1.1建立反比例函数模型_教学设计

时间:2019-05-12 17:29:52下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《1.1建立反比例函数模型_教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《1.1建立反比例函数模型_教学设计》。

第一篇:1.1建立反比例函数模型_教学设计

1.1建立反比例函数模型

蓼皋中学 刘志刚

一、知识与技能

1.从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解.2经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.二、过程与方法

1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点.2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识.三、情感态度与价值观

1.经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣.2、通过分组讨论,培养学生合作交流意识和探索精神.教学重点:理解和领会反比例函数的概念.教学难点:领悟反比例的概念.教学过程:

一.回顾旧知。1.什么叫函数?

什么叫一次函数?一次函数:若两个变量x,y间的关系式可以表示成y=kx+b(k、b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.即:y=kx(k ≠ 0),其中k叫做比例系数。

二、创设情境,导入新课

活动1 新学期开始了,王老师准备把60作业本分给同学们,如果分给2个同学,平均每人分得多少本?3个,4个,5个,10个呢?

学生人数x(人)2 3 4 5 10 每人分得的 作业本个数y(个)30 20 15 12 6 2.当同学人数x变化时,平均每人分得的作业本个数y会怎样变化呢? 问题: y是x的函数吗?为什么? Xy=60 y=60/x 活动2:玉屏到北京铁路线长为1980km。一列火车从玉屏开往北京,记火车全程的行驶时间为t(h),火车行驶的平均速度为u(km/h), 能用一个数学解析式表示吗? ut=1980 即t=1980/u 活动3学校课外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场.设它的一边长为x(米),请写出另一边的长y(米)与x的关系式.

根据矩形面积可知

x y=24,即 y=24/x 师生行为:

先让学生进行小组合作交流,再进行全班性的问答或交流.学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形

式.教师组织学生讨论,提问学生,师生互动.在此活动中老师应重点关注学生: ① 能否积极主动地合作交流.② 能否用语言说明两个变量间的关系.③ 能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象.分析及解答:(1)y=60/x(2)t=1980/u(3)y=24/x 其中u是自变量,t是u的函数;

x是自变量,y是x的函数;

上面的函数关系式,都具有yk的形式,其中k是常数.x引出概念:反比例函数:一般地,如果两个变量x,y之间

的关系可以表示成:y=k/x(K为常数,且K不为0)的形式,那么y是x的反比例函数。

注 意:1 k为常量,且k≠0 2自变量X不能为零(因为分母为零时,该分式无意义)。3 xy = k

-1 4 当y=k/x写成y=kx时x的指数为-1。

三、联系生活,丰富联想,识函数。

活动1下列函数中哪些是反比例函数?

1 y=3x-1 2 y=2x 3 y=1/x 4 y=2/3x

活动2下列函数中哪些是反比例函数?若是,请指出K的值。1 y=-1/x 2 y=-2/5x 3 xy=0.5 4 y=2a/x(a为常数,且a≠0)

m2+2m-4活动3.当函数y=(m-1)x是反比例函数,求m的值。

活动4下列函数,是反比例函数吗?哪些表示y是x的反比例函数? 1 y=1/x 2 y=2/(x+1)3 y=1/x+2/x 下列问题中,变量间的对应关系可用这样的函数式表示?

(1)小明同学用50元钱买学习用品,单价y(元)时与数量x(件),那么变量y是x的函数吗?是反比例函数吗

(2)一个矩形的面积是20cm2,相邻的两条边长为xcm和ycm,那么变量y是x的函数吗?是反比例函数吗?(3)某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗? 师生行为

学生先独立思考,在进行全班交流.教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:

(1)能否从现实情境中抽象出两个变量的函数关系;(2)能否积极主动地参与小组活动;(3)能否比较深刻地领会函数、反比例函数的概念.分析及解答:(1)y=50/x 是 是(2)y=20/x 是 是(3)m=346.2/n 是 是

活动3 例 已知y是x的反比例函数,当x=2时,y=10.(1)写出y与x的函数关系式;

(2)当x=3时,求y的值.四 自我检测。

下列函数哪些是反比例函数,并指出其中的k值。

2(1)y=x/3(2)5xy=1(3)y=1/x(4)y=4x+2(5)y=(k+1)/x 2.计划修建铁路1200km,那么铺轨天数y是每日铺轨量x的函数关系

式是 ————

3.若Y是X的反比例函数,比例系数为— 1/2,则Y关于X的函数关系式为。

m-7 4 已知函数 y=x是正比例函数,则 m = ___ m-7已知函数 y=3x 是反比例函数,则 m = ___。一定质量的氧气,它的密度ρ(kg/m3)是 它的体积V(m3)的反比例函数,当V=10 m3 时,ρ =2kg/ m3.(1)求ρ与V的函数关系式;(2)求当V=2 m3时氧气的密度.6.生活中有许多反比列函数的例子,你能举几例吗?

在下面的实例中,x和y是否成反比例函数关系吗?若是请列出关系式。(1)x人共饮水10kg,平均每人饮水ykg(2)底面半径为xm,高为ym的圆柱形水桶的体积为 m3

-17.(1)已知函数y=(k-1)x是反比例函数,求k的取值范围

k2-2(2)已知函数y=(k-1)x是反比例函数,求k的值。

k+1(3).已知函数y=(k-1)x。

①当k为何值时,y是x的正比例函数? ②当k为何值时,y是x的反比例函数?

8若y=y1+y2,且y1与x1成正比例,比例系数为K1,y2与x2成反比例,比例系K2当x=1时,y=1。当x=2时y=-1。

(1)求y与x的函数关系。(2)当x=3时,求y的值。

学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”

师生行为:

学生独立思考,然后小组合作交流.教师巡视,查看学生完成的情况,并给予及时引导.在此活动中教师应重点关注:

①学生能否领会反比例函数的意义,理解反比例函数的概念; ②学生能否积极主动地参与小组活动 五 课堂反馈。

本节课你学到了什么?你还有什么困难需要老师帮忙嘛?

六、课时小结

反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解.在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象.反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象.设计理念:

1充分体现学生的主体地位。

2.体现分层教学思想。

3体现高效课堂。

第二篇:建立二次函数模型教学设计

《建立二次函数模型》教学设计

一、教学目标:

(一)知识与技能

1.掌握二次函数的概念。

2.能根据实际情况列出二次函数表达式,并确定自变量的取值范围。

(二)过程与方法

1.经历探索和表示二次函数关系的过程。2.体验如何用二次函数表示变量之间的关系。

(三)情感态度与价值观

1.积极参与探索活动、乐于和同伴交流与合作,敢于在交流中发表意见,并能听取别人的不同见解。

2.体验二次函数模型是描述实际生活的有效工具。二.重点、难点: 1.教学重点: 二次函数的概念。2.教学难点:

根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围

三.教学方法:

目标教学法 四.教学用具: 多媒体

五、教学过程

(一)激趣导入

篮球在空中运行的路线、美丽的桥孔、迷人的彩虹、欢腾的喷泉都是什么曲线呢?你能建立一个函数模型来刻画这些曲线吗?这就是本章要学习的二次函数图像。

(二)探究新知

1、二次函数的定义

(Ⅰ)由实际生活中的两例问题,引入二次函数的定义,从而指出二次函数自变量的取值范围。(Ⅱ)典型例题:

【例1】下列函数中(x,t是自变量),哪些是二次函数?(1)y=-0.5+3x² ,(2)y=x(x+1)-x2 +2(3)y=22+2x,(4)s=1+t+5t²(5)y=(m-1)x2+3x(m为任意实数)(6)y=-3x2(Ⅲ)变式练习一

2、建立二次数学模型(Ⅰ)典型例题:

【例2】 某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,若设每件降价x元、每星期售出商品的利润为y元,请写出 y与x的函数关系式.(Ⅱ)变式练习二

三、拓展延伸

在例2中,我们求出了 y与x的函数关系式y=-20x2+100x+6000.若你是该商场的经理,请你运用所学知识,决策降价多少元时,能获取最大利润?最大利润是多少?

四、小结: 本节课你有什么收获?

五、课堂检测

1、二次函数的一般形式是y=________________

2y(mn)xmxn是二次函数的条件是()

2、函数A.m、n是常数,且m≠0 B.m、n是常数,且m≠n C.m、n是常数,且n≠0 D.m、n可以为任何常数

3、下列不是二次函数的是()

x2y2y3(x1)12 A. B.2yx5 D.y(x1)(x1)C.

4、下列函数关系中,可以看作二次函数模型的是()A.在一定距离内,汽车行驶的速度与行使的时间的关系 B.电压一定时,电流也电阻之间的关系

C.矩形周长一定时,矩形面积和矩形边长之间的关系 D.圆的周长与半径之间的关系

5、设圆柱的高为6 cm,写出圆柱的体积V(cm3)与底面半径为r(cm)的函数关系式;并求出当圆柱体积为54πcm3时半径r的值?

第三篇:反比例函数教学设计

课题 17.4 反比例函数教学设计

教材分析

在学反比例函数前已经学过正比例函数和一次函数,九下学习二次函数,教材的编写意图是由简单到复杂,先直线再曲线。因此学好反比例函数对以后学习二次函数有很大的帮助。另一方面一次函数与反比例函数、二次函数有着非常紧密的联系,所以在复习反比例函数时把一次函数与它进行对比更有利于学好函数的有关知识。

学情分析

学生对于数学的学习兴趣比较浓厚,课堂上能积极发言,思考,交流互动,形成了互助合作的好习惯.在本节课学习之前,学生已较好地掌握了正比例函数和一次函相关内容,因此本节的学习中,师适当地引导之后.可放心地让生合作交流,自主探索.在练习的设置中可由浅入深,适当地提高,让生动脑思考,交流探讨充分地参与到学习中来.教学目标

1、通过具体的情境、让学生经历由实例领会函数和反比例函数概念的过程,从而进一步体会反比例函数的意义。

2、观察、比较、加深对反比例函数的图象和性质的理解,建立函数知识体系。

3、在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。

教学重点

反比例函数的图像和性质在实际问题中的运用

教学难点

难点是反比例函数性质的应用。

教学方法

鉴于教材特点及学生的年龄特点、心理特征和认知水平,采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。

通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——自主——交流——总结”的学习活动过程,同时在教学中,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

学法指导

本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

教学过程

一.知识回顾 :

让学生小组交流总结反比例函数的相关知识,形成知识网络,做到心中有数,学以致用。二.自主完成:

十个问题的设计考查反比例函数的定义及解析式的不同形式,反比例函数图象的位置、增减性,重点是巩固基础知识和一般的解题方法。利用所学知识,解决问题,学生先自主完成,然后通过学生代表精讲加深理解,。

第2,5,9, 10小题易错处必要时教师精讲。第5题强调 “必须限定在每一个象限内”,设计的主要目的是平时在作业中错误率也较高,再次讲解以加深理解和记忆。

三.议一议(合作交流)

九个小组组内交流这三个问题的学习成果,达成共识后举手示意老师本组交流完毕。

组间交流学习成果,此时边分析边讲解,讲解时学生不仅要说出结论,更要说出思维过程(说做法、说思路、说规律、说关键点),教师要观察和帮助学困生或组。

教师指定三个组学生讲解,及时鼓励学生总结补充。四.能力提升

第1题是对待定系数法求函数关系式的考查

充分利用“图象”这个载体,随时随地渗透数形结合的数学思想.一学生板演解题过程。注重规范书写.第2题是对反比例函数,一次函数与方程,面积的综合考查。学生代表分析引导,激发学生的求知欲,关注“学困生”;请两名学生上台分析.关注学生的思维。五.当堂检测:

反馈学生掌握情况。六.课堂小结

通过这节课的学习,你有什么收获?

本节复习课主要复习反比例函数的概念、图像、性质、应用等内容,夯实基础提高应用。

七、作业

能力提升第2题过程,课本64页习题17.5第5题

板书设计

17.4 反比例函数

1.定义

2.确定表达式 3.图象 4.性质

评价设计

本节课采用的评价方法主要有:观察、抽问,和练习抽查等。教学中注意随时观察学生对学习的态度表现,如注意力集中的程度、情感的参与和行为参与的情况;通过提问和练习,评价学生对学习内容的认知程度,如对学习内容的思维反应是否积极、跟进;课堂练习、答问的正确程度;练习的正确率等。根据学生的情况及时调整教学内容和过程,以较好地实现教学目标

第四篇:反比例函数教学设计

17.1.2 反比例函数的图象和性质(2)教学设计 学习课题:17.1.2 反比例函数的图象和性质(2)

学习内容:教材P44-45 学习目标:

1、能用待定系数法求反比例函数的解析式.

2、能用反比例函数的定义和性质解决实际问题.

学习重点:反比例函数图象性质的应用.

学习难点:反比例函数图象图象特征的分析及应用。学习准备:

1、如何画反比例函数图象。

2、反比例函数有哪些性质。

学习过程:

一、探究研讨: 【活动1】老师在黑板上写了这样一道题:“已知点(2,5)在反比例函数y=

?的图象上,x•试判断点(-5,-2)是否也在此图象上.”题中的“?•”是被一个同学不小心擦掉的一个数字,请你分析一下“?”代表什么数,并解答此题目.

【活动2】已知反比例函数的图象经过点A(2,6)

(1)这个函数的图象分布在哪些象限?y随x的增大而如何变化?

(2)点B(3,4)、C(-

214,-4)和D(2,5)是否在这个函数的图象上? 2

5【活动3】如图是反比例函数y=(m-5)/x的图象的一支。根据图象回答下列问题:(1)图象的另分布在哪些象限?常数m的取值范围是什么?

(2)在函数的图象的某一支上任取点A(a,b)和点B(,b′)。如果a﹥a′,那么

b和b′有怎样的大小关系?

二、巩固练习:

1、P45-

1、2

2、判断下列说法是否正确

(1)反比例函数图象的每个分支只能无限接近x轴和y轴,•但永远也不可能到达x 轴或y轴.()3中,由于3>0,所以y一定随x的增大而减小.()x

2(3)已知点A(-3,a)、B(-2,b)、C(4,c)均在y=-的图象上,则a

x

(2)在y=

(4)反比例函数图象若过点(a,b),则它一定过点(-a,-b).()

3、设反比例函数y=

3m的图象上有两点A(x1,y1)和B(x2,y2),且当x1<0

,在图象的每一支上,y随x•xk的图象有一个交点的纵坐标是2,求(1)x时,有y1

4、点(1,3)在反比例函数y=的增大而

5、正比例函数y=x的图象与反比例函数y=x=-3时反比例函数y的值;(2)当-3

三、提升能力:

1、三个反比例函数(1)y=

kk1k

(2)y=

2(3)y=3 在x轴上方的图象如图所示,由此xxx推出k1,k2,k3的大小关系

2、直线y=kx与反比例函数y=-求S△ABC.

3、已知函数y=-kx(k≠0)和y=-足为C,则S△BOC=_________.

6的图象相交于点A、B,过点A作AC垂直于y轴于点C,x4的图象交于A、B两点,过点A作AC垂直于y轴,垂x4、已知正比例函数y=kx和反比例函数y=析式及另一交点的坐标.

3的图象都过点A(m,1),求此正比例函数解x5、如图所示,已知直线y1=x+m与x轴、y•轴分别交于点A、B,与双曲线y2=分别交于点C、D,且C点坐标为(-1,2).

(1)分别求直线AB与双曲线的解析式;

(2)求出点D的坐标;

(3)利用图象直接写出当x在什么范围内取何值时,y1>y2.

四、反思归纳

k(k<0)x1、本节课学习的内容:

反比例函数的性质及运用

(1)k的符号决定图象_________.

(2)在每一象限内,y随x的变化情况,在不同象限,_________运用此性质.

(3)从反比例函数y=

k的图象上任一点向一坐标轴作垂线,这一点和垂足及坐标原点x所构成的三角形面积S△=_________.

(4)性质与图象在涉及点的坐标,确定解析式方面的运用

2、数学思想方法归纳:

第五篇:《反比例函数》的教学设计[范文模版]

《反比例函数》的教学设计

一、教学目标(一)知识与技能

1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似 关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.3.探索现实生活中数量间的反比例关系,能判断一个给定的函数是否为反比例函数.(二)过程与方法

1结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.2经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(三)情感与价值观要求

1.从现实情境和已有知识经验出发研究两个变量之间的相互关系,进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观 点。体验数学来源于生活实际,激发学生学习数学的热情和兴趣。2.结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.二、教学重点

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.三、教学难点

领会反比例函数的意义,理解反比例函数的概念.四、教学方法:

利用多媒体教学平台,采用教师引导,学生自主探索和小组合作相结合的教学方式。教具准备 投影片两张 第一张:(记作A)第二张:(记作B)

五、教学过程

(一)知识链接:

函数、一次函数和正比例函数定义、性质等。(二).创设问题情境,引入新课

1、我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1600km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1600,则t和v之间的关系是什么呢?肯定不是正比例函数和一次函数的关系,那么它们之间 的关系究竟是什么关系呢?这就是本节课我们要揭开的奥秘.2、新课讲解

(1)反比例函数定义。投影片:(A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么? ①你能用含有t的代数式表示v吗? ②当 t分别为 20,40,60,80,100时,v分别为多大? 当t越来越大时,v怎样变化?当t越来越小呢? ③变量t是v的函数吗?为什么? 师生讨论后给出: 一般地,如果两个变量x、y之间的关系可以表示成(k为常数,k≠0)的形式,那么称y是x的反比例函数.从 中可知x作为分母,所以x不能为零.(2).做一做 投影片(B)①.一个矩形的面积为200平方厘米,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么? ②.某村有耕地380公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么? 解析:1)由面积等于长乘以宽可得xy=200.则有y=200/x.变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.2)根据人均占有耕地面积等于总耕地面积除以总人数得m=380/n.给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m=380/n符合反比例函数的形式,所以是反比例函数 3.课堂练习随堂练习(P131)4.活动与探究

已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数? 分析:由y与x成反比例可知y= ,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=

1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1, k=1.即表达式为y-1=x+2, y=x+3.由上可知y是x的一次函数.六.课时小结

本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.七.课后作业习题5.1 八.板书设计 板书设计: 反比例函数

1、定义:一般地,如果两个变量x,y之间的关系可以表示成:y=k/x(k为常数,K≠0)的形式,那么称y是x的反比例函数。

2、注意: ①常数K≠0;

②自变量x不能为零(因为分母为0时,该分式没意义); ③当 y=k/x 可写为乘积的形式 时注意x的指数为—1。④确定了k,这个函数就确定了。教学反思: 在这节课中,我认为最成功之处是比较充分地调动了学生的积极性、主动性。从生活中买房的例子出发,从一开始就吸引了学生的注意力,充分引发了学生学习的兴趣,从而使得这节课能得以发挥。由于学生的兴趣得以激发,所以在教授新课的过程中,师生得以互动。在正反比例解析式及其性质的比较中,学生能自主分析,解决问题。在图象概念比赛中,许多学生能积极指出其他同学的优缺点,并且不断发现不足之处。这样让学生自己发现问题,自己解决问题,既提高了他们语言表达的本领,更为后面学习图象性质做了铺垫。当对图象性质进行小组讨论时,许多学生能积极思考,互相反驳,互相提问解决问题,并且运用类比方法进行分析。应当说这节课让学生得到了一个良好的自主学习的环境,整节课学生积极举手发言,场面比较热烈,使我也能充分发挥。在课程设计中,我将反比例函数比较数学化的问题实际化,从实际出发又回到实际也是比较合理的。由于现在学生知识面的扩大,数学教学应该为实际服务越来越被大家接受,因此我认为联系实际是很重要的。

在这节课中,多媒体教学也起了举足轻重的地位。在电脑课件的帮助下,这节课变得比较充实丰富。而电脑动杂问题变得简单化。当然这节课存在很多不足之处。例如后半节课有些紧凑这节课在设计过程中多多少少忽略了学生的想法,在备课过程中,没有备好学生,站在学生的角度去设计课堂,这方面做的很不够,有些问题的处理方式不是恰到好处,思考问题的时间不是很充分;还有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性;另外课堂中指教者的示范作用体现的不是很好,肢体语言也不够丰富,鼓励的话显得很单一,而且投影片上在新课导入的时候还出现了差错,总之,我会在以后的教学中注意以上存在的问题。

综观整堂课,严谨亲切有余,但活泼激情不足,显得平铺直叙的感觉,缺少高潮和亮点;在今后的教学中要严格要求自己,方方面面进行改善!

一、教学设计应符合学生的认知规律,以学生的实践活动作为学生思维的切入点,创建了活泼而富有活力的课堂氛围。.重视对学生能力的培养。除培养学生积极思考、主动发言的能力外,还培养了学生的审美能力、空间观念,发展了创造力,丰富了想象力以及动手操作能力.学生在教师的引导下自主体验、建构知识,实现了知识的再创造。学生通过小组活动,在合作学习中增强与他人的合作意识。

二、本节课的学习方式主要采用探究性学习与接受性学习相结合方式,重点放在反比例函数图象的特征与性质的探究与掌握上,力求通过这一过程使学生感受从“特殊”到“一般”的认知过程,感悟数形结合、分类、归纳、运动与变化的数学思想。

三、本节课知识点的传授主要采用了与正比例函数相对照的方式进行的,这是根据现代建构主义的理论,从思维的最近发展区,通过有关知识的联想激活学生原有的函数知识,巧妙的引导学生发现正,反比例函数之间的区别与联系,掌握新知。由于本章内容是学生第一次接触函数思想,是学生认知上的一个难点,所以本节课引入时引导学生观察变量之间的对应关系,为下节函数内容做好铺垫。

下载1.1建立反比例函数模型_教学设计word格式文档
下载1.1建立反比例函数模型_教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    反比例函数教学设计(通用)五篇

    反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和......

    反比例函数及图形教学设计(本站推荐)

    反比例函数的图象与性质教学设计 教学目标 1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。 2.会三种表示方法的相互转换,对函数进行认识上的整合。 3.逐步提高从函数......

    《建立模型》教学设计

    《建立模型》教学设计 教学目标: 1、理解模型的作用:用模型来描述抽象事物;用模型来解释事物的原理。 2、了解建模的思路,能自己初步设计模型。 教学难点: 了解建模思路,能自己初......

    建立模型教学设计(合集)

    苏教版五年级科学上册 建立模型 肥城市潮泉镇中心小学 石连香 教学目标: 1.能运用模型解释并揭示事物的特征。 2.知道模型的作用及怎样模拟事物的。 3.能建立一些简单的模型,......

    《建立模型》教学设计

    《建立模型》教学设计 金坛市小学科学张戴李黄四人组 一、教学目标: 1、知道模型的种类以及作用; 2、能够建立一些简单的模型。 二、重点难点: 重点是认识模型的作用; 难点是学......

    建立二次函数模型[推荐五篇]

    建立二次函数模型 〖课标要求〗:会根据实际情况建立简单的二次函数模型。 〖教学目标〗: 知识与技能:掌握二次函数的概念,、正确理解a≠0的作用与要求,初步体会二次函数与一次函数......

    实际问题与反比例函数教学设计(模版)

    实际问题与反比例函数 目标认知 学习目标 1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程. 2.体会数学与现实生活的紧密联系,增强应用意识,提高运用......

    18.3 反比例函数 教学设计 教案

    教学准备 1. 教学目标 经历画反比例函数图像的过程,进一步巩固画函数图像的基本方法;结合图像归纳反比例函数图像的性质,并能进行简单的应用。利用几何画板软件演示反比例函......