导学生解决问题,在关键环节,例如:当我们提出了零点概念,知道了方程的根与对应函数与x轴的交点的关系此时在提出lnx2x60这个方程的根的问题,学生能够马上联想到考虑对应函数的图像问题。又如当我们得到函数零点的存在性定理后在提出lnx2x60。这样环环相扣,步步为营为最中突破问题奠定了坚实的基础。
3.在过程中始终没有给灌输学生知识,而是引导学生步步接近答案让学生真正的体会到了学习的成就感,体现了以教师为主导,学生为主体,体现了问题下的情景教学,学生自主探究完成教学任务。
4.本节课遵循了这样一个规律,遇到问题—先解决相类似的问题— 总结一般规律—深入挖掘内在联系—得到新知识—利用新知识解决遇到问题。
教学机智 :
当我引入给出方程lnx2x60有同学马上想到了可以利用图像法,我给与鼓励并提出方程的根与函数图像究竟是怎样的联系并引导学生先从简单的,我们熟悉的二次方程二次函数开始研究从而推动了教学的进行。又如当学生总结出零点存在性定理后我进行了补充,学生质疑[a,b]为什么不能写成(a,b),我给学生画出图像,很好的解决了这个问题。不足之处:
二次方程二次函数图像的关系探讨时间过长导致巩固练习没有进行,函数零点概念不需要学生提出,学生只要发现方程的根与对应函数图像与x轴交点的关系教师就可以直接给出定义。数学语言有时还不规范,如开闭区间有时不说,板书设计还不能完美。
再教设计:
减少二次函数二次方程探讨时间认识到这个探讨的主要目的是引出零点概念,要主次分明。